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Abstract

This paper addresses the problem of video object seg-

mentation, where the initial object mask is given in the

first frame of an input video. We propose a novel spatio-

temporal Markov Random Field (MRF) model defined over

pixels to handle this problem. Unlike conventional MRF

models, the spatial dependencies among pixels in our model

are encoded by a Convolutional Neural Network (CNN).

Specifically, for a given object, the probability of a labeling

to a set of spatially neighboring pixels can be predicted

by a CNN trained for this specific object. As a result,

higher-order, richer dependencies among pixels in the set

can be implicitly modeled by the CNN. With temporal de-

pendencies established by optical flow, the resulting MRF

model combines both spatial and temporal cues for tackling

video object segmentation. However, performing inference

in the MRF model is very difficult due to the very high-

order dependencies. To this end, we propose a novel CNN-

embedded algorithm to perform approximate inference in

the MRF. This algorithm proceeds by alternating between a

temporal fusion step and a feed-forward CNN step. When

initialized with an appearance-based one-shot segmenta-

tion CNN, our model outperforms the winning entries of the

DAVIS 2017 Challenge, without resorting to model ensem-

bling or any dedicated detectors.

1. Introduction

Video object segmentation refers to a task of extracting

pixel-level masks for class-agnostic objects in videos. This

task can be further divided into two settings [36], namely

unsupervised and semi-supervised. While the unsupervised

task does not provide any manual annotation, the semi-

supervised task provides information about objects of inter-

est in the first frame of a video. In this paper, we focus

on the latter task, where the initial masks for objects of

interest are provided in the first frame. The task is important

for many applications such as video editing, video sum-

marization, action recognition, etc. Note that the seman-

tic class/type of the objects of interest cannot be assumed

known and the task is thus class-agnostic. It is usually

treated as a temporal label propagation problem and solved

with spatio-temporal graph structures [18, 37, 45, 4] like a

Markov Random Field (MRF) model [46]. Recent advances

on the task show significant improvements over traditional

approaches when incorporating deep Convolutional Neural

Networks (CNNs) [13, 35, 48, 42, 15, 23, 22]. Despite

the remarkable progress achieved with CNNs, video object

segmentation is still challenging when applied in real-world

environments. One example is that even the top perform-

ers [13, 35] on the DAVIS 2016 benchmark [36] show

significantly worse performance on the more challenging

DAVIS 2017 benchmark [38], where interactions between

objects, occlusions, motions, object deformation, etc., are

more complex and frequent in the videos.

Reviewing the top performing CNN-based methods and

traditional spatio-temporal graph-based methods, there is a

clear gap between the two lines. The CNN-based methods

usually treat each video frame individually or only use sim-

ple heuristics to propagate information along the temporal

axis, while the well established graph-based models cannot

utilize the powerful representation capabilities of neural

networks. In order to fully exploit the appearance/shape

information about the given objects, as well as the tempo-

ral information flow along the time axis, a better solution

should be able to combine the best from both. For example,

built on the top-performing CNN-based methods [13, 35],

there should be a temporal averaging between the CNN

outputs of an individual frame and its neighboring frames,

so that the segmentation results are temporally consistent.

The temporal averaging, however, is heuristic and likely to

degrade the segmentation performance due to outliers. A

more principled method should be developed. In this paper,

we propose a novel approach along this direction.

Specifically, we build a spatio-temporal MRF model

over a video sequence, where each random variable rep-

resents the label of a pixel. While the pairwise temporal

dependencies between random variables are established us-
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ing optical flow between neighboring frames, the spatial

dependencies in our model are not modeled as pairwise po-

tentials like conventional MRF models [43, 28, 52, 51, 50].

The problem of spatial pairwise potential is that it has very

restricted expressive power and thus cannot model compli-

cated dependencies among pixels in natural images. Some

higher-order potentials are proposed to incorporate learned

patterns [40] or enforce label consistency in pre-segmented

regions [27, 2]. Yet the expressive power of them is still

rather limited.

In our model, we instead use a CNN to encode even

higher-order spatial potentials over pixels. Given a labeled

object mask in the first frame, we can train a mask re-

finement CNN for the object to refine a coarse mask in a

future frame. Assuming that the mask refinement CNN is

so reliable that it can consistently refine a coarse mask to a

better one and keep a good mask unchanged, we can define

an objective function based on the CNN to assess a given

mask as a whole. Then the spatial potential over the pixels

within a frame can be defined using the CNN-based func-

tion. In this case, more complicated dependencies among

pixels can be represented for the object. As a result, the

MRF model will enforce the inference result in each frame

to be more like the specific object. Yet, the inference in the

resulting MRF model is very difficult due to the CNN-based

potential function. In this paper, we overcome the difficulty

by proposing a novel approximate inference algorithm for

the MRF model. We first decouple the inference problem

into two subproblems by introducing an auxiliary variable.

