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Abstract

We propose a framework based on Generative Adver-

sarial Networks to disentangle the identity and attributes

of faces, such that we can conveniently recombine differ-

ent identities and attributes for identity preserving face

synthesis in open domains. Previous identity preserving

face synthesis processes are largely confined to synthesiz-

ing faces with known identities that are already in the train-

ing dataset. To synthesize a face with identity outside the

training dataset, our framework requires one input image

of that subject to produce an identity vector, and any oth-

er input face image to extract an attribute vector capturing,

e.g., pose, emotion, illumination, and even the background.

We then recombine the identity vector and the attribute vec-

tor to synthesize a new face of the subject with the extracted

attribute. Our proposed framework does not need to anno-

tate the attributes of faces in any way. It is trained with an

asymmetric loss function to better preserve the identity and

stabilize the training process. It can also effectively lever-

age large amounts of unlabeled training face images to fur-

ther improve the fidelity of the synthesized faces for subjects

that are not presented in the labeled training face dataset.

Our experiments demonstrate the efficacy of the proposed

framework. We also present its usage in a much broader set

of applications including face frontalization, face attribute

morphing, and face adversarial example detection.

1. Introduction

Realistic face image synthesis has many real-world ap-

plications, such as face super-resolution, frontalization, and

morphing, among others. With the emergence of deep gen-

erative models, such as the Generative Adversarial Net-

works (GAN) [10] and the Variational Auto-encoder [16],

we have made tremendous progress in building deep net-

works for synthesizing realistic faces [34, 19, 33, 19]. How-

ever, identity preserving face synthesis remains a challenge,

especially when the identity of the face is not presented a-

mong the training face images.

Many previous works have attempted to synthesize face
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Figure 1. Our method can disentangle identity and attributes from

a single face image. With the extracted identity and attributes from

two input images A and B, we can generate two new face images

A
′ and B

′ by recombining the identities and attributes.

images of a specific person. For example, TP-GAN [14]

and FF-GAN [36] attempt to synthesize the frontal view of

a face from a single face image. DR-GAN [33] can change

the pose of an input face image. However, these methods

can only manipulate limited types of attributes, such as pos-

es. These methods also require full annotation of attributes

for training the models. More recent work, such as CVAE-

GAN [4], can produce a variety of attribute changes. Nev-

ertheless, it is not able to synthesize a face with an identity

outside the training dataset.

In view of the limitation of CVAE-GAN, we attempt to

solve the problem of open-set identity preserving face syn-

thesis. Our goal is to be able to synthesize face images with

any specific identity, no matter if the identity is presented

in the training dataset or not. To synthesize a face with an

identity outside the training dataset, we require one input

image of that subject to prodce an identity vector, and any

other input face image to extract an attribute vector captur-

ing, e.g., pose, emotion, illumination, and even background.

We then combine the identity vector and the attribute vector

to synthesize a new face of the subject with the extracted

attribute.

To this end, we propose a framework based on Gener-

ative Adversarial Networks to disentangle identity and at-

tributes given a face image, and recombine different iden-

tities and attributes for identity preserving face synthesis.
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As shown in Figure 2, our framework has five parts: 1) an

identity encoder network I to encode the identities of sub-

jects; 2) an attribute encoder network E to extract attributes

of any given face image; 3) a generator network G to syn-

thesize a face image from a combined input of identity and

attributes; 4) a classification network C to preserve the i-

dentity of the generated face; and 5) a discriminate network

D to distinguish real and generated examples. These five

parts are trained end-to-end.

In this framework, we propose a new, simple yet elegant

way to extract the attributes of an input face image. The pro-

posed framework does not need to annotate the attributes of

the faces at all. We use two loss functions: 1) a reconstruc-

tion loss of the attribute image, and 2) a KL divergence loss

defined on the attribute vector. These functions enforce that

network A extracts the attribute information.

We take full advantage of recent advancements in face

recognition, and use the softmax loss on top of network I
to encode the identity into an attribute independent vector

representation. Therefore, in order to reconstruct the in-

put, network A is forced to extract the attribute information.

Meanwhile, we add a KL divergence loss to regularize the

attribute vector, such that it dose not contain identity infor-

mation.

Inspired by the CVAE-GAN [4], we adopt a new asym-

metric loss function. More specifically, we adopt a cross-

entropy loss when training the discriminative network D,

and the classification network C, and use a pairwise fea-

ture matching loss when updating the generative network

G. This does a better job of preserving the identity while

stabilizing the training process.

