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Abstract

We introduce a stereo correspondence system imple-

mented fully on event-based digital hardware, using a fully

graph-based non von-Neumann computation model, where

no frames, arrays, or any other such data-structures are

used. This is the first time that an end-to-end stereo pipeline

from image acquisition and rectification, multi-scale spatio-

temporal stereo correspondence, winner-take-all, to dispar-

ity regularization is implemented fully on event-based hard-

ware. Using a cluster of TrueNorth neurosynaptic pro-

cessors, we demonstrate their ability to process bilateral

event-based inputs streamed live by Dynamic Vision Sen-

sors (DVS), at up to 2,000 disparity maps per second, pro-

ducing high fidelity disparities which are in turn used to re-

construct, at low power, the depth of events produced from

rapidly changing scenes. Experiments on real-world se-

quences demonstrate the ability of the system to take full ad-

vantage of the asynchronous and sparse nature of DVS sen-

sors for low power depth reconstruction, in environments

where conventional frame-based cameras connected to syn-

chronous processors would be inefficient for rapidly mov-

ing objects. System evaluation on event-based sequences

demonstrates a ∼ 200 × improvement in terms of power

per pixel per disparity map compared to the closest state-

of-the-art, and maximum latencies of up to 11ms from spike

injection to disparity map ejection.

1. Introduction

Sparsity and parallel asynchronous computation are two

key principles of information processing in the brain. They

allow to solve complex tasks using a tiny fraction of the en-

ergy consumed by stored-program computers [64]. While

the successful artificial neural networks may not operate the

same way as the brain, both of them utilize highly parallel

and hierarchical architectures that gradually abstract input

data to more meaningful concepts [8, 51, 16]. However,

event-based computation has not been equally adopted [4].

∗equal contribution. †Work done as an intern at IBM Research - Al-

maden. Cognitive Anteater Robotics Lab (CARL), University of Califor-

nia, Irvine

Another barrier for sparse computation are traditional sen-

sors, such as frame-based cameras, which provide regular

inputs. For autonomous vehicles, drones, and satellites, en-

ergy consumption is a challenge [6]. Event-based process-

ing dramatically reduces power consumption by computing

only what is new while omitting unchanged input parts.

Recently developed event-based cameras such as Dy-

namic Vision Sensor (DVS) [37, 10] and ATIS [50], in-

spired by the biological retina, encode pixel illumination

changes as events. These sensors solve two major draw-

backs of frame-based cameras. First, temporal resolution

of frame-based applications is limited by the camera frame

rate, usually 30 frames per second. Event-based cameras

can generate events at microsecond resolution. Second,

consecutive frames in videos are usually highly redundant,

which waste downstream data transfer, computing resources

and power. Since events are sparse, event-based cameras

lead to better downstream resource usage. Moreover, event-

based cameras have high dynamic range (∼ 100 dB), which

is useful for real world variations in lighting conditions.

To achieve the low energy and high temporal resolution

benefits of event-based inputs, computations must be per-

formed asynchronously. To benefit from sparse and asyn-

chronous computation, neuromorphic processors have been

developed [44, 24, 30, 9, 56]. These processors represent

input events as spikes and process them in parallel using

a large neuron population. They are stimulus-driven and

the propagation delay of an event through the neuron layers

is usually a few milliseconds, suitable for many real-time

applications. For example, the TrueNorth neuromorphic

chip [44] has been used for high throughput Convolutional

neural networks (CNNs) [22], character recognition [53],

optic flow [11], saliency [3], and gesture recognition [2].

Depth perception is an important task for autonomous

mobile agents to navigate in the real world. The speed and

low power requirements of these applications can be effec-

tively met using event-based sensors. Event-based stereo

provides additional advantages over other depth estimation

methods that increase accuracy and save energy, such as

high temporal resolution, high dynamic range, and robust-

ness to interference with other agents.

Several methods have been proposed to solve event-
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based stereo correspondence. Most global methods [40, 17,

49, 45] are derived from the Marr and Poggio cooperative

stereo algorithm [42]. The algorithm assumes depth conti-

nuity and often event-based implementations are not tested

with objects tilted in depth. Local methods can be paral-

lelized and find corresponding events using either local fea-

tures over a spatiotemporal window or event-to-event fea-

tures [13, 58, 52, 32, 57]. However, most approaches use

non-event-based hardware, such as CPU or DSP.