Then we show that one subproblem involving the CNN-

based potential function can be approximated by a feed-

forward pass of the mask refinement CNN. Consequently,

we do not even need to explicitly compute the CNN-based

potential function during the inference. The entire inference

algorithm alternates between a temporal fusion step and

a feed-forward pass of the CNN. When initialized with

a simple one-shot segmentation CNN [13], our algorithm

shows outstanding performance on challenging benchmarks

like the DAVIS 2017 test-dev dataset [38].

1.1. Related Work

Video Object Segmentation We briefly review recent work

focusing on the semi-supervised setting. The task is usu-

ally formulated as a temporal label propagation problem.

Spatio-temporal graph-based methods tackle the problem

by building up graph structures over pixels [45], patches

[4], superpixels [18, 46], or even object proposals [37]

to infer the labels for subsequent frames. The temporal

connections are established using regular spatio-temporal

lattices [34], optical flow [18], or other similar techniques

like nearest neighbor fields [4]. Some methods even build

up long-range connections using appearance-based meth-

ods [37]. Among these methods, some algorithms infer

the labels using greedy strategies by only considering two

or more neighboring frames one time [16, 34, 46], while

other algorithms strive to find globally optimal solutions by

considering all the frames together [45, 18, 37].

Although various nicely designed models and algorithms

are proposed to tackle the problem, deep learning shows

overwhelming power when introduced to this area. It is

shown that a merely appearance-based CNN named OS-

VOS [13], trained on the first frame of a sequence and tested

on each subsequent frame individually, achieves significan-

t improvements over top-performing traditional methods

(79.8% vs 68.0% accuracy on the DAVIS 2016 dataset

[36]). A concurrent work named MaskTrack [35] achieves

similar performance by employing a slightly different CNN

where the mask of a previous frame is fed to the CNN

as an additional channel besides the RGB input image.

Some other CNN-based methods also demonstrate pretty

nice results [23, 22, 42, 15, 48]. Among these methods,

an online adaptation version of OSVOS, namely OnAVOS

[48], achieves the best performance (86.1% accuracy) on

the DAVIS 2016 dataset.

Since the best performance on the DAVIS 2016 dataset

tends to be saturated, the authors of the dataset released a

larger, more challenging dataset, namely DAVIS 2017 [38],

to further push the research in video object segmentation

for more practical use cases. The new dataset adds more

distractors, smaller objects and finer structures, more oc-

clusions and faster motions, etc. Hence the top performer

on DAVIS 2016 performs much worse when it comes to the

new dataset. For example, the accuracy of OnAVOS [48] on

DAVIS 2016 is 86.1%, while its accuracy drops to 50.1%
on the DAVIS 2017 test-dev dataset. Although the best

performance (on the test-dev dataset) is further improved to

around 66% during the DAVIS 2017 Challenge by Li et al.

[31] and the LucidTracker [26], the score is achieved with

engineering techniques like model ensembling, multi-scale

training/testing, dedicated object detectors, etc. We show

in this paper that our proposed approach can achieve better

performance without resorting to these techniques.

CNN + MRF/CRF The idea of combining the best from

both CNN and MRF/CRF is not new. We here briefly

review some attempts to combine CNN and MRF/CRF

for the segmentation task. For a more thorough review

please refer to [3]. The first idea to take advantage of

the representation capability of CNN and the fine-grained

probabilistic modeling capability of MRF/CRF is to append

an MRF/CRF inference to a CNN as a separate step. For

example, the semantic segmentation framework DeepLab

[14] utilizes fully-connected CRFs [29] as a post-processing

step to improve the semantic labelling results produced by a

CNN, similar to performing an additional edge-preserving

filtering [17, 7, 6, 8] on the segmentation masks. The video

object segmentation method by Jang and Kim [23] performs
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MRF optimization to fuse the outputs of a triple-branch CN-