Last but not least, the proposed framework enables us

to effectively leverage large amounts of unlabeled training

face images to further improve the fidelity of the synthe-

sized faces for subjects that are not presented in the labeled

training face dataset. These unlabeled data can increase

intra-class and inter-class variation of the face distribution-

s, and hence improve the diversity of the synthesized faces.

As a result, the generated faces present larger changes in

pose and expression.

Our experiments demonstrate the efficacy of the pro-

posed framework. We also show that our model can be

applied to other tasks, such as face frontalization, face at-

tribute morphing and face adversarial examples detection.

2. Related Work

We briefly summarize the most related works, ranging

from general literature of deep generative models to more

specific models on face synthesis.

There have been many recent development on deep gen-

erative modeling, including deterministic generative model-

s [9, 29], Generative Adversarial Networks (GAN) [10, 26],

Variational Auto-encoders (VAE) [16, 30], and autoregres-

sion networks [18], to list a few. Among them, the most

popular one is perhaps GANs [10, 26].

Many variants of GANs have been proposed to improve

the stability of training process [31, 3, 5]. Meanwhile, there

are also many works that have added condition informa-

tion to the generative network and the discriminative net-

work for conditional image synthesis. The condition infor-

mation could be a discrete label [24, 7, 4, 19], a reference

image [22, 8, 37], or even a text sentence [28, 38, 8].

Due to its abundant useful applications, the face is a ma-

jor focus of image generation. Antipov et al. [1] propose

a variant of GANs for face aging. Li et al. [21] propose

a method for attribute-driven and identity-preserving face

generation. However, the attribute is only limited to some

simple ones. TP-GAN [14] adopt a two-pathway generative

network to synthesize frontal faces. Both DR-GAN and TP-

GAN obtained impressive results on face frontalization, but

they need to explicitly label the frontal faces.

Prior work also explores disentangled representation

learning. For example, the DC-IGN [17] uses a variational

auto-encoder based method to learn the disentangled pre-

sentation. However, DC-IGN needs to fix one attribute in

one batch training, which also needs explicit annotations of

the attributes. Luan et al. [33] proposed DR-GAN to learn a

generative and discriminative representation, which explic-

itly disentangles the pose leveraging the pose annotations.

In contrast, this paper proposes an Identity Preserving

Generative Adversarial Network framework, which does

not require any attribute annotations. This framework dis-

entangles the identity and attributes representations, and

then uses different recombinations of representations for i-

dentity preserving face synthesis. This disentaglement al-

lows us to synthesize faces with identities outside what is

presented in the training datasets. This addresses a serious

limitation of a previous deep generative model-based iden-

tity preserving face synthesis method [4]. It simply can not

generate faces of identities outside the training dataset.

3. Identity Preserving GANs

In this section, we introduce our face synthesis networks.

To synthesize a face of any specific identity, our framework

requires two input images, i.e., one input image xs of a cer-

tain subject identity, and another input image xa to extract

the attributes, e.g., pose, emotion, illumination, and even

background. Our network synthesizes a new face image x′

of the subject with the extracted attributes.

As show in Figure 2, our framework is based on Gen-

erative Adversarial Networks. It contains five parts: 1) the

identity encoder network I; 2) the attributes encoder net-

work A; 3) the generative network G; 4) the classification

network C; and 5) the discriminative network D. The func-

tion of the network I is to extract the identity vector fI(x
s)

from the subject image xs. The network A is adopted to
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Figure 2. Framework overview: we train a face synthesis network to disentangle identity and attributes from face images and recombine

them differently to produce result x′, which uses the identity of xs and attributes of xa. The input/output are drawn with solid lines. The

loss functions are drawn with the dashed lines.

extract the attribute vector fA(xa) of the attributes image

xa.

The network G generates a new face image x′ us-

ing the combined identity vector and attribute vector

[fI(x
s)T ,fA(xa)T ]T . The network C and the network

D are only included in the training phase. The network

C is used to preserve the identity by measuring the poste-

rior probability P (c|xs), where c is the subject identity of

xs. The discriminative network D distinguishes between

real and generated examples.

As we do not want to annotate the attributes, extracting

the attribute vector from a face image poses a challenge. In

the following sections, we first introduce our method of dis-

entangling the identity vector and the attribute vector from

a face image in Section 3.1. Then, in Section 3.2, we intro-

duce an asymmetric training method to generate identity-

preserving and realistic face images, and to make the train-

ing process more stable.