We propose a fully neuromorphic event-based stereo dis-

parity algorithm. A live-feed version of the system running

on nine TrueNorth chips is shown to calculate 400 dispar-

ity maps per second, and the ability to increase this up to

2,000 disparities per second (subject to certain trade-offs)

is demonstrated, for use with high speed event cameras,

such as DVS. The main advantages of the proposed method,

compared to the related work [17, 49, 45, 52, 57], are si-

multaneous end-to-end neuromorphic disparity calculation,

low power, high throughput, low latency (9-11 ms), and

linear scalability to multiple neuromorphic processors for

larger input sizes. Compared to frame-based computation,

in the asynchronous, event-based computation supported by

TrueNorth, at each time cycle, in general only neurons that

have input spikes are computed, and only spike events “1”

are communicated. When the data in a cycle is sparse, as is

the case with a DVS sensor, most neurons would not com-

pute for most of the time, resulting in low active power [44].

This processing differs from traditional architectures that

use frame-buffers and other conventional data structures;

where same memory fetching and computation is repeated

for each pixel every frame, independent of scene activity.

The proposed event-based disparity method is imple-

mented using a stereo pair of DAVIS sensors [10] (a ver-

sion of DVS) and nine TrueNorth NS1e boards [53]. How-

ever, the method is applicable to other spiking neuromor-

phic architectures, and it is also tested offline on larger

models using a TrueNorth simulator. Input rectification,

spatiotemporal scaling, feature matching, search for best

matches, morphological erosion and dilation, and bidirec-

tional consistency check are all performed on TrueNorth,

for a fully neuromorphic disparity solution. With respect to

the most relevant state-of-the-art approach [17], our method

uses ∼ 200× less power per pixel per disparity map. We

also release the event-based stereo dataset used, which in-

cludes Kinect-based registered ground-truth.

2. Related work

Frame-based stereo disparity methods calculate match-

ing cost using a spatial similarity metric [25, 27, 29] or a

cost function learned from a dataset (see reviews [62, 55, 34,

63]). CNNs [35] have been used to learn stereo matching

cost [66, 46]. Ground truth disparity maps from benchmark

frame-based datasets [27, 54, 26, 43] are used to train these

Figure 1. The time-stamp synchronized stereo rig is connected to

a cluster of TrueNorth chips via ethernet.

models, followed by sparse-to-dense conversions [18, 5].

Feature based matching techniques, such as color, edge, his-

togram, and SIFT [39] based matching, produce sparse dis-

parity maps [28, 38, 21, 61].

In contrast, event-based stereo correspondence litera-

ture is relatively new. Mahowald and Delbrück [41] im-

plemented the Marr and Poggio cooperative stereo algo-

rithm [42], a global approach, in an analog VLSI circuit.

The algorithm converges well when object surfaces are

fronto-parallel and candidate matches injected to the net-

work are close together [40, 17]. Later Mahowald [40]

modified the VLSI embodied algorithm to solve tilted depth

maps using a network of analog valued disparity units,

which linearly interpolates the cooperative network output.

However, most of the recent event-based implementa-

tions of the cooperative algorithm do not consider depth

gradients [47, 48, 23, 17]. Piatkowska et al. [49] inject

neighborhood similarity of candidate matches into the co-

operative network. Dikov et al. [17] use six SpiNNaker [24]

processor boards to implement the cooperative network for

106 × 106 pixels of stereo event data. Osswald et al. [45]

propose an FPGA based implementation of spiking neurons

as the nodes of the cooperative network. Xie et al. [65]

employ message passing on a Markov Random Field with

depth continuity for a global solution.

Local event-based stereo correspondence approaches are

area-based or time-based. Area-based methods assume that

object shapes appear identically on left and right sensors.

Camuñas-Mesa et al. [13, 12] propose to match edge orien-

tations in event frames accumulated over 50 ms. Schraml et

al. [60, 58] propose DSP implementation of a spatiotempo-

ral similarity method using two live event sensors [37]. Bel-

bachir et al. [7] use a rotating pair of event-based line (verti-

cal) sensors in static scenes and render events from each ro-

tation to an edge map [33], which is subsequently processed

using a frame-based panoramic stereo algorithm [36].

Time-based methods utilize event timestamps for match-

ing. Although spike dynamics vary among pixels and sen-

sors [52] and events cannot be matched based on exact

timestamps. Rogister et al. [52, 14] propose to use event-to-

event constraints for calculating matching cost, such as time

window, distance to the epipolar line, ordering constraint,

and polarity. Kogler et al. [32, 31] calculate similarity as the
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Figure 2. Frames-based (a) and event-based (b-left DAVIS and c-

right DAVIS) camera output for a rotating fan. Green dots are

positive events, i.e. increase in pixel intensity, and red dots are

negative events.

inverse of temporal distance and average them within each

depth plane. The proposed method and its FPGA imple-

mentations [20, 19] are equivalent to the cooperative stereo

algorithm [42] with noisy time difference inputs. Schraml

et al. [59, 57] propose a cost function for the rotating stereo

panorama setup in [7] based on temporal event difference.