N. However, the loosely-coupled combination cannot fully

exploit the strength of MRF/CRF models. Schwing and Ur-

tasun [41] proposed to jointly train CNN and MRF by back-

propagating gradient obtained during the MRF inference

to CNN. Unfortunately, the approach does not show clear

improvements over the separated training scheme. Arnab

et al. [2] successfully demonstrated performance gains via

a joint training of CNN and MRF, even with higher-order

potentials modeled by object detection or superpixels. Note

that their focus is on the back-propagation of high-order

potentials during the joint training, while our work focuses

on the higher-order modeling with CNNs. The CRF-RNN

work [53] formulates the mean-field approximate inference

for CRFs as a Recurrent Neural Network (RNN) and in-

tegrates it with a CNN to obtain an end-to-end trainable

deep network, which shows an outstanding performance

boost in an elegant way. Taking one step further, the Deep

Parsing Network (DPN) [32] is designed to approximate

the mean-field inference for MRFs in one pass. The above

work demonstrates promising directions of using neural

networks to approximate the inference of MRFs, which is

different from our work that is trying to model higher-order

potentials in MRFs with CNNs.

1.2. Contributions

The main contributions of this paper are as follows:

• We propose a novel spatio-temporal Markov Random

Field (MRF) model for the video object segmentation

problem. The novelty of the model is that the spatial

potentials are encoded by CNNs trained for objects of

interest, so higher-order dependencies among pixels

can be modeled to enforce the holistic segmentation

of object instances.

• We propose an effective iterative algorithm for video

object segmentation. The algorithm alternates between

a temporal fusion operation and a feed-forward CNN

to progressively refine the segmentation results. Ini-

tialized with an appearance-based one-shot video ob-

ject segmentation CNN, our algorithm achieves state-

of-the-art performance on public benchmarks.

2. Model

We start by considering the case of the single object

segmentation, where the goal is to label pixels as binary

values. Handling multiple objects is described in Sec. 4.1.

Note that in the semi-supervised setting, the ground-truth

object mask for the first frame of a video is given.

2.1. Notations & Preliminaries

We define a discrete random field X over all the pixels

V = {1, 2, ..., N} in a video sequence. Each random

variable Xi ∈ X is associated with a pixel i ∈ V and takes

a value xi from the label set L = {0, 1}. We use x to

denote a possible assignment of labels (namely a labeling

or a configuration) to the random variables in X. The data

of video frames is denoted as D. Denoting a clique in

the field by c and the set of variables in that clique by xc,

the distribution of the random variables in the field can be

written as a product of potential functions over the maximal

cliques [11]

p(x|D) =
1

Z

∏

c

ψc(xc|D) =
1

Z

∏

c

exp{−Ec(xc|D)},

(1)

where Z is the normalization constant and Ec(xc|D) is

the energy function corresponding to the potential function

ψc(xc|D). Our goal is to infer the maximum a posteriori

(MAP) labeling x∗ of the random field as

x∗ = argmax
x

log p(x|D) = argmin
x

∑

c

Ec(xc|D). (2)

By defining the graph structures of the random field and

their associated energy functions, the MAP labeling can

be obtained via minimizing the total energy in the field.

Note that the energy functions defined in our model will

be conditioned on the data D. To be concise, we will drop

D in the notations hereafter.

2.2. Model Structures & Energies

The total energy in our model is defined as follows

E(x) =
∑

i∈V

Eu(xi) +
∑

(i,j)∈NT

Et(xi, xj) +
∑

c∈S

Es(xc),

(3)

where Eu is the unary energy, and Et and Es are the

energies associated with temporal and spatial dependencies,

respectively. The notation NT refers to the set of all tem-

poral connections, while S refers to the set of all spatial

cliques. The concrete definitions are as follows.

The unary energy is defined by the negative log likeli-

hood of the labeling for each individual random variable as

Eu(xi) = −θu log p(Xi = xi), (4)

where θu is to balance the weight of this term with other

energy terms.

The set of temporal connections NT is established us-

ing semi-dense optical flow, such that each pixel is only

connected to pixels in neighboring frames when the mo-

tion estimation is reliable enough. We use a forward-

backward consistency check to filter reliable motion vectors

[9, 10, 25, 24]. The yellow dashed lines in Fig. 1 show an

example of an one-step temporal dependencies for the red

pixel. Note that the one-step temporal dependencies can be
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further extended to k-step temporal dependencies by direct-

ly computing optical flow between a frame and the frame

that is k frames away. We use k 6 2 (k 6= 0) in our model,

which means for a certain frame t, all the following links are

established: {t←→ t− 2}, {t←→ t− 1}, {t←→ t+ 1},
{t←→ t+2}. As a result, each pixel is connected to at most

4 temporal neighbors (note that some invalid connections

are removed by the forward-backward consistency check).

