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Abstract

Monocular depth estimation using learning-based ap-

proaches has become promising in recent years. However,

most monocular depth estimators either need to rely on

large quantities of ground truth depth data, which is ex-

tremely expensive and difficult to obtain, or predict dispar-

ity as an intermediary step using a secondary supervisory

signal leading to blurring and other artefacts. Training a

depth estimation model using pixel-perfect synthetic data

can resolve most of these issues but introduces the problem

of domain bias. This is the inability to apply a model trained

on synthetic data to real-world scenarios. With advances in

image style transfer and its connections with domain adap-

tation (Maximum Mean Discrepancy), we take advantage of

style transfer and adversarial training to predict pixel per-

fect depth from a single real-world color image based on

training over a large corpus of synthetic environment data.

Experimental results indicate the efficacy of our approach

compared to contemporary state-of-the-art techniques.

1. Introduction

As 3D imagery has become the staple requirement

within many computer vision applications, accurate and ef-

ficient depth estimation is now one of its core foundations.

Conventional depth estimation methods have relied on nu-

merous strategies such as stereo correspondence [67, 28],

structure from motion [14, 9], depth from shading and light

diffusion [73, 82, 1] and alike. However, these approaches

are often rife with issues such as depth inhomogeneity,

missing depth (holes), computationally intensive require-

ments and more importantly, careful calibration and setup

demanding expert knowledge which often requires special

post-processing [4, 2, 49, 58].

A solution to many of these challenges is monocular

depth estimation. Over the past few years, research into

predicting depth from a single image has significantly es-

calated [39, 48, 17, 26, 22, 83]. A number of supervised

Figure 1: Our monocular depth estimation (KITTI [55]).

learning approaches have recently emerged that take advan-

tage of off-line training on ground truth depth data to make

monocular depth prediction possible [39, 48, 18, 17, 42, 91].

However, since ground truth depth is extremely difficult and

expensive to acquire in the real world, when it is obtained it

is often sparse and flawed, constraining the practical use of

many of these approaches.

Other monocular approaches, sometimes referred to as

unsupervised, do not require direct ground truth depth, but

instead utilize a secondary supervisory signal during train-

ing which indirectly results in producing the desired depth

[26, 22, 83, 12]. Training data for these approaches is abun-

dant and easily obtainable but they suffer from undesirable

artefacts, such as blurring and incoherent content, due to the

nature of their secondary supervision.

However, an often overlooked fact is that the same tech-

nology that facilitates training large-scale deep neural net-

works can also assist in acquiring synthetic data for these

neural networks [64, 69]. Nearly photorealistic graphically

rendered environments primarily used for gaming can be

used to capture homogeneous synthetic depth maps which

are then utilized in training a depth estimating model.

While the use of synthetic data is not novel [41, 61, 19,

69], domain adaptation has always been the greatest chal-

lenge in this area. Stated precisely, the problem is that: A

model trained on data from one domain is often incapable

of performing well on data from another domain due to dis-

tinctions in the intrinsic nature of these two domains.

Here, we explore the possibility of training a depth esti-

mation model on synthetic data using the new findings re-
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garding the connection between style transfer and domain

adaptation [47]. Our contributions are thus as follows:

• synthetic depth prediction - a directly supervised

model using a light-weight architecture with skip con-

nections that can predict depth based on high quality

synthetic depth training data (Section 3.1).
• domain adaptation via style transfer - a solution to the

issue of domain bias via style transfer (Section 3.2).
• efficacy - an efficient and novel approach to monocular

depth estimation that produces pixel-perfect depth.
• reproducibility - simple and effective algorithm relying

on data that is easily and openly obtained.

2. Related Work

We consider prior work within three distinct domains:

monocular depth estimation (Section 2.1), domain adapta-

tion (Section 2.2), and image style transfer (Section 2.3).

2.1. Monocular Depth Estimation

There have been great strides made in the field of monoc-

ular depth estimation based on directly supervised training,

and many existing approaches produce promising results.

The work in [65] utilizes a Markov Random Field (MRF)

and linear regression to estimate depth, which is later ex-

tended into Make3D [66] with the MRF combining planes

predicted by the linear model to describe the 3D position

and orientation of segmented patches within RGB images.