In Section 3.3, in order to further improve the fidelity

of the synthesized faces for subjects that are not presented

in the labeled training face dataset, we use an unsupervised

learning method with a large amount of unlabeled training

images. Finally, in Section 3.4, we analyze the objective

function of the proposed method and provide the implemen-

tation details of the training pipeline.

3.1. Disentanglement of Identity and Attributes

In this section, we introduce the technical details of dis-

entangling the identity vector and the attribute vector using

network I and network A, respectively. In our training da-

ta, we only have the annotation of the identity of each face,

without any annotation of the attribute information. This is

because face images with category annotations are relative-

ly easy to obtain. Many large datasets are publically avail-

able, such as the FaceScrub [25], CASIA-WebFace [35] and

MS-Celeb-1M [12] datasets. However, the annotation of at-

tributes is often more difficult, and sometimes even impos-

sible, such for illumination and the background.

Extracting the identity vector is relatively straightfor-

ward. Here, we take full advantage of recent improve-

ment in face recognition. Given a set of face images with

the identity annotation {xs
i , ci}, we use the softmax loss

for training network I to perform face classification task.

Therefore, the same individuals have approximately the

same feature which can be used as the identity vector. For-

mally, the loss function of the network I is

LI = −Ex∼Pr
[logP (c|xs)], (1)

where P (c|xs) represents the probability of xs having i-

dentity c. Then, we use the response of the last pooling

layer of I as the identity vector.

In order to train network A in a fully unsupervised man-

ner to extract the attribute vector. We propose a new, simple

yet elegant way to extract the attributes of each face. In

the training process, we consider two loss functions: recon-

struction loss and KL divergence loss.

Reconstruction loss. Here we have two situations: whether

subject image xs is the same as attribute image xa or not.

In both cases, we require the result image x′ to reconstruct

attribute image xa, but with different loss weight. Formally,

the reconstruction loss is

LGR =











1

2
||xa − x′||22 if xs = xa

λ

2
||xa − x′||22 otherwise

, (2)

where λ is the reconstruction loss weight. Next, we analyze

the reconstruction loss under these two situations.

When subject image xs is the same as attribute image

xa, output x′ must to be the same as xs or xa. Suppos-

ing there are various face images of an identity, the iden-

tity vector fI(x) is almost the same for all samples. But

the reconstruction using the fI(x) and fA(x) of different

samples are all different. Therefore, the reconstruction loss

will force the attribute encoder network A to learn different

attributes representation fA(x).
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When subject image xs and attribute image xa are dif-

ferent, we do not know exactly what the reconstructed result

should look like; but we can expect the reconstruction to be

approximately similar to the attribute image xa, such as the

background, overall illumination, and pose. Therefore, we

adopt a raw pixel reconstruction loss with a relatively small

weight to maintain the attributes. We set λ = 0.1 in our

experiments. As expected, a large λ causes poor results. we

further demonstrate this in the supplementary material due

to space limits.

KL divergence loss. To help the attributes encoder net-

work learn better representations, we also add a KL diver-

gence loss to regularize the attribute vector with an appro-

priate prior P (z) ∼ N(0, 1). The KL divergence loss will

limit the distribution range of the attribute vector, such that

it dose not contain much identity information, if at all. For

each input face image, the network A outputs the mean µ

and covariance of the latent vector. We use the KL diver-

gence loss to reduce the gap between the prior P (z) and the

learned distributions, i.e.,

LKL =
1

2
(µTµ+

J
∑

j−1

(exp(ǫ)− ǫ− 1)), (3)

where j denotes the j-th element of vector ǫ. Similar to

the Variational Auto-encoder [16], we sample the attribute

vector using z = µ + r ⊙ exp(ǫ) in the training phase,

where r ∼ N(0, I) is a random vector and ⊙ represents

the element-wise multiplication.

3.2. Asymmetric Training for Networks G, C, and
D

After extracting the identity vector fI(x
s) and attribute

vector fA(xa), we concatenate them in the latent space and

feed the combined vector, z = [fI(x
s)T ,fA(xa)T ]T in-

to the network G to synthesize a new face image. In this

section, we introduce our asymmetric training method. It

can generate identity-preserving and realistic face images,

which also makes the training process more stable.