The temporal energy function is defined as

Et(xi, xj) = θtwij(xi − xj)
2, (5)

where θt is a balancing parameter for this term and wij is

a data-dependent weight to measure the confidence of the

temporal connection between variables Xi and Xj . The

energy encourages a temporally consistent labeling when

the temporal connection is confident.

For spatial dependencies, we define all the pixels in a

frame as a clique, in which the labeling for each pixel

depends on all other pixels in the same frame (shown as

the green shaded region in Fig. 1). In order to construct a

spatial energy function defined over all the pixels in a frame,

we need to design an energy function f(·) that can assess

the quality of a given mask xc as a whole. Ideally, it is easy

to construct the function f(·) if the ground-truth mask x∗
c of

an input mask xc is given. For example, we can define f(·)

f(xc) = ‖xc − x∗
c‖

2
2, (6)

which gives lower energies to masks that are more similar to

the ground-truth mask. However, x∗
c is unknown and indeed

what we need to solve for. We here resort to a feed-forward

CNN to approximate x∗
c and define f(·) as follows

f(xc) = ‖xc − gCNN(xc)‖
2
2, (7)

where gCNN(·) is a mask refinement CNN that accepts as

input a given mask xc and outputs a refined mask. Note that

the operator gCNN(·) here is a feed-forward pass of a CNN.

Intuitively, the above definition assigns a lower energy to a

mask whose mapping through gCNN(·) is more similar to

itself. With a well-trained gCNN(·) that can reliably refine

a coarse mask to a better one and keep a good mask un-

changed, the function f(·) could assign better masks lower

energies. Fortunately, it is shown that such a CNN can be

trained in a two-stage manner using the first frame of a given

video and performs very reliably during the inference for

the following frames [35]. We leave the detailed discussion

of gCNN(·) in the next section. We here define the spatial

energy in Eq. (3) as

Es(xc) = θsf(xc), (8)

where θs is a balancing parameter for this term.

The above spatial energy definition has a much more

expressive power than traditional pairwise smoothness ener-

gies [43], higher-order energies enforcing label consistency

… …

Figure 1: The spatio-temporal dependencies for a pixel (in

red) in our model. The temporal dependencies are estab-

lished by optical flow (indicated by yellow dashed lines).

The spatial dependencies are modeled by a CNN, as shown

in the center frame where the green shaded region indicates

pixels belonging to the same spatial clique as the red pixel

(in this case it indicates all the pixels within the same image

as the red pixel). Best viewed in color.

in pre-segmented regions [27, 2], or energies encouraging

labels to follow certain learned patterns [40]. However,

the inference in the MRF with the CNN-based energy is

very difficult. In the next section, we present an efficient

approximate algorithm for the inference.

3. Inference

The exact MAP inference in MRF models is NP-hard

in general [28]. The higher-order energy function in our

model makes the inference problem intractable. Even with

efficient approximate algorithms like belief propagation or

mean-field approximation, finding a solution minimizing

Eq. (3) is still computationally infeasible, due to the very

high-order spatial cliques. Intuitively, each time evaluating

the total energy in the MRF, a feed-forward CNN pass for

every frame in the video is required. The computational

cost quickly becomes unaffordable as the number of energy

evaluations grows.

In order to make the problem tractable, we decouple the

temporal energyEt and spatial energyEs by introducing an

auxiliary variable y, and minimize the following approxi-

mation of Eq. (3) instead:

Ê(x,y) =
∑

i∈V

Eu(xi) +
∑

(i,j)∈NT

Et(xi, xj)

+
β

2
‖x− y‖22 +

∑

c∈S

Es(yc), (9)

where β is a penalty parameter such that y is a close ap-

proximation of x. Eq. (9) can be minimized by alternating

steps updating either x or y iteratively. Specifically, in the

k-th iteration, the two updating steps are:

1. with y fixed, update x by

x(k) ← argmin
x

Ê(x,y(k−1)), (10)
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2. with x fixed, update y by

y(k) ← argmin
y

Ê(x(k),y). (11)

Note that Eq. (10) in step 1 is essentially the regularized

total energy in Eq. (3) ignoring spatial dependencies, while

Eq. (11) in step 2 only considers spatial dependencies for

each frame c. The two steps are essentially performing

temporal fusion and mask refinement, respectively.