3. Event-based hardware

Our implementation uses a pair of synchronized

DAVIS240C cameras [10], connected via Ethernet to a clus-

ter of TrueNorth NS1e boards (Fig. 1). The use of DAVIS

sensors improve speed, power, dynamic range, and com-

putational requirements. As shown in Fig. 2, fast moving

objects are more challenging for frame-based cameras.

The IBM TrueNorth is a reconfigurable, non-von Neu-

mann neuromorphic chip containing 1 million spiking neu-

rons and 256 million synapses distributed across 4096 par-

allel, event-driven, neurosynaptic cores [44]. Cores are

tiled in a 64 × 64 array, embedded in a fully asynchronous

network-on-chip. The chip consumes 70mW when oper-

ating at a 1 ms computation tick and normal workloads.

Depending on event dynamics and network architecture,

faster tick period is possible, which we take advantage of

in this work to achieve as low as 0.5 ms per tick, thus

doubling the maximum throughput achievable. Each neu-

rosynaptic core connects 256 inputs to 256 neurons using

a crossbar of 256 × 256 binary synapses with a lookup ta-

ble of weights for 8 bits of precision, plus a sign bit. A

neuron state variable, called membrane potential, integrates

synaptically weighted input events with an optional leak de-

cay. Each neuron can generate an output event determinis-

tically, if the membrane potential V (t) exceeds a threshold;

or stochastically, with a probability that is a function of the

difference between the membrane potential and its thresh-

old [2, 15]. The membrane potential is updated at each tick

t to V (t) = V (t− 1) + ∂V (t)
∂t

, followed by the application

of an activation function an(V (t)) where

an(V (t)) =

{

1, if V (t) ≥ n

0, otherwise
(1)

Each neuron is assigned an initial membrane potential

V (0). Furthermore, upon producing an event, a neuron

is reset to a user-specified value. Unless specified other-

wise, we assume initial membrane potentials and reset val-

ues of zero. TrueNorth programs are written in the Corelet

Programming Language — a hierarchical, compositional,

object-oriented language [1].

4. Stereo correspondence on TrueNorth

The proposed local event-based stereo correspondence

algorithm is implemented end-to-end as a neuromorphic

event-based algorithm. This consists of systems of equa-

tions defining the behavior of TrueNorth neurons, encased

in modules called corelets [1], and the subsequent compo-

sition of the inputs and outputs of these modules. Fig. 3 de-

picts the sequence of operations performed by the corelets

using inputs from stereo event sensors.

Rectification

Temporal 

scaling

L R
1 2

δt1 δt2 1 2

Erosion & 

dilation

Spatial scaling

1 2

Hadamard 

product

o o

Winner-take -

all

Stereo event

sensor feed

1 2

Left-to-right 

consistency

1 2

Disparity map

Figure 3. The pipeline of execution using input events generated

by left and right sensors. A toy example of main operations per-

formed is demonstrated side-by-side in a single spatiotemporal

scale, with an event on the left image and its two candidate cor-

responding events on the right image. Standard morphological op-

erations and left-to-right consistency check are not demonstrated.

4.1. Rectification

The stereo rectification is defined by a pair of func-

tions L, R which map each pixel in the left and right sen-

sor’s rectified space to a pixel in the left and right sen-

sor’s native resolution respectively. On TrueNorth, this

is implemented using |H| · |W | splitter neurons per sen-

sor & polarity channel, arranged in an |H| × |W | retino-

topic map. The events at each rectified pixel p ∈ H ×
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W ×{L,R}×{+,−, {+,−}} are generated through split-

ter neurons which replicate corresponding sensor pixels.

Their membrane potential V spl
p (t) is defined by

∂V spl
p (t)

∂t
=

I(t− 1; p′) where I(t; p′) → {0, 1} denotes whether a sen-

sor event is produced at time t and the sensor pixel p′ cor-

responding to the rectified pixel p. a1(V
spl
p (t)) defines the

activation of the corresponding neuron. Potentials are ini-

tialized to zero and set to also reset to zero upon spiking.

