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Abstract

Crucial to the success of training a depth-based 3D hand pose

estimator (HPE) is the availability of comprehensive datasets

covering diverse camera perspectives, shapes, and pose varia-

tions. However, collecting such annotated datasets is challenging.

We propose to complete existing databases by generating new

database entries. The key idea is to synthesize data in the skeleton

space (instead of doing so in the depth-map space) which enables

an easy and intuitive way of manipulating data entries. Since the

skeleton entries generated in this way do not have the correspond-

ing depth map entries, we exploit them by training a separate hand

pose generator (HPG) which synthesizes the depth map from the

skeleton entries. By training the HPG and HPE in a single unified

optimization framework enforcing that 1) the HPE agrees with the

paired depth and skeleton entries; and 2) the HPG-HPE combina-

tion satisfies the cyclic consistency (both the input and the output

of HPG-HPE are skeletons) observed via the newly generated un-

paired skeletons, our algorithm constructs a HPE which is robust

to variations that go beyond the coverage of the existing database.

Our training algorithm adopts the generative adversarial

networks (GAN) training process. As a by-product, we obtain

a hand pose discriminator (HPD) that is capable of picking out

realistic hand poses. Our algorithm exploits this capability to

refine the initial skeleton estimates in testing, further improving

the accuracy. We test our algorithm on four challenging

benchmark datasets (ICVL, MSRA, NYU and Big Hand 2.2M

datasets) and demonstrate that our approach outperforms or is on

par with state-of-the-art methods quantitatively and qualitatively.

1. Introduction

Estimating the 3D pose of a hand from a single depth map finds

numerous applications in human-computer interaction, computer

graphics, and virtual & augmented reality and it has emerged as a

key problem in computer vision [44, 32, 51, 59, 11, 53, 30, 4, 13,

57, 37, 52, 26, 60, 48, 46, 10, 33, 19, 41, 20, 14, 18, 22, 9, 58].

Hand pose estimation is a challenging problem. Typical

application scenarios of hand pose estimation require identifying

almost the same number of parameters (≈ 100; see Fig. 2)

as human body pose. However, in contrast with body pose

estimation where subjects are typically isolated and in the upright

position, hands exhibit frequent and severe self-occlusions, and

(a) (b) (c)

Figure 1: Similar hand skeletons overlaid with the corresponding

depth maps in (a) camera perspective and (b) shape (subject)

variations: Note that slight variations in hand skeletons are

instantiated to significantly different depth maps. It is much easier

to edit hands in the skeleton spaces as directly manipulating depth

values is challenging. Further, as the original depth map can

exhibit self-occlusions, naïve 3D rotations introduce holes for

large rotation angles (c): The occluded (empty) thumb region

is highlighted with a red circle (60-degree rotation from (a) left).

furthermore, it is not straightforward to define canonical views

as hands are captured in a wide range of equally likely camera

perspectives. Therefore, the ability to operate reliably under

varying camera perspectives, poses, and shapes (subject identities)

is crucial to successful hand pose estimation.

A straightforward approach to construct such a robust hand

pose estimator (HPE) might be to train it on a large dataset that

covers such variations. However, as far as we are aware, existing

datasets are limited in the coverage of camera viewpoint, shape,

and/or pose variations (see Sec. 3).

When the data space is visualized using the ground-truth an-

notations of hand poses, shapes, and camera perspectives in such

databases, one can identify the missing regions in the space, e.g.

camera perspectives that are not covered by the database (see

Fig. 4). This motivates a study to complete the dataset by synthe-

sizing new skeleton and depth map pairs. Using synthetic data as

one such approach, typically requires physical or statistical hand

models. Furthermore, even with advances in graphics, synthetic

depth maps exhibit observable differences from real data [31]. An

alternative is simple depth map and skeleton pair manipulation,

e.g. by in-plane rotations and translations. As shown in our ex-

periments, while this way of augmenting data helps, the resulting

database coverage, however, is limited. Extending this data manip-

ulation approach to non-trivial variations in shape and 3D camera

view is challenging: Directly changing the depth values can easily

generate unrealistic hand shapes as data entries in depth maps are
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highly structured and correlated. Furthermore, similar hand skele-

tons can be instantiated as significantly diffident depth maps indi-

cating the inefficiency of directly manipulating them (see Fig. 1).