Since depth is predicted locally, the combined output lacks

global coherence. Additionally, the model is manually

tuned which is a detriment against achieving a true learn-

ing system. The tuning is subsequently performed using a

convolutional neural network (CNN) in [48]. Later on, [39]

utilizes semantic labels to train classifiers at chosen depths,

which are subsequently used to predict depth.

Global scene depth prediction has also seen significant

progress. The method in [6] employs sparse coding to esti-

mate entire scene depth. Similarly, [18, 17] uses a two-scale

network trained on RGB and depth to produce depth. Since

then, numerous improvements have been made to achieve

better directly supervised training for monocular depth esti-

mation [43, 80, 40, 8]. However, due to the scarcity of high

quality ground truth depth, these approaches have to make

do with either smaller number of images or lower quality

data, and as such any supervised learning approach cannot

produce results better than the limits of its training data.

More recently, a new class of monocular depth estima-

tors have emerged that do not require ground truth depth

and calculate disparity by reconstructing the corresponding

view within a stereo correspondence framework. The work

in [83] proposes the Deep3D network, which learns to gen-

erate the right view from the left image used as the input,

and in the process produces an intermediary disparity map.

While results are promising, the method is very memory in-

tensive. The approach in [22] follows a similar framework

with a model that is not fully differentiable. On the other

hand, [26] uses bilinear sampling [33] and a left/right con-

sistency check incorporated into training for better results.

While these approaches produce better and more consis-

tent results than the directly supervised methods, there are

shortcomings. Firstly, the training data must consist of tem-

porally aligned and rectified stereo images, and more im-

portantly, in the presence of occluded regions (i.e. groups of

pixels that are seen in one image but not the other), disparity

calculations fail and meaningless values are generated.

The work in [88] estimates depth and camera motion

from video by training depth and pose prediction networks,

indirectly supervised via view synthesis. The results are

favorable especially since they include ego-motion but the

depth outputs are blurry, do not consider occlusions and are

dependent on camera parameters. The training in the work

of [38] is supervised by sparse ground truth depth and the

model is then enforced within a stereo framework via an

image alignment loss to output dense depth.

Since our model is trained on synthetic images, there is

an abundance of training data, and as there is no need for a

secondary supervisory signal, complete depth is obtainable

free from any unwanted artefacts. As a result, our approach

does not suffer from the aforementioned limitations

2.2. Domain Adaptation

In this work, our depth estimation model is trained on a

synthetically generated dataset of corresponding RGB and

depth images to learn the context and content of the scene

and predict depth. However, due to dataset bias [59], a typ-

ical model trained on a specific set of data does not nec-

essarily generalize well to other datasets. In other words,

a model trained on synthetic data may not perform well

on real-world data. Therefore, while our depth estimation

model may successfully predict the depth for synthetic data,

it will not be able to do the same for naturally obtained im-

ages, which would make the model utterly useless from a

practical visual sensing perspective.

While the typical solution to this data domain variation

problem is to fine-tune the network on the target data (in

our case, real-world images), fitting the large number of

parameters in a deep network to a new dataset requires a

large amount of data, which can be very time-consuming,

expensive, or even practically intractable to collate in our

case giving rise to the use of synthetic data instead. Given

that the objective is to employ a model trained on the source

dataset to successfully perform on a target dataset, one strat-

egy is to minimize the distance between the source and tar-

get feature distributions [52, 25, 20, 74, 15, 21, 75].

Some approaches have taken advantage of Maximum

Mean Discrepancy (MMD) which calculates the norm of

the distance between the domains to reduce the discrepancy

[52, 76, 72], while others have taken to using an adversarial
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Figure 2: Our approach using [90]. Domain A (real-world RGB) is transformed into B (synthetic RGB) and then to C

(pixel-perfect depth). A,B,C denote ground truth, A′, B′, C ′ generated images, and A′′, B′′ cyclically regenerated images.

loss which leads to a representation that minimizes the do-

main discrepancy while able to discriminate the source la-

bels easily [25, 20, 74, 75]. Although most of the these tech-

niques focus on discriminative models, research on genera-

tive tasks has also utilized domain adaptation [15, 51].

Recently [47] proposed that matching the Gram matrices

[68] of feature maps, often performed within neural style

transfer of images, is theoretically equivalent to minimiz-

ing the maximum mean discrepancy with the second order

polynomial kernel. In the following section, we briefly re-

view neural style transfer and its relevance to this work.