4.2. Multiscale temporal representation

The event rate of an event-based sensor depends on fac-

tors, such as scene contrast, sensor bias parameters, and ob-

ject velocity. To add invariance across event rates, we accu-

mulate spikes over various temporal scales through the use

of temporally overlapping sliding windows. These temporal

scales are implemented through the use of splitter neurons

which cause each event to appear at its corresponding pixel

multiple times, depending on the desired temporal scale, or

through the use of temporal ring buffer mechanisms, which

lead to lower event rates. The ring buffer is implemented by

storing events in membrane potentials of memory cell neu-

rons in a circular buffer, and through the use of control neu-

rons which spike periodically to polarize appropriate mem-

ory cell neurons. Buffers can encode the input at various

temporal scales. For example at a scale T = 5 the buffer

denotes if an event occurred at the corresponding pixel dur-

ing the last 5 ticks (logical disjunction).

A control neuron that produces events with period T
and phase φ is defined by a neuron aT (V

ctrl
φ ) that satis-

fies
∂V ctrl

φ (t)

∂t
= 1, V (0) = φ and resets to zero upon pro-

ducing an event. Through populations of such neurons one

can also define aT (V
ctrl
[φ,θ]) corresponding to phase intervals

[φ, θ] (where θ − φ + 1 ≤ T ), defining periodic intervals

of events. Such control neurons are used to probe (prb)
or reset (rst) neuron membrane potentials. A memory cell

neuron is a recurrent neuron which accepts as input either

its own output (so that it does not lose its stored value when-

ever the neuron is queried for its stored value), input axons

to set the neuron value and control axons for resetting and

querying the memory cell. In more detail the output at index

r ∈ {0, ..., T +1} of a T +2 size memory cell ring-buffer at

a given pixel p, is multiplexed via two copies (m ∈ {0, 1})

and is defined as a2(V
mem
p,m,r) where

∂V mem
p,m,r(t+ 1)

∂t
= [ − aT+2(V

rst
ŝ+1(t))

+([a1(V
spl
p (t))]rr̂ ∨ [a2(V

mem
p,m,r(t− 1))]m

t̂
)

+[aT+2(V
prb

[3−r,T+2−r](t))]
m
t̂

−[aT+2(V
rst
[2−r,T+1−r](t))]

1−m

t̂
]+ (2)

where probe/reset (prb/rst) control neurons are used, r̂ =
t mod (T + 2), ŝ = T + 2− r mod (T + 2), t̂ = t mod 2,

∨ is logical disjunction1,

[x]rr̂ =

{

max {0, x}, if r = r̂

0, otherwise
(3)

and [x]+
def
= [x]11 defines a ReLU function. Eq. 2 defines

a ring-buffer with T + 2 memory cells, where probe pulses

periodically and uniformly query T of the T+2 cells for the

stored memory contents at each tick, where m = 0 neurons

are probed at odd ticks and m = 1 neurons are probed at

even ticks. Reset pulses control when to reset one of the

T + 2 memory cells to zero in preparation of a new input.

Notice that new inputs (a1(V
spl
p (·))) are always routed to

the cell r that was reset in the previous tick. The probe

pulses result in the creation of an output event if during the

last T ticks a1(V
spl
p (·)) produced an event. After a probe

event, a reset event decrements the previous +1 membrane

potential increase, followed by the restoring of the memory

event output during the last probe (a2(V
mem
p,m,r(t− 1))).

4.3. Morphological erosion and dilation

Binary morphological erosion and dilation is option-

ally applied on the previous module’s outputs to denoise

the image. Given a 2-D neighborhood N(p) centered

around each pixel p, the erosion neuron’s membrane po-

tential V e
p is guided by the system of equations

∂V e
p (t)

∂t
=

[1 − |N(p)| +
∑

q∈N(p)

∑

m

∨

r a2(V
mem
q,m,r (t − 1))]+ and

uses an a1 activation function. Similarly, dilation neu-

rons V d
p with receptive fields N(p) evolve according to

∂V d
p (t)

∂t
=

∑

q∈N(p) a1(V
e
q (t− 1)) where a1 is also used as

the dilation neurons’ activation function. The neuron poten-

tials are initialized to zero and set to also reset to zero upon

producing a spike. In practice 3 × 3 pixel neighborhoods

are used. At each tick, erosion and dilation neurons output

the minimum and maximum value respectively, of their re-

ceptive fields. Cascades of erosion and dilation neurons, are

used to denoise retinotopic binary inputs (Fig. 3).