In this paper, we present an algorithm that mitigates these

limitations by augmenting the camera views and shapes. In

training, we synthesize unseen human hands in the skeleton space

and transfer them to synthetic depth maps: This helps to avoid the

challenge in manipulating the depth maps (which vary drastically

with respect to mild variations in viewpoints and shapes; see

Fig. 1) and provide an easy and intuitive way to close the gaps

in the data space by editing existing data points. To facilitate the

transfer of generated skeletons to depth maps, we introduce two

new data processing networks: Inspired from the recent success of

2D/3D image generation [23, 35, 34, 45, 55, 56, 17, 7], we train

the hand pose generator (HPG) that transfers input skeletons to

corresponding depth maps. As in generative adversarial networks

(GANs) [12, 27], we train the second, hand pose discriminator

(HPD) that distinguishes real depth maps from these synthesized

by the HPG. Combining and jointly training HPG, HPE, and HPD

enable the automatic transfer of the augmented skeletons to depth

maps by enforcing the consistency over existing paired skeleton

and depth map database entries and the self-consistency over

unpaired augmented skeletons. The HPD’s ability (combined with

HPG) to pick out realistic human hands can also be used in testing:

During testing, we synthesize multiple hand pose hypotheses

out of the initial HPE prediction, and generate the final refined

prediction by combining them using the HPG and HPD as a prior.

To summarize, we contribute by 1) a new hand pose generator

(HPG) and estimator (HPE) combination that enables to exploit

both existing paired skeletons and depth map entries and newly

synthesized depth maps in a single unified framework; 2) a strat-

egy that refines the HPE prediction during testing by generating

multiple pose hypotheses and combining them using HPD and

HPG as a prior. In the experiments with four challenging datasets,

we demonstrate that our robust algorithm outperforms or is on

par with state-of-the-art algorithms on each dataset.

2. Related work

Hand pose generator (HPG)-guided approaches. The recent

success of image generation networks has demonstrated the

use of generative networks to guide the training of estimators.

Oberweger et al. [21] used HPG to synthesize depth maps from

estimated skeletons. This depth map is then compared with

the original, input depth map to quantify the difference and

iteratively refine the skeleton estimate. Wan et al. [51] proposed

a semi-supervised learning framework that uses HPG to exploit

the unpaired depth maps and learns a latent space shared by hand

poses and depth maps. Our approach is inspired from these ap-

proaches but differs in details as they are aligned with a different

motivation: The primary goal of our algorithm is to enrich existing

datasets by augmenting them. Since augmenting data in skeleton

space is much easier, our algorithm focuses on the capability of

transferring the augmented skeletons to depth maps. In contrast,

existing algorithm focus on exploiting data entries within their

limits, e.g. Wan et al.’s exploit unpaired depth maps. Also, our

algorithm is complementary to Oberweger et al.’s algorithm as

it uses the HPG only in the testing phase while ours jointly train

HPE and HPG, and uses them in both training and testing.

Recent progresses in graphics have made the use of synthetic

data a competitive alternative to building expensive annotations.

Still there is an observable gap between real and synthetic data

entries. Shrivastava et al.’s algorithm focuses on reducing such

gap [31]: Their conditional HPG receives a depth map rendered

from a physical hand model, and generates a more realistic

one simulating non-smooth observations at object boundaries.

Combined with a generative hand model, this algorithm can be

used to fill in the missing regions in the datasets similarly to ours.

Our algorithm makes a complementary approach that does not

require a physical or statistical hand model.