2.3. Image Style Transfer

Image style transfer by means of convolutional neural

networks has recently become noted via [23]. Since then,

numerous improved and novel approaches have been pro-

posed that can transfer the style of one image onto another.

Some methods transfer style by directly updating the

pixels in the output image (often initialized with random

noise) [24, 87, 13, 44]. Others improve efficiency by avoid-

ing the direct manipulation of the image and pre-training a

model using large amounts of training data for a specific im-

age style [35, 77, 45, 11, 90]. Most approaches utilize Gram

matrices to capture the style of an image [23, 24, 87, 13],

while some utilize an MRF framework to manipulate image

patches in order to match the desired style [44, 10].

As demonstrated in [47], style transfer can be consid-

ered as a distribution alignment process from the content

image to the style image [34]. In other words, transferring

the style of one image (from the source domain) to another

image (from the target domain) is essentially the same as

minimizing the distance between the source and target dis-

tributions (for a more in-depth theoretical analysis, readers

are referred to [47]). In this work, we take advantage of this

idea to adapt our data distribution (i.e. real-world images) to

our depth estimation model trained on data from a different

distribution (i.e. synthetic images). In the next section, this

proposed approach is outlined in greater depth.

3. Proposed Approach

Our approach consists of two stages, the operations of

which are carried out by two separate models, trained at the

same time. The first stage includes training a depth esti-

mation model over synthetic data captured from a graph-

ically rendered environment used for gaming applications

[64] (Section 3.1). However, as the eventual goal involves

real-world images, we attempt to reduce the domain dis-

crepancy between the synthetic data distribution and the

real-world data distribution using a model trained to trans-

fer the style of synthetic images to real-world images in the

second stage (Section 3.2).

3.1. Stage 1  Monocular Depth Estimation Model

We treat monocular depth estimation as an image-to-

image mapping problem, with the RGB image used as the

input to our mapping function, which produces depth as

its output. With the advent of convolutional neural net-

works, image-to-image translation and prediction problems

have become significantly more tractable. A naive solution

would be utilizing a network that minimizes a reconstruc-

tion loss (Euclidean distance) between the pixel values of

the network output and the ground truth. However, due to

the inherent multi-modality of the monocular depth estima-

tion problem (several plausible depth maps can correspond

with a single RGB view), any model trained to predict depth

based on a sole reconstruction loss (ℓ1 or ℓ2) tends to gen-

erate values that are the average of all the possible modes in

the predictions. This results in blurry outputs.

For this reason, many prediction-based approaches [57,

85, 84, 32, 46, 90] and other generative models [16, 78]

leverage adversarial training [27] since the use of an ad-

2802



Method Training Data
Error Metrics (lower, better) Accuracy Metrics (higher, better)

Abs. Rel. Sq. Rel. RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253

Train Set Mean K 0.403 0.530 8.709 0.403 0.593 0.776 0.878

Eigen et al. Coarse K 0.214 1.605 6.563 0.292 0.673 0.884 0.957

Eigen et al. Fine K 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. K 0.202 1.614 6.523 0.275 0.678 0.895 0.965

Zhou et al. K 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Zhou et al. K+CS 0.198 1.836 6.565 0.275 0.718 0.901 0.960

Godard et al. K 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Godard et al. K+CS 0.124 1.076 5.311 0.219 0.847 0.942 0.973

Our Approach K+S* 0.110 0.929 4.726 0.194 0.923 0.967 0.984

Table 1: Comparing the results of our approach against other approaches over the KITTI dataset using the data split in [18].

For the training data, K represents KITTI, CS is Cityscapes, and S* is our captured synthetic data.

versarial loss helps the model select a single mode from the

distribution and generate more realistic results without blur-

ring.

A Generative Adversarial Network (GAN) [27] is capa-

ble of producing semantically sound samples by creating a

competition between a generator, which endeavors to cap-

ture the data distribution, and a discriminator, which judges

the output of the generator and penalizes unrealistic im-

ages. Both networks are trained simultaneously to achieve

an equilibrium. While most generative models generate im-

ages from a latent noise vector as the input to the generator,

our model is conditioned on an input image (RGB).