Similar to GANs, the generative network G competes

in a two-player minimax game with the discriminative net-

work D. Network D tries to distinguish real training data

from synthesized data, while network G tries to fool the net-

work D. Concretely, network D tries to minimize the loss

function

LD = −Ex∼Pr
[logD(xa)]− Ez∼Pz

[log(1−D(G(z))],
(4)

However, if the network G directly attempts to maximize

LD as the traditional GAN, the training process of network

G will be unstable. This is because, in practice, the distri-

butions of “real” and “fake” images may not overlap with

each other, especially at the early stages of the training pro-

cess. Hence, network D can separate them perfectly. That

is, we always have D(xa)→ 1 and D(x′)→ 0, as a result,

LD → 0. Therefore, when updating the network G, the

gradient ∂LD/∂G → 0. This causes gradient vanishing.

Recent works [2, 3] also theoretically analyze the gradient

vanishing problem in training GANs.

To address this problem, inspired by CVAE-GAN [4], we

propose a pairwise feature matching objective for the gen-

erator. To generate realistic face image quality, we match

the feature of the network D of real and fake images. Let

fD(x) denote features on an intermediate layer of the dis-

criminator, then the pairwise feature matching loss is the

Euclidean distance between the feature representations, i.e.,

LGD =
1

2
||fD(x′)− fD(xa)||22. (5)

In our experiment, for simplicity, we choose the input of the

last Fully Connected (FC) layer of network D as the feature

fD.

Meanwhile, classification network C tries to classify

faces of different identities, meaning it tries to minimize the

loss function

LC = −Ex∼Pr
[logP (c|xs)]. (6)

In order to generate identity-preserving face images, we al-

so use pairwise feature matching to encourage x′ and xs

to have similar feature representations in network C. Let

fC(x) denote features produced from an intermediate layer

of the classification network C. The feature reconstruction

loss is the Euclidean distance between feature representa-

tions, i.e.,

LGC =
1

2
||fC(x′)− fC(xs)||22. (7)

Here, we choose the input of the last FC layer of network C
as the feature for simplicity. We also try to combine features

of multiple layers, it only marginally improves the ability to

preserve the identity of network G. network C and network

I can share the parameters and be initialized by a pretrained

face classification network to speed up the convergence.

3.3. Unsupervised Training

Generating face images of identities which are not pre-

sented in the labeled training dataset remains a challenge. It

requires the generative network to cover all intra-person and

inter-person variations. Existing publically available train-

ing datasets with labeled identities are often limited by size,

usually do not contain extreme poses or illuminations. In

other words, they are not diverse enough.

To solve this problem, we randomly collect about 1 mil-

lion face images from flicker and Google, and use a face

detector to locate the face region. These images have much

larger variation, and hence are much more diverse than any

existing face recognition datasets. We add these data into
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Net I A G D C

Loss LI LKL, LGR LGR, LGC , LGD LD LC

Table 1. Networks and their related loss function.

the training dataset, and perform an unsupervised training

process to help train our generative model to better synthe-

size face images that do not appear in the training set.

These unlabeled images can be used either as the sub-

ject image xs or the attribute image xa. When used as the

attribute image xa, the whole training process remains un-

changed. When used as the subject image xs, since it does

not have a class label, we ignore the loss function LI and

LC . In other words, since networks I and C are fixed, we

update the other parts of the end-to-end framework.

These unlabeled data can increase intra-class and inter-

class variation of the face distributions, hence improving the

diversity of the synthesized faces. As a result, the generated

faces present larger changes in poses and expressions. We

demonstrate this in the experiments.

3.4. Overall Objective Function

The final synthesis loss function is the sum of all the loss-

es defined above in Equation 1 - 7. Although there are many

loss functions, as shown in Table 3.4, each network relates

to only one part of the loss function. Therefore, our frame-

work is easy to train and does not need to balance the vari-

ous loss functions.

In the training phase, we separate each iteration into two

steps: one step for the reconstruction process when xs =
xa and one step for the transformation process when xs 6=
xa. The details of the training algorithm are described in

Algorithm 1.

4. Experiments

We use a subset of the MS-Celeb-1M [12] dataset, which

contains about 5M images of 80K celebrities for training.

For each face image, we first detect the facial region with

the JDA face detector [6], and then align and resize it to

128× 128 pixels.

For networks I , C, and A, we use the same VGG net-

work [32] structure. Meanwhile, I and C share parameters

in the training stage to speed up convergence. For network

G, it is an inverse VGG structure. Its pooling layers are

replaced by upsampling layers, and the convolution layer-

s are replaced with deconvolution layers. For network D,

we use the same discriminative network structure as the

DCGAN [26]. The batch normalization [15] layer is al-

so applied after each convolution and deconvolution layer.

