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Abstract

We study the problem of computer-assisted teaching with

explanations. Conventional approaches for machine teach-

ing typically only provide feedback at the instance level e.g.,

the category or label of the instance. However, it is intu-

itive that clear explanations from a knowledgeable teacher

can significantly improve a student’s ability to learn a new

concept. To address these existing limitations, we propose a

teaching framework that provides interpretable explanations

as feedback and models how the learner incorporates this

additional information. In the case of images, we show that

we can automatically generate explanations that highlight

the parts of the image that are responsible for the class label.

Experiments on human learners illustrate that, on average,

participants achieve better test set performance on challeng-

ing categorization tasks when taught with our interpretable

approach compared to existing methods.

1. Introduction

Computer-assisted teaching offers the promise of per-

sonalized curricula that are tailored to the ability level and

interests of every individual. Providing open access to the

kinds of high-quality teaching that is currently only avail-

able to a small percentage of the world’s population has

the potential to transform education. To date, subject areas

such as mathematics [18, 5] and language learning [34] have

benefited from automated teaching systems. However, the

problem of how to best teach visual expertise in fine-grained

domains such as medical diagnosis and species identification

is comparatively less well explored.

In addition to the benefits to human learners from better

teaching methods, automated systems could also take advan-

tage of these improvements. Access to expert time is often

limited, and as a result, there is a need for better techniques

to train crowd workers for image annotation tasks. Once the

workers have effectively learned the task they can provide

higher quality labeled training data. This ‘closing of the

loop’ will enable us to take advantage of humans’ ability to

both generalize across different domains and cope with other

nuisance factors such as pose and lighting changes.

A) Image Level B) Interpretable

Viceroy Butterfly Viceroy Butterfly

Queen Butterfly Queen Butterfly

Figure 1. A) The majority of existing machine teaching algorithms

for visual categories only give feedback to the learner in the form

of the ground truth class label. B) It is much more informative to

display the discriminative regions to help them to determine the

categories present in the images. Here, we see explanations from

our system highlighting the blank band on the Viceroy Butterfly

and the white spots on the Queen Butterfly’s wings. These are field

markings commonly used to identify both species.

Existing approaches to teaching visual knowledge typ-

ically pose the problem as choosing the most informative

subset of images to show from a much larger set of possible

options. One of the major limitations of this existing work

is that they only give very limited feedback to students in

the form of the class label, e.g. [31, 16]. In Fig. 1 A) we see

an example of this label only feedback. Providing only the

ground truth class label is a very limited amount of feedback

compared to the rich explanations that one may receive from

a human teacher. A human teacher would likely teach the

student the specific parts and attributes in the image that are

most discriminative for that particular class, Fig. 1 B).

Our hypothesis is that students that are taught with inter-

pretable feedback will learn more effectively than those that

only receive label feedback. Specifically, we propose a novel

teaching algorithm that selects images that are both repre-
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sentative of the categories of interest and have explanations

that can be easily interpreted. These explanations come in

the form of feedback during teaching indicating the parts

of the image that are important for successful classification.

We show that it is possible to generate these explanations

from existing labeled datasets, thus minimizing the need for

additional annotations. Through experiments on real human

learners, we show that our joint selection of informative im-

ages and interpretable explanations results in better student

learning and improved generalization at test time.

2. Related Work

Machine Teaching

The goal of machine teaching is the design of algorithms

and systems that can teach humans efficiently and automati-

cally. To date, a variety of different approaches have been

explored for modeling the teaching of students from assum-

ing perfect learners [12, 40, 21], heuristic-based approaches

[2], Bayesian models [7, 11], recurrent neural networks [23],

and reinforcement learning based methods [25, 1, 37].