4.4. Multiscale spatiotemporal features

Each feature extracted around a rectified pixel p is a con-

catenation of event patches, extracted from one or more

spatiotemporal scales. Spatial scaling consists of spatially

sub-sampling each output map of the temporal scale phase

(Sec. 4.2/4.3), as specified in the corelet parameters, to ap-

ply the window matching (Sec. 4.5) on the sub-sampled

data. This results in spatiotemporal coordinate tensors

XL,p, XR,p defining the coordinates where events form fea-

ture vectors. The ith of these coordinates is represented by

neuron activations a1(V
L{+,−}

X
(i)
L,p

(t)) and a1(V
R{+,−}

X
(i)
R,p

(t)) in

1disjunction is implemented by sending input events to the same neuron

input axon, effectively merging any input events to a single input event.
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the left and right sensor’s positive (+) or negative (−) po-

larity channel.2

4.5. Hadamard product for matching

Given a pair of spatiotemporal coordinate tensors XL,p,

XR,q centered at coordinates p, q in the left and right rec-

tified image respectively and representing K coordinates

each, we calculate the binary Hadamard product fL(p, t) ◦
fR(q, t) associated with the corresponding patches at time

t, where fL(p, t) =
∏

i{a1(V
L

X
(i)
L,p

(t))} ∈ {0, 1}K and

fR(q, t) =
∏

i{a1(V
R

X
(i)
R,q

(t))} ∈ {0, 1}K . The product is

calculated in parallel across multiple neurons, as K pair-

wise logical AND operations of corresponding feature vec-

tor entries, resulting in (a1(V
dot
p,q,1), ...,a1(V

dot
p,q,K)) where

∂V dot
p,q,i(t)

∂t
= [a1(V

L

X
(i)
L,p

(t − 1)) + a1(V
R

X
(i)
R,q

(t − 1)) − 1]+

The population code representation of the Hadamard prod-

uct output is converted to a thermometer code3, which is

passed to the winner-take-all circuit described below.

4.6. Winner­Take­All system

The winner-take-all (WTA) system is a feed-forward

neural network that takes as input D thermometer code rep-

resentations of the Hadamard products for D distinct candi-

date disparity levels, and finds the disparity with the largest

value, at every tick. For designing a scalable and compact

WTA system on a neuromorphic hardware, we introduced

a novel encoding technique for inputs. In a binary event-

based system, numbers can be efficiently coded using base-

4 representation where each digit is encoded using a 3-bits

thermometer code. We denote it as Quaternary Thermome-

ter Code (QTC). Note that a thermometer code of length 2n

bits can be represented by a QTC of length 3 ∗ ⌈n/2⌉ bits.

For example, values between 0–255 are represented by a

QTC of 12 bits. While it takes a few more bits than an 8

bits binary code, it allows designing a feed-forward WTA

network comprising only four cascaded subnetworks, com-

pared to eight for a binary representation, requiring fewer

hardware resources as well as half the latency. Latency is

further improved with larger bases, but the growth in ther-

mometer code length for each digit results in consuming

more hardware resources. Table 1 shows binary, base-4 and

QTC representation of different decimal numbers.

We assume a maximum thermometer code length of

4B+1 ≥ K for some B ∈ N. Then for any α ∈ {0, 1, 2},

β∈{0, 1, ..., B}, we define the conversion of candidate dis-

parity level d ∈ {0, ..., D − 1} to a QT-coded membrane

potential V CNV
α,β,d (t) as

2for notational simplicity we henceforth drop the +,− superscripts:

the left and right sensors could produce distinct event streams based on

event polarity, or could merge events in a single polarity-agnostic stream.
3e.g., given a population code (1, 1, 0, 1, 0) for value 3, its thermome-

ter code is the right-aligned juxtaposition of all events: (0, 0, 1, 1, 1).

Decimal Binary Base-4 QTC

126 01-11-11-10 1-3-3-2 001-111-111-011

174 10-10-11-10 2-2-3-2 011-011-111-011

33 00-10-00-01 0-2-0-1 000-011-000-001

167 10-10-01-11 2-2-1-3 011-011-001-111

26 00-01-10-10 0-1-2-2 000-001-011-011

Table 1. Decimal, binary, base-4 and QTC representation of five

example numbers.