More formally, our generative model learns a mapping

from the input image x (RGB view) to the output image

y (scene depth) G : x → y. The generator (G) attempts

to produce fake samples G(x) = ỹ that cannot be distin-

guished from real ground truth samples y by the discrimi-

nator (D) that is adversarially trained to detect the fake sam-

ples produced by the generator.

Many other approaches following a similar framework

incorporate a random noise vector z or drop-outs into the

generator training to prevent deterministic mapping and in-

duce stochasticity [32, 57, 54, 81]. While we experimented

with both random noise as part of the generator input and

drop-outs in different layers of the generator, no significant

difference in the output distribution could be achieved.

3.1.1 Loss Function

Our objective is achieved using a loss function consisting of

two components: a reconstruction loss, which incentivizes

the generator to produce images that are structurally and

contextually as close as possible to the ground truth. We

utilize the ℓ1 loss:

Lrec = ||G(x)− y||1 (1)

However, with the sole use of a reconstruction loss, the gen-

erator optimizes towards averaging all possible values (blur-

ring) rather than selecting one (sharpness). To remedy this,

an adversarial loss is introduced:

Ladv = min
G

max
D

E
x,y∼Pd(x,y)

[logD(x, y)]+

E
x∼Pd(x)

[log(1−D(x,G(x)))]
(2)

where Pd is our data distribution defined by ỹ = G(x),
with x being the generator input and y the ground truth.

Subsequently, the joint loss function is as follows:

L = λLrec + (1− λ)Ladv (3)

with λ selected empirically. This forces optimization to-

wards explicit value selection and content preservation.

3.1.2 Implementation Details

Since synthetic data is needed to train the model, color

and disparity images are captured from a camera view set

in front of a virtual car as it automatically drives around

the virtual environment and images are captured every 60

frames with randomly varying height, field of view, weather

and lighting conditions at different times of day to avoid

over-fitting. 80,000 images were captured with 70,000 used

for training and 10,000 set aside for testing. Our model

trained using this synthetic data outputs a disparity image

which is converted to depth using focal length and scaled to

the depth range of the KITTI image frame [55].

An important aspect of the monocular depth estimation

problem is that overall structures within the RGB image (in-

put) and the depth map (output) are aligned as they provide

types of information for the exact same scene. As a result,

much information (e.g. structure, geometry, object bound-

aries and alike) is shared between the input and output.

In this sense, we utilize skip connections in the generator

rather than using a classic encoder-decoder pipeline with no

skip connections [30, 35, 5, 57, 81]. By taking advantage of

these skip connections, the generator has the opportunity to

directly pass geometric information between corresponding
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Figure 3: Qualitative comparison of our results against the state-of-the-art methods in [88, 26] over the KITTI split. GT

denotes ground truth. Our approach produces sharp and crisp results with no blurring or additional artefacts.

layers in the encoder and the decoder without having to go

through every single layer in between.

Following the success of U-net [62] which contains an

efficient light-weight architecture, our generator consists of

a similar pipeline, with the exception that skip connections

exist between every pair of corresponding layers in the en-

coder and decoder. For our discriminator, we deploy the

basic architecture used in [60]. Both generator and discrim-

inator use the convolution-BatchNorm-ReLu module [31]

with the discriminator using leaky ReLUs (slope = 0.2).

All implementation and training is done in PyTorch [56],

with the ADAM [37] providing experimentally superior op-

timization (momentum β1 = 0.5, β2 = 0.999, initial learn-

ing rate α = 0.0002). The coefficient in the joint loss func-

tion was empirically chosen to be λ = 0.99.

3.2. Stage 2  Domain Adaptation via Style Transfer

Assuming the monocular depth estimation procedure

presented in the Section 3.1 performs well (Figure 4), since

the model is trained on synthetic images, the idea of esti-

mating depth from RGB images captured in the real-world

is still far fetched as the synthetic and real-world images are

from widely different domains.

Our goal is thus to learn a mapping function D : X → Y

from the source domain X (real-world images) to the tar-

get domain Y (synthetic images) in a way that the distri-

butions D(X) and Y are identical. When images from X

are mapped into Y , their depth can be inferred using our

monocular depth estimator (Section 3.1) that is specifically

trained on images from Y .