While machine teaching has been successfully deployed

in online tutoring systems that feature highly structured

knowledge e.g. mathematics, the teaching of challenging

visual concepts to human learners is less explored. [31]

teach binary visual classification tasks by modeling the stu-

dent as stochastically switching between a set of different

hypotheses during learning. Their model attempts to select

the set of teaching examples offline that will best discount

the incorrect hypotheses and guide the student towards the

ground truth classification function. [16] propose an inter-

active approach, where the choice of future images to show

is based on the individual’s past responses. However, they

must update the model’s parameters online for each user

making it computationally difficult to scale to large numbers

of simultaneous users in real-world settings.

The major limitation of these existing approaches is that

the feedback they provide to the student is not fully infor-

mative. In both [31] and [16] a student is shown a sequence

of images and asked to estimate what object category from

a finite list they believe to be present in each image. After

they respond they are simply told what the correct answer

is. They are not informed of the parts in the image that

are discriminative for identifying that particular object, thus

making the learning problem artificially hard for the student.

To overcome this limitation, we propose a novel teaching

algorithm that selects both images and provides interpretable

explanations resulting in more understandable and efficient

learning for the student. Complementary to our work, [6]

recently introduced an explanation based teaching algorithm

for binary tasks. Explanations are provided via pre-existing

semantically meaningful features, but the interpretability of

a given explanation is not modeled.

Interpretable Models

Using clear and understandable instructional material can

dramatically improve a student’s ability to learn a new con-

cept. It has been shown that highlighting informative regions

on an image can help improve novice classification perfor-

mance by guiding the student’s attention [13, 27].

In another example, when a human teacher is unavailable,

the most common way novices learn species identification

is by consulting expertly curated field guides. These field

guides are typically books or apps that contain descriptive

text and example images highlighting important features for

classifying different species e.g. [22]. Attempts have been

made to automate the creation of these guides using high-

lighted part annotations [3], automatic generation of image

specific text descriptions [15], or through gamification [8].

However, in addition to image level class labels, the ma-

jority of these approaches require the collection of expert

annotations in the form of text descriptions, anatomical part

locations, or visual attributes which can be expensive and

time consuming to obtain for very large image collections

[4]. Furthermore, the efficacy of these annotations for teach-

ing visual identification skills has not yet been evaluated on

real human subjects. An alternative approach that requires

less additional annotations is to learn human interpretable

models from the raw data e.g. [26, 19]. In the context of

computer vision, there is some evidence to suggest that the

deep models commonly used for large-scale image classi-

fication tasks can be adapted to generate features that are

semantically meaningful to humans [39, 38].

Recently, [24] outlined an approach for incorporating

additional supervised data from users which they call ‘feature

feedback’. In addition to class level labels that are typically

provided by human annotators when training supervised

classifiers, they allow their annotators to provide information

about the value of specific feature dimensions. In contrast,

our approach instead gives explanations to the learner about

the importance of different image regions and models how

they incorporate this information when updating their belief.

We are concerned with selecting the set of teaching exam-

ples with associated interpretable explanations to best teach

noisy human learners. While in practice these explanations

can be generated with additional time-consuming human

annotation, we show that it is possible to extract meaningful

explanations using existing image level labels.

3. Interpretable Visual Teaching

In this section, we outline our model for teaching cate-

gorization problems to human learners and present an effi-

cient algorithm for selecting interpretable teaching examples.

We discuss our approach in the context of the non-adaptive

model of [31], but any visual teaching algorithm can benefit

from interpretable explanations.
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3.1. Problem Setup

We aim to teach a human learner a target classification

function h∗ that maps from images X to their corresponding

ground truth class labels Y . For instance, a single image x ∈
X could be a picture of a bird and the associated label y could

be the name of the species. However, we cannot directly

impart the parameters of h∗ to the human learner, instead we

must teach them by showing them example images. Given a

set of n images, X = {x1, . . . , xn}, with associated labels

from C classes Y = {y1, . . . yC}, our goal is to select an

informative subset T , referred to as the teaching set, that

will best convey the ground truth, i.e. the human teacher’s

classification function h∗. Acknowledging that some images

are more informative than others during learning, we do not

want to waste effort teaching these unrepresentative images.