Solving step 1 requires solving a large quadratic integer

programming problem with an N × N Laplacian matrix,

where N is the total number of pixels in a video. For

efficiency considerations, we here resort to a classical it-

erative method named Iterated Conditional Modes (ICM)

[11] to find an approximate solution of step 1. Specifically,

each time one random variable Xi is updated to minimize

Eq. (10), fixing the rest of the random variables X . The

original ICM algorithm repeats the variable updating until

converged. In our algorithm, we only perform the updating

for a fixed number L of iterations, as shown in Algorithm 1.

The updating in step 2 can be performed for each frame

c individually, that is

y(k)
c ← argmin

yc

{β

2
‖x(k)

c − yc‖
2
2 + Es(yc)

}

. (12)

Note that the problem is highly non-convex due to the CNN-

based energy function Es. Intuitively, step 2 is to refine a

given mask x
(k)
c such that the output mask y

(k)
c is better

in terms of Es and at the same time not deviates too much

from the input. Directly solving the optimization problem

in Eq. (12) is difficult, we instead approximate this step by

simply using gCNN(·) to update yc:

y(k)
c ← gCNN(x

(k)
c ), (13)

which we find in the experiments can make the objective

function in Eq. (12) non-increasing in most cases (99% of

more than 3000 frames in the DAVIS 2017 validation set

when θs = β). As a result, the overall algorithm alternating

between the above two steps, as described in Algorithm 1,

ensures the non-increasing of the total energy in Eq. (9) in

each iteration. We show experimentally in Sec. 4 that the

algorithm converges after a few iterations.

Now we discuss the details of the CNN operator gCNN(·)
in our algorithm. Similar to MaskTrack [35], our gCNN(·)
accepts a 4-channel input (RGB image + coarse mask), and

outputs a refined mask. Also, we train gCNN(·) in a two-

stage manner. In the first stage, an offline model is trained

using object segmentation data available. Then in the sec-

ond stage, the offline model is fine-tuned using the ground-

truth mask in the first frame of a given video. During

the training, the input mask to the CNN is a contaminated

version of the ground-truth mask with data augmentation

Algorithm 1 Our Inference Algorithm

Parameters: number of outer iterations K, number of

inner iterations L, number of pixels N , and number of

frames C.

Initialization: initial labeling x(0) = y(0).

for k from 1 to K do

– Temporal Fusion Step (TF) –

x(k,0) ← x(k−1)

for l from 1 to L do

for i from 1 to N do

x
(k,l)
i ← argminxi

{

β
2 (xi − y

(k−1)
i )2 +Eu(xi)

+
∑

(i,j)∈NT
Et(xi, x

(k,l−1)
j )

}

end for

end for

x(k) ← x(k,L)

– Mask Refinement Step (MR) –

for c from 1 to C do

y
(k)
c ← gCNN(x

(k)
c )

end for

end for

Output: Binarize y(K) as the final segmentation masks.

techniques like non-rigid deformation. Note that the two-

stage training is performed before our inference algorithm.

During inference, the operator gCNN(·) in Algorithm 1 is

only a feed-forward pass of the CNN.

The CNN trained in this way can partially encode the

appearances of an object of interest. It endows our algo-

rithm with the ability to recover missing parts of an object

mask when occlusions happen. Even in the case that there

are re-appearing objects after completely occluded, our al-

gorithm can recover high-quality object masks given a poor

likelihood obtained from an appearance-based method like

OSVOS [13]. In fact, we will show in the next section

that our algorithm achieves outstanding performance on

challenging datasets where heavy occlusions are common.

4. Experiments

4.1. Implementation Details

Initialization & Pixel Likelihood We use OSVOS [13] to

obtain the initial labeling and pixel likelihood for all frames.

As OSVOS tends to produce false-positive results, espe-

cially when there are multiple similar objects, we weight

the response map output from OSVOS with a Gaussian

centered at the most likely location of the target object

predicted by a simple linear motion model [12, 33]. The

weighted response map in each frame is then combined

(using max at each pixel) with the response map warped

from the preceding frame. Then the fused response map is

binarized as the initial labeling of our algorithm. To obtain
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(a) Baseline (b) Baseline+TF (c) Baseline+MR (d) Baseline+TF&MR (e) Ground-Truth

Figure 2: An example of the ablation study experiments. Performing TF or MR individually can only yield limited

improvements over the baseline method, as shown in (b) and (c). With both TF and MR enabled, the quality of the

segmentation result gets largely improved, as shown in (d).

the pixel likelihood p(Xi = xi) in Eq. (4), we use the initial

foreground region imposed with a dilated uncertain region

similar to [48], where we assign the likelihood for pixels

in the foreground region as p(Xi = 1) = 0.99 and the

likelihood for pixels in the uncertain region as a Gaussian

peaked with probability p(Xi = 1) = 0.7.