While the notion of transforming images from one do-

main to the other is not new [90, 51, 63, 7, 70], we uti-

lize image style transfer using generative adversarial net-

works, as proposed in [90], to reduce the discrepancy be-

tween our source domain (real-world data) and our target

domain (synthetic data on which our depth estimator in Sec-

tion 3.2 functions). This approach uses adversarial training

[27] and cycle-consistency [26, 79, 89, 86] to translate be-

tween two sets of unaligned images from different domains.

Formally put, the objective is to map images between

the two domains X , Y with distributions x ∼ Pd(x) and

y ∼ Pd(y). The mapping functions are approximated us-

ing two separate generators, GXtoY and GY toX and two

discriminators DX (discriminating between x ∈ X and

GY toX(y)) and DY (discriminating between y ∈ Y and

GXtoY (x)). The loss contains two components: an adver-

sarial loss [27] and a cycle consistency loss [90]. The gen-

eral pipeline of the approach (along with the depth estima-

tion model 3.1) is seen in Figure 2, with three generators

GAtoB , GBtoA and GBtoC , and three discriminators DA,

DB and DC .

3.2.1 Loss Function

Since there are two generators to constrain the content of the

images, there are two mapping functions, each with its own

loss but with similar formulations. The use of an adversarial

loss guarantees the style of one domain is transferred to the

other. The loss for GXtoY with DY is as follows:

Ladv(X → Y ) = min
GXtoY

max
DY

E
y∼Pd(y)

[logDY (y)]+

E
x∼Pd(x)

[log(1−DY (GXtoY (x)))]
(4)

where Pd is the data distribution, X the source domain with

samples x and Y the target domain with samples y. Simi-

larly, for GY toX and DX , the adversarial loss is:

Ladv(Y → X) = min
GY toX

max
DX

E
x∼Pd(x)

[logDX(x)]+

E
y∼Pd(y)

[log(1−DX(GY toX(y)))]
(5)

The original work in [90] replaces the log likelihood by a

least square loss to improve training stability [53]. We ex-

perimented with that setup, but noticed no significant im-

provement in training stability or the quality of the results.

Therefore the original adversarial loss is used.

In order to constrain the adversarial loss of the generators

to encourage the model to produce desirable contextually
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Figure 4: Comparison of the results with different components of the loss in the depth estimation model (Section 3.1).

Method Training Data
Error Metrics (lower, better) Accuracy Metrics (higher, better)

Abs. Rel. Sq. Rel. RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253

Ours w/o domain adaptation K+S* 0.498 6.533 9.382 0.609 0.712 0.823 0.883

Ours w/ the approach of Johnson et al. K+S* 0.154 1.338 6.470 0.296 0.874 0.962 0.981

Ours w/ the cycleGAN approach K+S* 0.101 1.048 5.308 0.184 0.903 0.988 0.992

Table 2: Ablation study over the KITTI dataset using the KITTI split. our approach is trained using, KITTI (K) and synthetic

data (S*). The approach with domain adaptation using cycleGAN [90] provides the best results.

Figure 5: Our approach using [35]. Images from domain

A (real-world) are transformed into B (synthetic) and then

to C (pixel-perfect depth maps). A,B,C represent ground

truth images and A′, B′, C ′ denote generated images.

coherent images rather than random images with the target

domain, a cycle-consistency loss is added that prompts the

model to become capable of bringing an image x that is

translated into the target domain Y using GXtoY back into

the source domain X using GY toX . Essentially, after a full

cycle, we should have: GY toX(GXtoY (x)) = x and vice

versa. As a result, the cycle-consistency loss is:

Lcyc = ||GY toX(GXtoY (x))− x||1

+ ||GXtoY (GY toX(y))− y||1
(6)

Subsequently, the joint loss function is as follows:

L = Ladv(X → Y ) + Ladv(Y → X) + λLcyc (7)

with λ selected empirically.

3.2.2 Implementation Details

The style generator architectures are based on the work in

[35] with two convolutional layers followed by nine residual

blocks [29] and two up-convolutions that bring the image

back to its original input size.

As for the discriminators, the same architecture is used

as was in Section 2.1. Additionally, the discriminators are

updated based on the last 50 generator outputs and not just

the last generated image [90, 70].