When learning from a human teacher, or even from a

textbook, a student not only receives feedback in the form

of the correct answer but also an explanation that describes

why a given answer is correct. In addition to the images

and labels, we further assume that we (as the teacher) have

access to an explanation, e, for each image x. In the case of

images, these explanations could be heatmaps that highlight

the informative regions for a particular class in a given im-

age. In non-visual scenarios, this could be a piece of text

describing the relationship between x and y.

3.2. Image Only Learner Model

We adopt the stochastic STRICT algorithm of [31] to

model how learners adapt to the images shown by the teacher.

The model was originally proposed for teaching binary clas-

sification functions. Learners are modeled as carrying out

a random walk in a finite hypothesis space H. Each ele-

ment of H is a function that maps from an image to a score

h : X 7→ R. In the context of binary classification, where

y ∈ {−1, 1}, the label predicted by a hypothesis h for im-

age x is ŷh = sgn(h(x)), and the magnitude indicates the

confidence that h has in its prediction. Concretely, an image

x may be represented by a feature vector and a hypothesis h
could be a linear classifier, h(x) = w⊺

hx, with weights wh.

To ensure that it is possible to teach the learner, we assume

that H also contains the ground truth hypothesis h∗.

At the beginning of teaching, the learner randomly picks

a hypothesis h ∈ H according to the prior distribution P (h).
During teaching, she will be presented with a sequence of

images along with the correct class label. After receiving a

new image, the learner will stick to her current hypothesis

if the ground truth label is consistent with the prediction of

the hypothesis. Otherwise, she randomly switches to a new

h ∈ H according to her current posterior over the hypotheses

P (h | T ), where T is the set of teaching images and ground

truth labels seen so far. When updating her posterior P (h |
T ) in light of the new information, hypotheses that disagree

with the true labels of the images shown by the teacher are

less likely to be selected

P (h | T ) ∝ P (h)
∏

xt∈T

yt 6=ŷh

t

P (yt | h, xt), (1)

where ŷht is the class label predicted by hypothesis h for

image xt. We model how much the prediction of hypothesis

h agrees with the correct label for image xt using

P (yt | h, xt) =
1

1 + exp(−αh(xt)yt)
, (2)

where α > 0 represents how consistently a learner responds

according to her currently adopted hypothesis. In the ex-

treme when α = ∞, hypotheses that are inconsistent with

the ground truth label are immediately discarded. This unre-

alistic setting represents the perfect learner [12].

3.3. Interpretable Feedback

The feedback presented to the learner in the STRICT

model is comprised of only the true, ground truth, label of

a teaching example. The learner is tasked with learning

the mapping between the image and the ground truth label

themselves as no other explanations are provided i.e., they

must determine which regions or parts in the image are re-

sponsible for the given class label. In real-world teaching

scenarios, the teacher often has access to much richer in-

formation which can be further utilized to accelerate the

teaching process. Our approach, EXPLAIN, gives feedback

to the learner in the form of explanations and models how

they incorporate this information when updating their belief.

With a slight abuse of notation, we extend T to denote the

set of labeled teaching images along with their explanations.

Our updated model of the learner introduces two additional

discount terms that account for the interpretability of an

explanation and the representativeness of an image

P (h | T ) ∝ P (h)
∏

xt∈T

yt 6=ŷh

t

P (yt | h, xt)
∏

xt∈T

(E(et)D(xt)) .

(3)

Modeling Explanations

Our first new term favors explanations for images that are

clear and easy for the learner to understand

E(et) =
1

1 + exp(−β diff(et))
. (4)

Here, diff(et) represents how difficult a given explanation

et is for image xt, where large values indicate challenging

explanations. Intuitively, the learner is more confident in dis-

counting inconsistent hypotheses if presented with easier-to-

understand explanations. This information could be crowd-

sourced, but later we describe a method by which both the
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explanations and their interpretability can be automatically

generated from image sets with ground truth labels.