Multi-view/shape approaches. An alternative to constructing

robust HPE under view-point and shape variations is to apply

multi-view approaches. A depth map can be regarded as a projec-

tion of a 3D object onto a view plane, partially losing 3D structural

information. In this respect, exploiting additional views of an

underlying 3D object have shown to improve the performance in

related applications (e.g. human action recognition [29, 28, 2, 3]

and 3D object recognition [50, 25, 54, 38]). Applying to

hand pose estimation, Simon et al.’s multi-view boostrapping

algorithm adopts a multi-camera system in training where each

view-dependent initial estimate is iteratively triangulated in 3D

and refined [32]. While this approach has demonstrated the

potential of multi-view approaches, it is non-trivial to apply

to single depth map-based systems. Furthermore, in general

multi-view approaches cover only viewpoint variations. Ge et

al. proposed an algorithm that simulates the multi-view approach

by generating multiple 2D views from a single depth image [10]:

They first estimate a 3D point cloud from the input depth map,

and then project them onto three 2D view planes (x−y, x−z,

and z−x panes). The 3D pose estimates are then constructed

by applying 2D convolutional neural networks (CNNs) to each

views followed by multiple view scene fusion. They extended

this idea to generate multi-view 3D cliometric forms and fuse

them via a single neural network aggregrator [11]. This type of

approach helps to disambiguate between similar poses to a certain

degree. However, their 3D reconstruction ability is inherently

limited based on the initial point clouds estimated again from

a single view-dependent depth map. The performance of these

approaches, therefore, depend on the richness of the dataset.

The robustness over the shape variation is also important

in hand pose estimation. While the estimation accuracy is

affected by hand shapes, collecting comprehensive datasets to

train a robust estimator is challenging. An alternative is to apply

explicit 3D hand model-based approaches [5, 36, 40, 16, 46]

that simultaneously optimize the shape, viewpoint, and pose

parameters of the model. These algorithms, however, require

solving a complex optimization problem during testing.

Pose refinement. During training, our algorithm constructs an

auxiliary skeleton discriminator (HPD) that allows hypothesis test-

ing of whether a given skeleton is plausible or not (as generated by

the HPG). Combined with the HPG, HPD can thus act as a prior
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on the target hand pose space. This leads to a framework that

refines the initial skeleton estimated by the HPE as motivated by

the success of existing refinement-based approaches [39, 21, 53].

Sun et al. [39] propose a linear sequence (cascade) of weak

regressors that are trained to output residuals to guide input finger

joints towards their ground-truths. They iteratively refine the once

estimated skeleton joints by updating their palm joints (global

pose) and the finger joints thereafter (local pose). Oberweger et

al.’s approach also iteratively refines the initial hand pose

estimates as guided by the HPG [21]. Wu et al.’s algorithm

constructs a skeletal Gaussian mixture model which acts as a prior.

The initial pose estimates are then refined by combining the prior

with 2D re-projection and temporal consistency likelihood [53].

Compared to prior works, our refinement method differs in

that it exploits the information on 1) the augmented skeletons

and the corresponding transferred depth maps via feedback from

the trained discriminator HPDY and 2) multiple viewpoints

hypothesized by manipulating the initial estimates.

3. Pose estimation by skeleton set augmentation

Given a database of input depth maps and the corresponding

ground-truth hand pose annotations P={(xi,yi)}
l
i=1

⊂X×Y ,

our goal is to construct a hand pose estimator (HPE)

fE :X→Y that recovers the underlying posey′ of an unseen test

depth map x′. When the paired dataset P is large enough to cover

variations in poses, shapes, views, etc., a straightforward approach

to train such a HPE is to minimize the mean squared loss over P :

LE(f
E)=

l
∑

i=1

||fE(xi)−yi||
2

2
. (1)

For this baseline, we use the convolutional neural network

(CNN) architecture in [59]: Each input depth map x is presented

as a 96 × 96-dimensional array while for the output y, we

adopt the 63-dimensional skeletal pose vector representing the

(x,y,z)-coordinate values of 21 hand joints (Fig. 2).