CNN Implementation We use the Caffe-based DeepLab

framework [14] to implement our mask refinement CNN

gCNN(·). The backbone net is a VGG-Net [44] with the

input data layer modified to 4-channel (RGB image + 1-

channel binary mask). We add additional skip connections

from intermediate pooling layers to a final output convo-

lutional layer to enable multi-level feature fusion. The

input image to our CNN is cropped around the object using

the labeling from a previous iteration and then resized to

513 × 513. In our experiments, we train the offline model

using the DAVIS 2017 training set [38] for 50K iterations

with a batch size of 10 and a learning rate of 10−4 (with

“poly” policy), where the initial model weights are obtained

from DeepLabv2 VGG16 pre-trained on PASCAL VOC.

The training data consists of 60 video clips with all frames

annotated in pixel-level. We use the optical flow warped

mask of a previous frame as contaminated input for each

frame during offline training. For a given test video, the of-

fline model is fine-tuned for 2K iterations using the ground-

truth mask of the first frame, augmented using a simplified

version of Lucid data dreaming [26]. We provide the model

definition file in supplementary material.

Handling Multiple Objects When there are multiple ob-

jects to be segmented in a video, we handle each object indi-

vidually in each iteration and deal with overlapped regions

before starting the next iteration. Overlapped regions are

divided into connected pixel blobs and each blob is assigned

to a label that minimizes Eq. (10) for the blob.

Other Settings We use FlowNet2 [20] to compute op-

tical flow in our implementation. In the case that NaN

error happens, we instead use the TV-L1 Split-Bregman

optical flow GPU implementation provided by Bao et al.

[5]. The temporal confidence weighting wij in Eq. (5)

is obtained by incorporating a decaying frame confidence

as the frame index grows, which is wij = ξciξcj , where

ξc = max(0.9c−1, 0.3) for frame c ranging from 1 to num-

ber of frames in a video. The energy balancing parameters

in Eq. (3) are set to θu = θt = 1. The decoupling penalty

parameter in Eq. (9) is initially set to β = 1.5, multiplied

by 1.2 in each iteration. The number of inner iterations (i.e.,

the ICM iterations in temporal fusion) is set to L = 5.

Runtime Analysis The main portion of the runtime is the

online Lucid data augmentation and CNN training for a

given video. In our implementation, the data augmentation

takes about 1 hour to produce 300 training pairs from the

first frame, and the online training of gCNN(·) takes about 1

hour for 2K iterations with a batch size of 10 on an NVIDIA

Tesla M40 GPU. The online training of OSVOS takes about

20 minutes for 2K iterations but can be performed in parallel

to the training of gCNN(·). During inference, the algorithm

is actually pretty efficient. Note that the optical flow for

establishing temporal dependencies is only computed once,

with each frame only taking a fraction of a second on

GPU [20, 5]. The temporal fusion step in our algorithm is

performed locally and the runtime is almost ignorable. The

mask refinement step is a feed-forward pass of CNN and

takes only a fraction of a second on GPU for each frame.

4.2. Ablation Study

We perform ablation study of our algorithm on the

DAVIS 2017 validation set [38], which consists of 30 video

clips with pixel-level annotations. We use the region sim-

ilarity in terms of IoU (J ) and contour accuracy (F) to

evaluate quality of the results. Table 1 shows the evaluation

results for our algorithm in different settings. As a com-

parison, the results from OSVOS [13] (without boundary

snapping, multiple objects conflicts are handled by simply

taking the object with the maximum CNN response value

at each pixel) are also listed in the table. Note that the

performance of OSVOS on the DAVIS 2017 dataset is sig-

nificantly worse than that on the DAVIS 2016 dataset, since

the renewed dataset is much more challenging. Our baseline

implementation is essentially OSVOS (without boundary

snapping) enhanced with a linear motion model, which

serves as the initial labeling in our algorithm.