Note that the quality of an explanation is not measured

in the same way as image difficulty. Image difficulty in

STRICT is implicitly encoded by the image’s location in the

feature space. Images that are close to decision boundaries

are assumed to be more ambiguous to the learner compared

to those that are far from decision boundaries. However, two

images of equal difficulty may have very different explana-

tions and our goal is to bias the selection of teaching images

towards those that are easier to understand.

Modeling Representativeness

During teaching, we would like to select representative teach-

ing images so that the concept conveyed to the learner can be

easily generalized to the remaining, unseen, images. In prac-

tice however, we observe that the linear hypothesis space

used by STRICT has a tendency to select outlier images

(Fig. 2). When selecting the teaching set, STRICT attempts

to greedily optimize the expected reduction in error for the

hypothesis set and as a result can end up selecting images

that may be optimal for reducing error but not necessarily

informative for the learner. To overcome this limitation, in-

spired by approaches in active learning [29], we include an

additional discount factor that favors representative examples

D(xt) =
1

1 + exp(−γ dist(xt))
. (5)

Here, dist(xt) encodes how dissimilar an image xt is to

other images. Again, this could be derived directly from

crowdsourcing but a simple alternative is to use the density

in the existing feature space

dist(xt) =
1

N

N
∑

n=1

||xt − xn||
2
2. (6)

In practice, we compute the mean distance for each example

to all other examples in the same class. The teacher still aims

to select informative examples, but this allows us to ensure

that they are also representative. Setting both β = γ = ∞
results in the existing STRICT model.

3.4. Multiclass Teaching

Many real word teaching problems feature multiple differ-

ent categories of interest. As presented, STRICT is limited

to the binary class setting. One approach for handling mul-

tiple classes is to change the hypothesis space so that each

individual hypothesis is a multiclass classifier e.g., a softmax

classifier where individual hypotheses are one-versus-all

classifiers. However, generating such a multiclass hypoth-

esis space is challenging. For instance, if one has access

to a set of linear classifiers HL e.g. crowdsourced from a

0

1

2

3

4

A) STRICT B) STRICT with Density Weighting

0

2

3

4

1

Figure 2. In A) we see that STRICT is prone to selecting outliers.

Here, the numbers represent the order in which examples were

selected during teaching. B) By favoring instances that are repre-

sentative of others we select teaching examples from more dense

regions of the feature space. Here, the lines represent different

hypotheses, with the red one being the teachers hypothesis. The

thickness of the lines represent the probability associated with the

hypothesis after showing five teaching examples to the learner.

system like [36], one could assume that each multiclass hy-

pothesis is made up of a combination of C of these linear

classifiers, where C is the number of classes. This results in

|HL|!/(|HL| − C)! possible combinations, which becomes

prohibitively large to exhaustively cover for even small num-

bers of hypotheses and classes.

Instead, we model a separate posterior Pc(H | T ) for

each of the classes. This allows us to reuse the same set of

hypotheses across the different classes. It naturally enables

us to model the situation where a learner can accurately

group images based on their visual similarity but are unable

to associate the correct class label to the groups as they have

yet to learn the correct mapping. When teaching binary

concepts, this corresponds to the single posterior modeling

of the existing STRICT model.

3.5. Teaching Algorithm

Given our model of the learner, we now describe how

we select the teaching set T . The choice of T is based on

our desire to direct the learner towards a distribution over

the possible hypotheses that results in the smallest number

of mistakes as possible. In our multiclass setting with C
classes, we use a one-versus-all scheme for each class, and

maintain C different posterior distributions over the hypothe-

ses H. Intuitively, in order to drive down the learner’s error

probability in predicting multiclass labels, it is sufficient to

make sure that the learner performs well in each of the C
binary classification tasks. For any class c, we define the

error of a one-vs-all hypothesis h over all possible images as

errc(h) =
|x : (ŷh 6= yc ∧ y = yc) ∨ (ŷh = yc ∧ y 6= yc)|

|X |
.