The model is implemented using the deep learning toolbox

Torch.

4.1. Analysis of the Proposed Framework

In this section, we perform an ablation study of our

framework, sweeping loss combinations and different train-

Algorithm 1 Two training process strategy. θI , θA, θG, θD,

and θC are the initial parameters of networks I , A, G, D,

and C. iter ← 1.

while θG not converaged do

Sample xs, c a batch from the dataset;

if iter%2 = 1 then

// Training at reconstruction process

λ← 1
xa ← xs

else

// Training at transformation process

Sample xa, c a batch from the dataset;

λ← 0.1
end if

LI ←−log(P (c|xs))
LC ←−log(P (c|xs))
fI(x

s)← I(xs); fA(xa)← A(xa)
LKL ←KL(fA(xa)||P (z))
x′← G([fI(x

s)T ,fA(xa)T ]T )
LD ←−(log(D(xa)) + log(1- D(x′)))
LGR ←

1

2
||xa − x′||22

LGD ←
1

2
||fD(xa)− fD(x′)||22

LGC ←
1

2
||fC(xs)− fC(x′)||22

θI
+
←− −∇θI (LI)

θC
+
←− −∇θC (LC)

θD
+
←− −∇θD (LD)

θG
+
←− −∇θG(λLGR + LGD + LGC)

θA
+
←− −∇θA(λLKL + λLG)

iter← iter + 1
end while

ing strategies to understand how each component works in

our framework. Both quantitative and qualitative results are

reported.

We compare five variations of our framework: 1) remov-

ing the loss LGD; 2) removing the loss LGC ; 3) training

without the transformation training process (denoted as w/o

T ); 4) training without the unsupervised learning (denoted

as w/o U ); 5) our best model with all components. The net-

work structure and training strategy remain the same for all

settings.

To quantitatively evaluate our framework, we conduct t-

wo face identification experiments to compare the perfor-

mance of each setting. For identities that are appeared in

datasets, We randomly pick 10K identities form the MS-

Celeb-1M [12] dataset, each with six photos, one for gallery

and five for queries. None of these photos are in our train-

ing data. For each person, we generate 5 images using the

queries and 5 randomly selected attribute images. Then we

use the generated image to find the most similar faces in the

gallery, and measure the top-1 accuracy.
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w/o 

w/o T

w/o U

(a) identity (b) attributes

(d) transformation results(c) methods

w/o 

ours best

Figure 3. Qualitative comparison between different generative

models using different loss combinations and training strategies.

Method original

data

w/o

LGC

w/o

T

w/o

LGD

w/o

U

ours

best

Top-1 acc 87.39 5.71 79.19 80.52 80.24 81.11

Table 2. Model comparison: Top-1 identification rates (%) on the

MS-Celeb-1M [12] dataset.

For identities that are not appeared in the datasets, We

use the Multi-PIE dataset. We choose 6 kinds of attributes

from Multi-PIE dataset. Then for each person in the dataset,

faces with one kind of attributes are set as the galleries,

queries are the original face images and the generated im-

ages with the rest kinds of attributes.

In Table 2 and Table 3, we report the face identification

top-1 accuracy of each setting. All components can improve

the identity preserving capability of the framework. Among

them, the LGC contributes the most. Meanwhile, we also

measure the top-1 accuracy using the real query image, Our

generated images achieves comparable results.

Figure 3 illustrates the qualitative results of four variants.

We can observe that removing the transformation training

process cause the generated results lose attribute details, e-

specially the emotion. Removing the loss LGD will cause

the generated image to be blurry. Removing the loss LGC ,

the generated samples cannot keep the identity information.

The results generated by our full model achieves better re-

sults. After using unlabeled data for the unsupervised learn-

ing, our model can generate images with larger variations.

For example, as the bottom left image shown in Figure 3,

the mouth can be opened wider.

4.2. Function of KL Divergence Loss

In this section, we will verify whether the KL diver-

gence loss is able to help to remove the identity informa-
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Figure 4. Analysis of KL divergence loss. The attribute vector

learned with KL gets a lower top-1 accuracy.

Method original

data

w/o

LGC

w/o

T

w/o

LGD

w/o

U

ours

best

Top-1 acc 97.47 11.76 95.47 95.53 96.41 96.80

Table 3. Model comparison: Top-1 identification rates (%) on

Multi-PIE dataset.

tion in the attribute vector. We first train two models with

and without the KL divergence loss, respectively. Then, we

conduct the experiment using the FaceScrub [25] dataset.