Value W0 Stage-0 W1 Stage-1 W2 Stage-2 W3 Stage-3

126 1 001 0 0 0

174 1 011 1 011 1 111 1 011 X

33 1 000 0 0 0

167 1 011 1 011 1 001 0

26 1 000 0 0 0

stage max 011 011 111 011

Table 2. Winner selection process for QT-coded inputs (B = 3)

∂V CNV
α,β,d (t)

∂t
= [

∑

i∈U(β)

vid(t−1)−
∑

i∈U(β+1)

4 vid(t−1)−α]+

(4)
where vid(t) is the i-th element of the input thermometer

code4 for dth disparity level at time t and U(β) = {n ∈
N : n ≡ 0 (mod 4β), 1≤ n< 4B+1}. All the conversion

neurons use an a1 activation function and reset to 0 mem-

brane potential upon spiking. Notice that (a1(V
CNV
2,β,d (t)),

a1(V
CNV
1,β,d (t)), a1(V

CNV
0,β,d (t))) is a length-3 thermometer

code representation of a value in {0, 1, 2, 3}, representing

the βth digit in the base-4 representation of vd(t−1).
For a set of QT-coded inputs, the WTA system is real-

ized by a cascade of (B+1) feed-forward pruning networks

where each of the pruning networks process only 3-bits of

the QT codes and prune the inputs not equal to the bit-wise

maximum of corresonding 3-bits thermometer codes from

all inputs. Now starting from the most significant bits, all

the inputs smaller than the maximum will be pruned at dif-

ferent stages and only the winner(s) will survive at the out-

put of the last cascade network. The membrane potential

V WTA
β,d of stage β and disparity index d is given by,

∂V WTA
β,d (t)

∂t
= [4 ·Wβ,d(t−1)+

2
∑

α=0

[a1(V
CNV
α,B−β,d(t−β))

− max
d̄∈{d′|Wβ,d′ (t−1)>0}

{a1(V
CNV
α,B−β,d̄(t−β))}]− 3]+, (5)

where Wβ,d(t)=

{

a1(V
WTA
β−1,d (t)), ∀β> 0,

1, if β = 0
(6)

Note that the function Wβ,d(t) represents the candidate sta-

tus of the d-th input at the end of β-th stage. Initially all the

4the i variable indexing (vi
d

) starts from the right of the thermometer

code vd of (a1(V dot
p,q,1), ...,a1(V dot

p,q,K
)) ∈ {0, 1}K . The dependence of

vd and d on pixels p, q is implicit and is not shown to simplify notation.
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Figure 4. Experimental results obtained using TrueNorth. a) Example synthetic depth pattern, b) ground truth disparity map, c-d) RDS for

left and right view, e) disparity map obtained from corelet implementation, f) corelet result after erosion and dilation post-processing, g)

fan sequence input received from the left-right DAVIS cameras and results generated by each layer of corelets from this input, h) example

frame with fan rotating in a particular orientation, i) 3D reconstruction by the proposed method as seen from an angled front view (screen

capture from the 3D visualizer), j) 3D reconstruction from a top view, k-l) Kinect depth maps with static fan blades, m) merged Kinect

depth map, n) example frame with the butterfly rotating around the spring base, o) Kinect depth map for a butterfly frame, p) merged Kinect

depth map, q) left DAVIS output for a 3 ms time window, r-u) top view of 3D reconstruction from the 3D visualizer for four consecutive

frames in the sequence as the butterfly rotates clockwise. See the supplementary material for example videos.

inputs are winning candidates (W0,d(t) = 1) and the status

changes after the input is pruned at any stage indicating it

is out of the competition and the selection process contin-

ues with remaining candidates. As an illustration, winner is

computed from the example set of numbers in Table 1 and

the winner selection process is shown in Table 2.

4.7. Bidirectional consistency check

A left-right consistency check is then performed to verify

that for each left-rectified pixel p matched to right-rectified

pixel q, it is also the case that right-rectified pixel q gets

matched to left-rectified pixel p. This is achieved using two

parallel WTA streams. Stream 1 calculates the winner dis-

parities for left-to-right matching, and stream 2 calculates

the winner disparities of right-to-left matching. The outputs

of each stream are represented by D retinotopic maps ex-

pressed in a fixed resolution (Dv
i,j,d(t), d ∈ {0, ..., D − 1},

v ∈ {L,R}), where events represent the retinotopic winner

disparities for that stream. The streams are then merged to

produce the disparity map D
L,R
i,j,d(t) = a1(V

L,R
i,j,d (t)) where

∂V L,R
i,j,d (t)

∂t
= [DL

i,j,d(t− 1) +D
R
i,j−d,d(t− 1)+

a1(V
spl

(i,j,L,·)(t− t̂))− 2]+ (7)

where t̂ is the propagation delay of the first layer split-

ter output events until the left-right consistency constraint

merging takes place. This enforces that an output disparity

is produced at time-stamp t and pixel (i, j) only for left-

rectified pixel (i, j), where an event was produced at t− t̂.