This is the fraction of images that hypothesis h disagrees

with the ground truth when predicting the label yc. After

receiving the teaching set T , the expected error of the learner
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for class c is defined as

E[errc(h) | T ] =
∑

h∈H

Pc(h | T )errc(h). (7)

For our multiclass teaching problem, we use the combined

error probability, i.e., 1

C

∑

c E[errc(h) | T ] as a proxy for the

expected error of the learner. Given a teaching budget b, we

would like to find a teaching set T ∗, such that upon observing

the images, their labels, and associated explanations the

learner would achieve the maximal reduction in expected

error. Formally, let

R(T ) =
1

C

∑

c

(E[errc(h)]− E[errc(h) | T ])

=
1

C

∑

c∈C

∑

h∈H

(Pc(h)− Pc(h | T ))errc(h) (8)

be the expected reduction in the combined error term. We

aim to find

T ∗ = argmax
|T |≤b

R(T ). (9)

Instead of directly optimizing this challenging combinatorial

problem we use the greedy submodular approach outlined

in [31]. We start with an empty teaching set T = ∅ and

greedily add a single image at a time. The selection of

the next teaching image to show amounts to choosing the

example x from the unseen set (x /∈ T ),

xt = argmax
x

R(T ∪ {x}). (10)

4. Implementation Details

In this section we outline how we automatically generate

explanations, our hypothesis space, and how to efficiently

optimize the teaching objective.

4.1. Image Explanations

For each image, we require an explanation e that tells

the learner why an image x has a given label y. How to

best generate explanations is still an open question [9]. One,

time-consuming, way to acquire these explanations would be

to ask an expert to manually label the informative regions in

each image. Alternatively, they could be crowdsourced, but

this may result in very noisy explanations e.g., [8]. Instead,

we propose to use the ground truth class label provided with

each image to automatically generate visual explanations.

We exploit the fact that modern Convolutional Neural

Networks (CNNs) used for image classification often pro-

duce semantically meaningful features. We use the Class

Activation Mapping approach of [39] to automatically gener-

ate explanations for each image, but other existing methods

for generating explanations can also be easily used with our

model. For each pixel location j we computed the weighted

sum of the output of the final convolutional layer from a

CNN that has been trained on the input data,

e(j) =
∑

k

wk
c f

k
j (x) + bc. (11)

Here, fk
j (x) denotes the feature value at pixel location j

and output channel k for the CNN f . The weight values

and biases, wc and bc, from the final fully connected layer

associated with the ground truth class are used to weight

each feature map. Finally, we normalize the explanations so

that each spans the range [0, 1].
We use the entropy of the explanation as a proxy for the

difficulty the user may have in interpreting it,

diff(e) = −
1

J

∑

j

e(j) log(e(j)), (12)

where J is the number of pixels in the explanation. This

captures our preference for localized and discrete highlighted

regions whose values are either 0 or 1. In practice, weight

regularization applied during the training of the CNN ensures

that we do not have explanations that are uniformly high,

and the classification training objective ensures that there are

some non-zero entries in the feature maps to correctly predict

the class label. So there is no bias towards classes that have

low entropy on average, we subtract the mean difficulty for

each class (making sure the final difficulties are > 0).

We use a ResNet18 [14] trained from scratch on each

dataset as our backbone CNN and extract features from the

output of the second residual block, resulting in a downsam-

pling factor of 8. To this, we append an additional convo-

lutional layer with 64 filters of size 3× 3, and a final fully

connected layer with the number of classes as output. We

finetune the entire model on 128 × 128 image crops with

a batch size of 64 for 60 epochs using Adam [17]. During

training, we use random flips, crops, and color augmenta-

tions. We start with an initial learning rate of 0.0002 and

decay by a factor of 10 after 30 epochs. To generate the final

explanation map e for each 144 × 144 input image x, we

extract the explanation for the center 128 × 128 crop and

pad and resize it to input resolution.