All implementation and training was done in PyTorch

[56], and ADAM [37] was used to perform the optimization

for the task (momentum β1 = 0.5, β2 = 0.999, and initial

learning rate α = 0.0001). The coefficient in the joint loss

function in Eqn. 7 was empirically chosen to be λ = 10.

4. Experimental Results

In this section, we evaluate our approach using ablation

studies and both qualitative and quantitative comparisons

with state-of-the-art monocular depth estimation methods

via publicly available datasets. We use KITTI [55] for our

comparisons and Make3D [66] in addition to data captured

locally to test how our approach generalizes over unseen

data domains. It is worth noting that using a GeForce GTX

1080 Ti, the entire two passes take an average of 22.7 mil-

liseconds, making the approach real-time (∼ 44 fps).

4.1. KITTI

To facilitate better numerical comparisons against exist-

ing approaches within the literature, we test our model us-

ing the 697 images from the data split suggested in [18].

As seen in Table 1, our approach performs better than the
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Figure 6: Results demonstrating the importance of style

transfer. Left column shows results with no domain adap-

tation. Middle column contains results with [35] as domain

transfer and the right column indicates results with [90].

current state-of-the-art [18, 48, 88, 26] with lower error and

higher accuracy. Measurement metrics are based on [18].

Some of the comparators [88, 26] use a combination of dif-

ferent datasets for training and fine-tuning to boost perfor-

mance, while we only use the synthetic data and KITTI

[55]. Additionally, following the conventions of the liter-

ature [18, 48, 88, 26], the error measurements are all per-

formed in depth space, while our approach produces dispar-

ities, and as a result, small precision issues are expected.

We also used the data split of 200 images in KITTI [55]

to provide better qualitative evaluation, since the ground

truth disparity images within this split are of considerably

higher quality than velodyne laser data and provide CAD

models as replacements for moving cars. As is clearly

shown in Figure 3, compared to the state-of-the-art ap-

proaches [88, 26] trained on similar data domains, our ap-

proach generates sharper and more crisp outputs in which

object boundaries and thin structures are well preserved.

4.2. Ablation Studies

A crucial part of this work was interpreting the necessity

of the components of our approach. Our monocular depth

estimation model (Section 3.1) utilizes a combination of re-

construction and adversarial losses (Eqn. 3). We trained our

model using the reconstruction loss only and the adversar-

ial loss only to test their importance. Figure 4 demonstrates

the effects of removing parts of the training objective. The

model based only on the reconstruction loss (ℓ1) produces

contextually sound but blurry results, while the adversarial

loss generates sharp outputs that contain artefacts. The full

approach creates more accurate results without unwanted

effects. Further evidence of the efficacy of a combination of

a reconstruction and adversarial loss is found in [32].

Another important aspect of our ablation study entails

evaluating the importance of domain transfer (Section 3.2)

Figure 7: Qualitative results of our approach on urban driv-

ing scenes captured locally without further training.

within our framework. Due to the differences in the do-

mains of the synthetic and natural data, our depth estimator

directly applied to real-world data does not produce quali-

tatively or quantitatively desirable results, which makes the

domain adaptation step necessary (Table 2 and Figure 6).

While our approach requires an adversarial discrimina-

tor [90] to carry out the style transfer needed for our do-

main adaptation, [47] has suggested that more conventional

style transfer, which involves matching the Gram matrices

[68] of feature maps, is theoretically equivalent to minimiz-

ing the Maximum Mean Discrepancy with the second order

polynomial kernel, and leads to domain adaptation.

As evidence for the notion that a discriminator can per-

form the task even better, we also experiment with the style

transfer approach of [35], which improves on the original

work [23] by training a generator that can transfer a specific

style (that of our synthetic domain in our work) onto a set

of images of a specific domain (real-world images). A loss

network (pre-trained VGG [71]) is used to extract the image

style and content (as in [23]). This network calculates the

loss values for content (based on the ℓ2 difference between

feature representations extracted from the loss network) and

style (from the squared Frobenius norm of the distance be-

tween the Gram matrices of the input and main style im-

ages) that are used to train the generator. An overview of

the entire pipeline using [35] (along with the depth estima-

tion model - Section 3.1) can be seen in Figure 5.