5. Experiments

5.1. Datasets

We evaluate the performance of the system on sequences

of random dot stereograms (RDS) representing a rotating

synthetic 3D object (Fig. 4a-f), and two real world sets of

sequences, consisting of a fast rotating fan (Fig. 4g-m) and a

rotating toy butterfly (Fig. 4n-u) captured using the DAVIS

stereo cameras. The synthetic dataset provides dense dis-

parity estimates, which are difficult to acquire with the

sparse event based cameras. The dataset is generated by as-

signing to each left sensor pixel a random event with a 50%

probability per polarity. Similarly, each right sensor pixel is

assigned a value by projecting it to the 3D scene and repro-

jecting the corresponding data-point to the left camera co-

ordinate frame to find the closest pixel value. Self-occluded

pixels are assigned random values.

For the non-synthetic datasets, a Kinect [67] is used to

extract ground truth of the scene structure. This also en-

tails a calibration process for transforming the undistorted

Kinect coordinate frame to the undistorted DAVIS sensor

coordinate frame. The fan sequence is useful for testing the

ability of the algorithm to operate on rapidly moving ob-

jects. Varying orientations of the revolving fan add contin-

uously varying depth gradient to the dataset. Ground truth
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is extracted in terms of the plane in 3D space representing

the blades’ plane of rotation (Fig. 4m). The butterfly se-

quence tests the ability of the algorithm to operate on non-

rigid objects which are rapidly rotating in a circular plane

approximately perpendicular to the y-axis. Ground truth is

extracted in terms of the coordinates of the circle spanned

by the rotating butterfly (Fig. 4p). Nine Fan sequences (3

distances × 3 orientations) and three Butterfly sequences (3

distances) are used. The dataset, with Kinect ground-truth,

is at: http://ibm.biz/StereoEventData.

5.2. Evaluation

On the synthetic dataset we measure the average abso-

lute disparity error, and the average recall, which is defined

as the fraction of pixels where a disparity measurement was

found. On the non-synthetic data, performance is measured

in terms of precision, which is defined as the median relative

error
‖x−x′‖
‖x′‖ between each 3D coordinate x extracted in the

DAVIS frame using the neuromorphic algorithm, and the

corresponding ground coordinate x′ in the aligned Kinect

coordinate frame. Performance is also reported in terms of

the recall, defined herein as the percentage of DAVIS pixels

containing events, where a disparity estimate was also ex-

tracted. We tested a suite of sixty stereo disparity networks

generated with ranges of spatiotemporal scales, denoising

parameters, kernel match thresholds, with/without left-right

consistency constraints etc.
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Figure 5. Performance of sixty models on the nine Fan sequences

and the three Butterfly sequences.

5.3. Power measurement

Power is measured using the same process described in

[2]. We calculate the power consumed by an n-chip sys-

tem by measuring power on a single TrueNorth chip model

running on an NS1t board with a high event rate input gen-

erated by the fan sequence. This board has circuitry to mea-

sure the power consumed by a TrueNorth chip. We multiply

the power value by n to extrapolate the power consumed

by an n-chip system. Measurements are reported at supply
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Figure 6. Depth reconstruction of the fan (first column) and butter-

fly sequence (second column), each shown from two viewpoints.

Each point in the butterfly sequence shown is the median coordi-

nate estimate of the butterfly location at a distinct time instant.

voltages of 0.8V, 1.0V. Total chip power is the sum of pas-

sive power, computed by multiplying the idle power by the

fraction of the chip’s cores under use, and active power —

computed by subtracting idle power from the total power

measured when the system is accepting input events .

5.4. Results

The RDS is tested on a model using 3 × 5 spatial win-

dows, left-right consistency constraints, no morphologi-

cal erosion/dilation after rectification, and 31 disparity lev-

els (0-30) plus a ‘no-disparity’ indicator (often occurring

due to self-occlusions). We also experiment with a post-

processing phase with erosion and dilation applied to out-

put disparity maps in order to better regularize the output.

Average disparity error and recall before regularization is

0.19/0.66 and post-regularization is 0.04/0.63. We observe

major improvements due to the regularization, often occur-

ring in self-occluded regions. Errors increase in slanted re-

gions due to foreshortening effects. The left-right consis-

tency constraint decreases false predictions in those regions.