4.2. Hypotheses Space Generation

We require access to a representative hypothesis space H
to perform teaching. This space should span the different

possible linear classifiers that the learners may be using. It

represents the different biases that they may have in relation

to the teaching task at hand. However, generating such a

space for multiple fine-grained categories is not trivial. As

an alternative to generating embeddings from crowd anno-

tations e.g. [36], we propose to use the features from our

finetuned CNN from the previous section. Extracting the
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64 dimensional penultimate feature vector from our modi-

fied ResNet18 gives us a representation that encodes visual

similarity. While this is unlikely to be the same representa-

tion used by our learners it has the advantage that it can be

generated with no additional annotation cost.

We generate a set of candidate linear classifiers using the

CNN features by first clustering the features in each class

into 2 subsets and training a linear SVM to separate each

from the rest of the data. We also train a linear SVM to sepa-

rate each class from the other classes, representing the best

possible hypothesis h∗. Next, we group each pair of classes

and train additional linear models to separate these from the

remaining classes. We add all these linear classifiers to the

hypothesis set and add an additional random linear classifier

to bring the total number of hypotheses to 100. Each dataset

is split into 80% training and 20% test sets. As in [31],

images in the training set that are not possible to correctly

classify with the optimal hypothesis h∗ are removed.

4.3. Efficient Optimization

Optimizing Eq. (10) involves searching over all unseen

images in X and measuring their reduction in error for each

hypothesis in H across all classes. With the aid of some

pre-computation, we can reduce the updates to simple matrix

operations. For simplicity, we present this in terms of the

binary STRICT model [31], but the same formulation holds

for our multiclass EXPLAIN algorithm by including the

additional discount factors and classes.

First, we note that as the prior term in Eq. (8) is constant

at each time step and can be removed without affecting the

selection of xt. Second, we can re-factor the posterior into

the current posterior multiplied by the update

R(T ∪ {x}) = −
∑

h∈H

err(h)P (h | T )δ(h, x), (13)

where δ(h, x) = P (y|h, x) if y 6= ŷh and otherwise it is set

to 1. In matrix notation, this can be rewritten as

r = −(e ◦ pi)L, (14)

where ◦ is the element-wise multiplication. e is a vector

of size 1× |H| that contains the error associated with each

hypothesis, and can be computed once offline. pi is a vector

of size 1× |H| that represents the current posterior over the

hypotheses, which we will update after each time step i. L is

a |H| × |X | matrix that can be computed once offline. Each

entry in L encodes the confidence each h places in each

example x

Lh,x =

{

1, if y = ŷh

P (y | h, x), otherwise.
(15)

Computing the next teaching example, xt simply amounts to

choosing the maximum entry in the 1× |X | error reduction

vector r, taking care to only select from the examples not

currently in the teaching set. We then update the posterior

using

pi+1 = pi ◦ lt, (16)

where lt = L:,t is the column vector from L associated

with the selected teaching example xt. For the multiclass

setting, we simply maintain a separate ec, Lc, and pc for

each class and choose the next teaching example that results

in the biggest reduction across all classes.

5. Experiments

5.1. Datasets

There are existing datasets with explanations in the form

of annotated visual attributes that could be used to teach

visual categories to human learners. However, we found

that in many cases, e.g., [35], the provided attributes were

too coarse-grained (e.g. ‘forehead color’) to be useful for

teaching highly similar categories. Other alternatives were

too noisy to be informative e.g. [8], but present an interesting

avenue for future human-in-the-loop explanation generation.

Instead, we selected three diverse datasets to span a range of

different teaching use cases. Example images and explana-

tions from each dataset can be seen in Fig. 3.

Butterflies Our first dataset represents the teaching of natu-

ralists who wish to identify different species of plants and

animals in the wild. It contains images of five different

species of butterflies captured in a large variety of real-world

situations with varying image quality from the iNaturalist

dataset [33]. Two of the species, Monarch and Viceroy, are

very similar in appearance and the third, Queen, looks the

same from underneath. The final two species, the Red Ad-

miral and the Cabbage White are distinct in appearance. We

extracted a bounding box around each butterfly and manu-

ally discarded images of caterpillars. In total, the dataset

contains 2,224 images, close to uniformly distributed across

each of the species.