Unfortunately, existing datasets do not comprehensively

cover the wide variety of hand shape and views. Therefore, we

explicitly fill-in these missing regions by synthesizing data entries

in the skeleton space Y . Once such unpaired skeletal poses

U = {zi}
u
i=1

are synthesized, training the HPE is performed

based on a combination of the standard estimation error LE via

P (Eq. 4) and the cyclic consistency requirements induced from

U (see Fig. 5 and Eq. 7). To facilitate this process, we train a

hand pose generator (HPG) fG :Y →X that receives a skeleton

(either y or z) and synthesizes the corresponding depth map x.

Note our skeletal representation incorporates camera perspectives:

63-dimensional skeletal pose values are assigned based on the

coordinate system defined by the views.

3.1. Skeleton set augmentation

Skeletal hand shape model. We use the 21 joint-based

skeletal hand shape model proposed in [59] (Fig. 2). This model

represents a human hand based on 25 joint angles and the

lengths of 20 bones connecting joint pairs: Each finger pose is

TIP

DIP

PIP

MCP

(a) (b)

Figure 2: Our skeletal hand model (a) consists of 21 joints [59]:

one for wrist and four for each finger. Each finger has five degrees

of freedom: flexion for DIP and PIP, flexion, abduction and twist

for MCP. (b) a skeleton overlaid on the underlying depth map.

represented as 5 angles (twist angle, flexion angle, abduction

angle for the MCP joint and flexion angles for the DIP and PIP

joints) and 4 bone lengths.1

Hand datasets: obtaining P . The performance of HPE

depends on its training datasets. The Big Hand 2.2M dataset

collected by Yuan et al. [59] is the largest dataset including 2.2

million frames extracted from sequences of
(

32
2

)

=496 transitions

between 25 = 32 extreme hand poses. While it provides a

comprehensive hand pose coverage, Big Hand 2.2M still lacks

the variety in hand shapes (only 10 subjects) and in camera

views (see Fig. 3). Other popular datasets include ICVL [42],

NYU [49] and MSRA [39]. The ICVL benchmark [42] includes

only 1 subject and provides a limited coverage of viewpoints and

poses consisting of 17,604 frames. The NYU dataset provides

a broader range of viewpoints (81,009 frames) but with limited

shape variations (one subject for training and another subject

for testing). The MSRA [39] benchmark is similar in scale to

NYU (76,375 frames) but with a more comprehensive viewpoint

coverage. However, its shape and pose variations are limited to

9 subjects and 17 discretized poses per subject, respectively.

Skeleton augmentation: constructing U . For each of the four

datasets aforementioned, we enlarge its skeleton space coverage

by adding variations in viewpoints and shapes. We do not consider

pose (i.e. articulation) augmentation as we observed in preliminary

experiments that synthesizing realistic hand poses without having

access to statistical or physical hand models is challenging.

New camera perspectives (viewpoints) of an existing skeleton

entry are synthesized by applying (3D) rotations along y−z and

x−z panes, prescribed by the corresponding rotation degrees θ1
and θ2. In-plane rotations (along x−y pane) can also be consid-

ered but we exclude them in the skeleton augmentation process

as the corresponding paired data is straightforwardly constructed

by rotating the skeleton and depth map pairs. In the experiments

(Table 1(b)) we demonstrate that both simple in-plane rotations

and our skeletal augmentation help improve the performance and

furthermore, they are complementary: The combination of the

two data augmentation modes is better than either taken alone.

1TIP stands for the finger tip. MCP, PIP, and DIP represent the MetaCarpoPha-
langeal, Proximal InterPhalangeal, and Distal InterPhalangeal joints, respectively.
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HPG

output

Azimuth changeElevation change

(b) Viewpoint variation

Figure 3: Synthesized skeletons y′ overlaid on the depth maps

z′ transferred by HPG (x′ = fG(y′)). These new data entries

augment the coverage of the database: The nearest skeletons (and

the paired depth maps) in the database deviate significantly from

the query synthesized skeletons.