The evaluation on the non-synthetic dataset was done

under the practical constraints of the availability of a lim-

ited number of NS1e boards on which non-simulated mod-

els could be run, as well as the need to process the full

DAVIS inputs at as high of a throughput as possible. The

models that run on live DAVIS input are operated at spike

injection rate of up to 2,000Hz (a new input every 1/2,000

seconds) and disparity map throughput of 400Hz at a 0.5ms

tick period (400 distinct disparity maps produced every sec-

ond) across a cluster of 9 TrueNorth chips. Single chip

passive/active power on a characteristic model and input is

34.4mW/35.8mW (0.8V) and 82.1mW/56.4mW (1.0V).
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Table 3. Comparison of event based depth estimation literature (a blank ‘ ‘ means feature not present, a ‘-’ means unknown, a ‘X’ denotes

the presence of the respective feature). As the baseline comparison datapoint, we use a system tested end-to-end with live camera feed and

running in real-time on 9 TrueNorth boards. See the Experiments section for a discussion on other TrueNorth systems tested with different

speed vs. power vs. input size tradeoffs. The relative error indicated for some papers is an approximation of the value, extrapolated from

the reported data (the papers do not use the same evaluation dataset/metrics).
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Features of disparity algorithm and implementation

Fully neuromorphic disparity computation X X

Neuromorphic rectification of input X

Real time depth from live sensor input X X X X X

Multi-resolution disparity computation X X

Bidirectional consistency check X X X X X

Scene-independent throughput & latency X X X X X X

Uses event polarity compatibility X X X NA X X

Tested on dense RDS data X X X

Tested on both fast and slow motions X X X X

Implementation metrics

Algorithm implementation hardware Neuro FPGA CPU DSP CPU CPU FPGA ASIC CPU FPGA

Energy consumption (mWatts/Pixel) 0.058 - 16 0.30 - - - - - -

Disparity maps per second 400 151 500 200 - - 1140 40 3333 20

System latency (ms) 9 6.6 2 5 - - 0.87 25 0.3 50

Image size, per sensor, in real-time (pixels) 10800 32400 11236 16384 1.4 M - 16384 57 16384 16384

Disparity levels in real-time 21 30 32 - - - 36 9 128 -

Relative error extrapolation Fig.5 13.4-21% - 6-10% - 3-6% 6-16% - - -

Running a model at the full 2,000Hz throughput comes

at the expense of an increased neuron count. By adding

a multiplexing spiking network to the network, we are

able to reuse each feature-extraction/WTA circuit to process

the disparities for 5 different pixels, effectively decreas-

ing the maximum disparity map throughput from 2,000Hz

to 400Hz, requiring fewer chips to process the full image

(9 TrueNorth chips). We tested the maximum disparity

map throughput achievable, by executing a one-chip model

on a cropped input, with no multiplexing (one disparity

map ejected per tick) at a 0.5ms tick period, achieving the

2,000Hz disparity map throughput. We tested sixty mod-

els on the TrueNorth simulator which provides a spike-for-

spike equivalent behavior to the chip. We achieved best rel-

ative errors of 5 − 11.6% and 7.3 − 8% on the Fan and

Butterfly sequence respectively (Fig. 5). We also observe

qualitatively good performance (Fig. 6). It is observed that

the temporal scale has a higher effect on accuracy than spa-

tial scale. Left-right consistency constraints are typically

present in the best performing fan-sequence models, but not

so in the Butterfly sequences. Distance and orientation do

not have a significant effect on performance. See supple-

mentary materials for more details.

6. Discussion

We have introduced an advanced neuromorphic 3D vi-

sion system uniting a pair of DAVIS cameras with multi-

ple TrueNorth processors, to create an end-to-end, scalable,

event-based stereo system. By using a spiking neural net-

work, with low-precision weights, we have shown that the

system is capable of injecting event streams and ejecting

disparity maps at high throughputs, low latencies, and low

power. The system is highly parameterized and can operate

with other event based sensors such as ATIS [50] or DVS

[37]. Table 3 compares our approach with the literature

on event based disparity. Comparative advantages are low

power, multi-resolution disparity calculation, scalability to

live sensor feed with large input sizes, and evaluation using

synthetic as well as real world fast movements and depth

gradients, in neuromorphic, non von-Neumann hardware.

The implemented neuromorphic stereo disparity system

achieves these advantages, while consuming ∼ 200× less

power per pixel per disparity map compared to the state-

of-the-art [17]. The homogeneous computational substrate

provides the first example of a fully end-to-end low-power,

high throughput fully event-based neuromorphic stereo sys-

tem capable of running on live input event streams, using a

fully graph-based computation model, where no frames, ar-

rays or other such data-structures are used.
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