OCT Eyes Our second dataset mimics the teaching of a

trainee ophthalmologist that is tasked with learning how to

identify different retinal diseases in images. It consists of

image slices of the retina obtained through optical coherence

tomography (OCT). OCT is a non-invasive imaging tech-

nique that uses light waves to take cross-sectional images of

the retina. It is commonly used in ophthalmology, where on

the order of 30 million OCT scans are performed around the

world annually [32]. Here, the learner’s goal is to classify

each of the images into one of three classes: Normal, con-

tains Macular Edema, or contains Subretinal Fluid. Diabetic

Macular Edema is one of the leading causes of vision loss

for people with diabetes [28]. Many of the examples are

challenging and require subtle inspection to correctly iden-

tify the condition. The dataset contains 1,125 images with

ground truth annotations provided by retina specialists.
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A) Butterflies B) OCT Eyes C) Chinese Characters

Figure 3. Here we see example images from our three datasets with their corresponding, automatically generated, visual explanations below.

Chinese Characters Finally, we use a dataset of three dif-

ferent Chinese characters extracted from [20], that was also

used in [16]. Here, we are exploring the scenario of a non-

native Chinese speaker attempting to learn to identify new

characters. Each of the 717 images is a different handwritten

example of one of the following three characters: Grass,

Mound, or Stem. The images vary in difficulty as there is

a large variety in the handwriting quality and style for the

different individuals that contributed to the dataset.

5.2. Experimental Setup

We conducted experiments with real human participants

on the crowdsourcing platform Mechanical Turk using the

same methodology as [31, 16]. Crowd workers, i.e. learners,

were randomly assigned to a dataset and baseline teaching

strategy. On average we received 40 participants per strategy

and dataset combination. We assumed that the learners were

motivated to perform well but acknowledge that this might

not always be the case. First, the learners were shown a brief

tutorial illustrating how our web-based teaching interface

worked. When teaching began, they were presented with a

sequence of images, shown one at a time, selected by the

assigned teaching algorithm. After viewing each image in

turn, they were then asked to select from a list of options

indicating the class they believed the image to contain. De-

pending on the assigned teaching strategy, they were given

feedback either in the form of the correct class label, or

the correct class label and its corresponding visual explana-

tion. The visual explanations were displayed on top of the

input images, alternating between the input image and the

explanation every 0.5 seconds. Upon receiving feedback,

learners had to wait for a minimum of 2 seconds before they

could proceed to the next teaching image. For each dataset

we showed 20 teaching images, followed by 20 randomly

selected testing images where no feedback was provided

during testing. This random sequence of test images was

different for each learner. Longer teaching sequences would

likely lead to better test performance but there is a trade off

between the learner’s attention span and their accuracy. We

shuffled the order of the response buttons depicting the class

labels for each learner before teaching began to ensure that

there was no bias towards a particular button position.

RAND_IM RAND_EXP STRICT EXPLAIN

Butterflies 65.20 67.31 65.00 68.33

OCT Eyes 51.05 62.58 64.63 72.38

Chinese 47.05 58.90 51.91 46.35
Chinese - Crowd 53.06 65.44

Table 1. Average test time accuracies for Mechanical Turk learners

across the three different test datasets. Compared to the standard

image only baseline RAND_IM, the inclusion of our explanations

in RAND_EXP results in better test time performance across all

datasets. Our EXPLAIN model results in superior learners in two

of the three datasets with CNN generated hypothesis spaces.

We compared our full EXPLAIN model to three base-

line algorithms: 1) RAND_IM random selection of images,

2) RAND_EXP random selection with visual explanations,

and 3) our multiclass version of STRICT [31]. Note, this

last baseline did not include density weighting or explana-

tions. For both EXPLAIN and STRICT we generated a fixed

teaching sequence once offline and used it for all learners

with the same hypothesis space for both. We set the noise

level of the learners to α = 0.5, and the explanation and

representativeness parameters to β = γ = 1.0.