In our experiments, when only performing temporal fu-

sion step (TF), we set y with the updated x after each

iteration in Algorithm 1 to propagate variable estimation

between iterations. Similarly, when only performing mask

refinement step (MR), x is set with the latest y in each

iteration. From Table 1 we can see that, performing only

TF step will degrade the results of the segmentation. This is
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Method
Global Region J Contour F

Mean Boost Mean Recall Mean Recall

OSVOS [13] 0.574 – 0.546 0.598 0.601 0.675

Our baseline 0.596 – 0.558 0.617 0.633 0.715

+TF×1 0.589 -0.007 0.556 0.607 0.623 0.723

+TF×2 0.590 -0.006 0.556 0.609 0.623 0.722

+TF×3 0.590 -0.006 0.556 0.610 0.623 0.722

+TF×4 0.590 -0.006 0.556 0.611 0.623 0.722

+TF×5 0.590 -0.006 0.557 0.611 0.623 0.722

+MR×1 0.640 0.044 0.600 0.675 0.680 0.749

+MR×2 0.647 0.051 0.608 0.683 0.686 0.752

+MR×3 0.648 0.052 0.609 0.684 0.687 0.753

+MR×4 0.648 0.052 0.610 0.681 0.687 0.756

+MR×5 0.649 0.053 0.610 0.679 0.688 0.754

+TF&MR×1 0.692 0.096 0.652 0.728 0.732 0.822

+TF&MR×2 0.704 0.108 0.668 0.740 0.740 0.824

+TF&MR×3 0.706 0.110 0.671 0.742 0.741 0.816

+TF&MR×4 0.707 0.111 0.672 0.744 0.742 0.820

+TF&MR×5 0.707 0.111 0.672 0.744 0.742 0.820

Table 1: Ablation study on the DAVIS 2017 validation set.

Our baseline is OSVOS enhanced with a linear motion mod-

el. TF represents the temporal fusion step in our algorithm,

while MR represents the mask refinement step. For exam-

ple, “TF&MR×3” means that the algorithm is performed

for 3 iterations with both TF and MR steps enabled. The

“Boost” column shows the performance gain of adding each

algorithm variant to the baseline.

because TF step completely ignores the rich spatial depen-

dencies between variables in a frame, and tends to propa-

gate erroneous labeling among neighboring frames. On the

other hand, performing only MR step can largely boost the

baseline method but will stuck at a performance gain around

5%. With both TF and MR steps enabled, our algorithm can

improve the baseline method by a performance gain up to

11%. The intuition can be illustrated by Fig. 2. The TF

step can partially recover missing segments by utilizing in-

formation from neighboring frames, but the result is coarse

and false-positive outliers may be introduced in this step, as

shown in Fig. 2b. Fortunately, the coarse segmentation can

then be refined in the MR step to produce a high-quality

result, as shown in Fig. 2d. Note that in this example,

MR step itself cannot yield satisfactory results without the

help of TF step for enlarging the positive labeling set, as

shown in Fig. 2c. To obtain the results in the rest of our

experiments, we set the number of iterations K = 3 for a

good balance between performance and computational cost.

4.3. Results

We first report the performance of our algorithm on the

challenging DAVIS 2017 test-dev set [38]. The dataset con-

sists of 30 video clips in various challenging cases including

heavy occlusions, large appearance changes, complex shape

deformation, diverse object scales, etc. It was used as a

warm-up dataset in the DAVIS 2017 Challenge and remains

open after the challenge. Table 2 shows the performance of

Method
Global Region J Contour F

Mean Mean Recall Mean Recall

Ours 0.675 0.645 0.741 0.705 0.794

apata[26] 0.666 0.634 0.739 0.699 0.801

lixx[31] 0.661 0.644 0.735 0.678 0.756

wangzhe 0.577 0.556 0.632 0.598 0.667

lalalaf– 0.574 0.545 0.613 0.602 0.688

voigtla–[47] 0.565 0.534 0.578 0.596 0.654

OnAVOS [48] 0.528 0.501 – 0.554 –

OSVOS [13] 0.505 0.472 0.508 0.537 0.578

Table 2: The results on the DAVIS 2017 test-dev set. The

names “apata” and “lixx” are the top entries presented in

the DAVIS 2017 Challenge. The performances of OnAVOS

and OSVOS, the top performers on DAVIS 2016, are shown

for reference. Note that both “apata” and “lixx” are heavy

engineered systems that employ techniques such as model

ensembling, multi-scale training/testing, or even dedicated

object (like person) detectors.