Whilst [90] transfers the style between two sets of un-

aligned images from different domains, [35] requires one

specific image to be used as the style image. We have ac-

cess to tens of thousands of images representing the same

style. This is remedied by collecting a number of synthetic

images that contain a variety of objects, textures and col-

ors that represent their domain, and pooling their features

to create a single image that holds our desired style.

The data split of 200 images in KITTI [55] was used to

evaluate our approach regarding the effects of domain adap-

tation via style transfer. We experimented with both [90]

and [35], in addition to feeding real-world images to our

depth estimator without domain adaptation. As seen in the

results presented in Table 2, not using style transfer ends in
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Method
Error Metrics (lower, better)

Abs. Rel. Sq. Rel. RMSE RMSE log

Train Set Mean 0.814 12.992 11.411 0.285

Karsch et al. [36] 0.398 4.723 7.801 0.138

Liu et al. [50] 0.441 6.102 9.346 0.153

Godard et al. [26] 0.505 10.172 10.936 0.179

Zhou et al. [88] 0.356 4.948 9.737 0.443

Laina et al. [40] 0.189 1.711 5.285 0.079

Our Approach 0.423 9.343 9.002 0.122

Table 3: Comparative results on Make3D [66], on which the

approach is not trained. [36, 50, 40] are specifically trained

on Make3D. Following [88, 26], errors are only calculated

where depth is less than 70 meters in a central image crop.

considerable amount of anomalies in the output while trans-

lating images into synthetic space using [90] before depth

estimation generates significantly better outputs. Figure 6

provides qualitative results leading to the same conclusion.

4.3. Model Generalization

Images used in our training procedure come from the

synthetic environment [64] and the KITTI dataset [55], but

we evaluate our approach on additional data to test the

model generalization capabilities. Using data captured lo-

cally in an urban environment we generated visually con-

vincing depth without any training on our data which are

sharp, coherent and plausible as seen in Figure 7.

Furthermore, we tested our model on the Make3D

dataset [66], which contains paired RGB and depth images

from a different domain, and compared our results against

supervised methods trained on said dataset and state-of-the-

art monocular depth estimation methods. Even though our

approach does not numerically beat comparators that are

trained on Make3D [36, 50, 40], as seen in Table 3, our

results are promising despite no training over this data, and

outputs are highly plausible qualitatively, even compared to

the ground truth. Some results are seen in Figure 8.

4.4. Limitations

Even though the proposed approach is capable of gen-

erating high quality depth by taking advantage of domain

adaptation through image style transfer, the very idea of

style transfer brings forth certain shortcomings. The biggest

issue is that the approach is incapable of adapting to sud-

den lighting changes and saturation during style transfer.

When the two domains significantly vary in intensity differ-

ences between lit areas and shadows (as is the case with our

approach), shadows can be recognized as elevated surfaces

or foreground objects post style transfer. Figure 9 contains

some examples of how these issues arise.

Moreover, despite the fact that depth holes are gener-

ally considered undesirable [3, 4, 2, 49, 58], certain areas

within the scene depth should remain without depth val-

Figure 8: Results on the Make3D test set [66]. Note the

quality of our outputs despite the vast differences between

this dataset and the images used in our training.

Figure 9: Examples of failures, mainly due to light satura-

tion and shadows. Issues are marked with red boxes.

ues (e.g. very distant objects and sky). However, a super-

vised monocular depth estimation approach such as ours

(even with style transfer) is incapable of distinguishing the

sky from other extremely saturated objects within the scene,

which can lead to small holes within the scene. This issue

can be tackled in any future work by adding a weighted loss

component that can penalize the generator when holes are

misplaced based on the approximate location of the sky and

other distant background objects.

5. Conclusion

We have proposed a learning-based monocular depth

estimation approach. Using synthetic data captured from a

graphically rendered urban environment designed for gam-

ing applications, an effective depth estimation model can be

trained in a supervised manner. However, this model cannot

perform well on real-world data as the domain distributions

to which these two sets of data belong are widely different.

Relying on new theoretical studies connecting style transfer

and distances between distributions, we propose the use

of a GAN-based style transfer approach to adapt our

real-world data to fit into the distribution approximated

by the generator in our depth estimation model. Although

some isolated issues remain, experimental results prove

the superiority of our approach compared to contemporary

state-of-the-art methods tackling the same problem.

Supplementary video: https://vimeo.com/260393753

(larger, higher quality results).
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