Adopting existing models from human hand shape analy-

sis [8, 6], we characterize hand shapes based on the width to length

ratio of each finger. Accordingly, new skeletons are generated by

varying the finger lengths of existing data entries as measured in

Euclidean distances between TIP to DIP, DIP to PIP and PIP to

MCP while fixing the palm (see Fig. 2). While fixing 6 palm posi-

tions, we first identify 5 angles (i.e. flexion angles for TIP, DIP and

PIP and twist angle, flexion angle abduction angle for the MCP)

and 3 bone lengths (distances from MCP to PIP, from PIP to DIP

and from DIP to TIP) for each finger and given them, reconstruct

each finger by rotating/translating their end points to attach them

to the palm. We assume that the ratios of finger lengths are fixed

and thus only the bone length of each finger is manipulated by mul-

tiplying a global constant τ in the above reconstruction process.

The variation parameters θ1, θ2, and τ are sampled from Gaus-

sian distributions: N (1.0,0.52) for τ and N (0,π
4

2) for θ1 and θ2.

While in general, more sophisticated data manipulation strategies

can be adopted, our preliminary visual evaluation on a small

sample revealed that skeletons generated in this way look realistic.

Figure 3 shows example skeletons (overlaid on the corresponding

depth maps synthesized by HPG; see Sec. 3.2) generated from

this process. Note that the alternative way of directly manipulating

depth maps could be much more challenging as the variables are

highly structured and correlated, and therefore naïvely manipulat-

ing depth pixels would lead to unrealistic hand shapes. We apply

the manipulation process M times for each database entry con-

structing an unpaired databaseU (|U |=M |P |). Table 1(b) shows

(a) Viewpoint and pose space (b) Viewpoint space

Figure 4: t-SNE embeddings of skeletal poses of Big Hand 2.2M,

ICVL, NYU, MSRA datasets, and our augmented skeletons. Each

dataset covers up to a certain degree of shape and viewpoint

variations but none of them is comprehensive as indicated by

the presence of empty space between different clusters. Our

data augmentation process fills in the space and provides a more

comprehensive coverage of viewpoints and poses. To experience

the full detail of this figure, readers are advised to view the

electronic version.

the effect of varying M on the final pose estimation performance.

Figure 4 visualizes the results of skeleton augmentation: We

observe that even the biggest Big Hand 2.2M dataset is far from

being fully covering the wide variations in shapes and camera

viewpoints as evidenced by almost 10-times larger area coverage

accomplished by our augmented dataset.

3.2. Transferring skeletons to depth maps

Hand pose generator (HPG). Our HPG fG synthesizes a

depth map x given the input skeleton parameters y. We adopt

Pathak et al.’s conditional GAN architecture [24] that combines

bothL2-loss and adversarial loss (Eq. 3): TheL2 loss (defined via

P ) measures the deviation of the synthesized depth maps from the

ground-truths while the adversarial loss generates data distribution

and helps the generator to synthesize more plausible data samples.

Hand pose discriminator (HPD). We construct auxiliary

models that provide feedback on the quality of synthesized data.

To leverage the cyclic nature of HPE and HPG combinations (i.e.

fE(fG) and fG(fE) map Y to itself and X to itself, respec-

tively; see the next paragraph), we train two such discriminators:

The depth hand pose discriminator (HPDX) fDX is the same as

the standard GAN discriminator; It outputs 1 for real data entries

and 0 for the synthesized entries. The role of skeleton hand pose

discriminator (HPDY ) fDY is to decide whether the estimated

finger joints conform the human skeleton model (Fig. 2). It aims

to accept original skeletal entries y in P as well as the augmented

entries z in U , while rejecting outputs from the HPE. Therefore,

incorporating fDY into the joint GAN training enables us to steer

the training of the generator fG towards the skeletal poses that

were not covered in the original dataset P .

Training HPG and HPE. Our goal is to jointly train HPG

and HPE by fully exploiting the paired data P as well as the

augmented unpaired data U . Since skeletons z in unpaired data
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