Method DAVIS 2016 Youtube-Objects SegTrack v2

Ours 0.842 0.784 0.771

OnAVOS [48] 0.857 0.774 –

LucidTracker [26] 0.837 0.762 0.768

MaskRNN [19] 0.804 – 0.721

OSVOS [13] 0.798 0.783 0.654

MaskTrack [35] 0.797 0.726 0.703

SegFlow [15] 0.761 – –

STV [49] 0.736 – 0.781

CTN [23] 0.735 – –

VPN [22] 0.702 – –

PLM [42] 0.700 – –

ObjFlow [46] 0.680 0.776 0.741

BVS [34] 0.600 – 0.584

Table 3: The results on DAVIS 2016, Youtube-Objects

and SegTrack v2 datasets. Only recent work in the semi-

supervised setting (i.e., ground-truth of the first frame is

given) is shown. The results of DAVIS 2016 are evaluat-

ed on the validation set (scores mostly obtained from the

DAVIS 2016 benchmark website [1]) and only region IoU

J score is shown. Our algorithm achieves state-of-the-art

performances on all three datasets.

our algorithm comparing to the top-performing entries pre-

sented in the DAVIS 2017 Challenge. Our algorithm outper-

forms the winning entries without resorting to techniques

like model ensembling or multi-scale training/testing. It al-

so does not rely on dedicated object detectors, which makes

it more general for class-agnostic object segmentation. Fig.

3 shows several examples of our segmentation results. Note

that this dataset is very challenging and methods purely

relying on object appearance or methods mainly utilizing

temporal information perform very poorly on the dataset.

For example, in the “carousel” sequence, appearance-based

methods like OSVOS [13] will mistakenly switch object

identities since the appearances of all the carousels are very

similar to each other when they are in a same orientation

relative to camera. On the other hand, methods like Object
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Figure 3: Examples of our results on the DAVIS 2017 test-dev set. The first column shows the ground-truth mask given in

the first frame. The other columns are segmentation results for subsequent frames. From top to bottom, the sequences are

“carousel”, “girl-dog”, and “salsa”, respectively. Multiple objects are highlighted with different colors. It can be shown from

these examples that the dataset is very challenging. Note that our algorithm does not employ specific object detectors (like a

person detector used in a re-identification based method [31]) to achieve the results.

Figure 4: Examples of our results on DAVIS 2016, Youtube-Objects and SegTrack v2 datasets. From top to bottom, “dance-

twirl” from DAVIS 2016, “cat-0001” from Youtube-Objects, and “hummingbird” from SegTrack v2, respectively.

Flow [46] cannot handle occlusions due to lack of the

ability to recognize re-appearing objects. Our algorithm

handles these cases well as shown in the first row of Fig.

3, thanks to the representation power of CNN for encoding

object appearances and shapes and the MRF modeling for

establishing spatio-temporal connections.

For completeness, we also report the performance of our

algorithm on three legacy datasets, DAVIS 2016 dataset

[36], Youtube-Objects dataset [39, 21] and SegTrack v2

dataset [30], as shown in Table 3 and Fig. 4. With the

same parameter settings as before, our algorithm achieves

state-of-the-art results on all three datasets. Note that these

datasets are less challenging comparing to DAVIS 2017 and

the scores tend to be saturated. In Youtube-Objects and

SegTrack v2, there are very few occlusions and appearance

changes among the video sequences and hence temporal

propagation methods like Object Flow [46] can achieve

very high performance. In the more challenging DAVIS

2016 dataset, although there are large appearance changes

and complex deformations in the sequences, distractors and

occlusions are much fewer than those in DAVIS 2017. Most

foreground objects can be correctly identified by CNN-

based methods like OSVOS [13] or its online adaptation

version [48], without any temporal information leveraged.

By taking the advantages from both types of methods (tem-

poral propagation and CNN), our algorithm achieves state-

of-the-art performance on all three datasets.

5. Conclusions

In this paper, we proposed a novel spatio-temporal MRF

model for video object segmentation. By performing infer-

ence in the MRF model, we developed an algorithm that

alternates between a temporal fusion operation and a mask

refinement feed-forward CNN, progressively inferring the

results of video object segmentation. We demonstrated the

effectiveness of the proposed algorithm through extensive

experiments on challenging datasets. Different from pre-

vious efforts in combining MRFs and CNNs, our method

explores the new direction to embed a feed-forward pass of

a CNN inside the inference of an MRF model. We hope that

this idea could inspire more future work.
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