5.3. Results

In Table 1 we report the average test time accuracy for

each learner for the different baseline teaching strategies and

datasets. Fig. 4 A) - C) displays the histograms of these ac-

curacies illustrating that strategies that include explanations

tend to do better overall.

For the Butterflies dataset we see that a greater percentage

of learners get high scores when taught with EXPLAIN, see

Fig. 4 A). This is a challenging dataset, and we observe that

many learners remain confused between the three similar

species by the end of teaching, perhaps necessitating longer

teaching sequences.

The OCT Eyes images are likely to be the most unfamiliar

to our learners compared to the other datasets. However, the

images are well aligned and do not contain large out of

plane view point changes or confusing background texture.

This enables us to generate high-quality explanations that

localize the characteristic morphologies for the different

retinal diseases. For the RAND_IM baseline in Fig. 4 B) the

difference in learner performance can be explained by the

images selected and their intrinsic motivation. In Fig. 4 D)
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Figure 4. Test time classification performance for human learners. A) - C) Show learners binned by test time accuracy. The horizontal axes

represent average test scores, where larger numbers indicate higher accuracy. The vertical axes are the number of learners. D) Test time

learner confusion matrices for the OCT Eyes dataset. We see that both explanation based strategies result in smaller off-diagonal entries.

we see the average test time confusion matrices across all

learners for the OCT Eye dataset. It is clear that EXPLAIN

results in less cross-category confusion i.e. smaller values in

the off-diagonal entries. We see that learners tend to make

fewer mistakes when identifying Subretinal Fluid as it is

relatively distinct, while there is more confusion between

Macular Edema and Normal.

The Chinese Characters dataset represents an interesting

failure case for EXPLAIN when using the CNN generated

hypothesis space, see Fig. 4 C). In Fig. 5 we see the average

performance during teaching for all learners and the first

five teaching images selected by EXPLAIN. EXPLAIN se-

lects a particularly difficult image for the fourth teaching

example. It happens to be the same class as the previous

image, but is visually very different. From inspecting the

test time confusion matrix we see that this early difficult ex-

ample potentially biases learners as they end up with lower

performance for the Grass class. The random based strate-

gies have the advantage of generating different teaching

sequences for each learner by uniformly sampling the input

space thus introducing some additional robustness. In Ta-

ble 1 we see that RAND_EXP performs well on this dataset,

indicating that the performance dip for EXPLAIN may be

a result of the automatically generated hypothesis space or

the explanation interpretability scores, rather than the qual-

ity of the explanations themselves. To test this hypothesis,

we assigned manual interpretability scores and generated a

separate embedding space more closely aligned with human

notions of similarity by soliciting pairwise similarity esti-

mates on Mechanical Turk to construct a new embedding

space (Chinese - Crowd)1. Teaching with this embedding

space (EXPLAIN_CROWD) results in the best test time

performance overall, see the last row in Table 1.

6. Conclusion

We introduced EXPLAIN, an algorithm for teaching mul-

tiple visual categories to human learners with interpretable

feedback. Interpretable feedback can be applied to any exist-

1Full details are provided in the supplementary material.
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Figure 5. Average accuracy during teaching for the Chinese Char-

acters dataset using the CNN generated hypothesis space, where

random guessing is 33%. For all strategies, we observe a general

improvement in learners’ ability over time. Above we see the first

five teaching images selected by EXPLAIN. The fourth image is a

difficult instance, resulting in the vast majority of learners guessing

the wrong category.

ing visual teaching algorithm. It provides cues to the learner

during teaching in the form of visual explanations and ex-

plicitly models how they incorporate this information when

updating their belief. This enables us to generate more infor-

mative teaching sequences resulting in improved test time

performance i.e., better generalization from the learners on

unseen images. Experiments featuring real human partici-

pants show that our approach is superior to existing methods

that only provide weaker class label feedback. In future, we

plan to investigate extending our approach to the interactive

teaching setting, where the model updates online based on

the learner’s responses e.g., [30, 10, 16].
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