We randomly split these faces into two parts, one for train-

ing and the other for validation. For each setting, we use the

network A to extract the attribute vector for all the faces in

the Facescrub dataset. We then use a multilayer perceptron

(MLP) to train a classification model to distinguish the face

features of different identities in the training set. We also

test the top-1 accuracy on the validation set.

The results are presented in Figure 4. We can see that

in the validation set, the attribute vector learned using KL
loss has the lower top-1 accuracy, which means that it con-

tains less identity information. It validates that the KL di-

vergence loss is able to help network A to remove identity

information in the attribute vector.

4.3. Face Attributes Transformation

This section presents the results of face attribute trans-

formation. The goal of face attribute transformation is to

generate an image x′ that combines the identity of a in-

put face xs and the attributes of another input face xa. To

demonstrate that our framework has the ability to generate

faces with identities that do not exist in the training dataset,

we conduct two experiments: generating face images of i-

dentities inside or outside the training dataset, respectively.

Figure 5 presents the face synthesis results of the iden-

tities that appeare in the training dataset. Our method per-

forms well in face synthesis, preserving both identity and

attributes.

Another important feature of our method is that it can

synthesize unseen faces from the training set. Figure 6

shows the zero-shot identity face synthesis results. Al-

though our model never see these identities, but we can also

generate high quality face images which keep the identity

and attributes of the given faces.

In Figure 7, we show that our framework can also be
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(a) identities

(b) attributes

(c) transformation results

Figure 5. Face synthesis results using the identities that appear in training dataset and randomly chosen images as attributes.

(a) identities

(b) attributes

(c) transformation results

Figure 6. Face synthesis results using the zero-shot identities and randomly chosen images as attributes.

(a) LFW (b) Ours (c) [14] (d) [39] (e) [13]

Figure 7. Face frontalization results on LFW datasets. Results of

other methods are from [14].

used for face frontalization. The results of other methods

are from paper [14]. Unlike other methods our framework is

not trained using pose annotations. With a frontal face as the

input image to extract attributes, our framework can gener-

ate identity preserving frontal faces. Compared with [14],

the advantage of our method is that we are able to keep the

lighting and skin color.

4.4. Face Attributes Morphing

In this part, we validate that the attribute in the generat-

ed images will continuously change with the latent vector.

We call this phenomenon attribute morphing. We test our

model on the Multi-PIE [11] dataset. We first select a pair

of images x1 and x2, and then extract the attribute vector

z1 and z2 using the attribute network A. Then, we obtain

a series of attribute vectors z by linear interpolation, i.e.,

z = αz1 + (1 − α)z2, α ∈ [0, 1]. Figure 8 presents the

results of face attribute morphing. We can gradually change

the pose, emotion, or lighting. For more results, please refer

to the supplementary material.

4.5. Face Adversarial Example Detection

Deep network based face verification systems have been

widely used in surveillance and access control. However,

the existence of adversarial examples puts the security or

safety of these systems at risk. In this experiment, we show

that our framework can be used for face adversarial example

detection without any modification.
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(a) identities (b) attributes (d) attributes(c) morphing results

Figure 8. Face morphing results using unseen identities between two attributes. Our framework can gradually change pose, emotion, and

lighting.

For face verification, given two faces, we first extract the

features for the two faces using a pretrained face classifi-

cation DNN model. Then, we calculate the distance of the

two features, and compare it to a threshold. If the feature

distance is smaller than the threshold, they are predicted to

have the same identity, and vice versa.

Supposing two faces x1 and x2 have different identi-

ties, we can find imperceptible perturbations r, such that

x1 + r will be regarded as the same person as x2 using the

above face verification system. Here, x1 + r is the adver-

sarial sample. To find an adversarial sample, we optimize

the problem.

min‖r‖22

s.t.‖fC(x1 + r)− fC(x2)‖
2
2 < θ,

(8)

Where fC is the extracted feature from the pretrained net-

work, and θ is the predefined threshold.

As shown in Figure 9, (a) and (c) are the two inputs x1

and x2, and (b) is the adversarial example x1 + r. Since

the adversarial examples have similar identity features with

others faces, if we reconstruct the image from the feature

using the proposed framework, it will generate an image of

the other person. (e). The adversarial example and its re-

construction clearly have different identities. Based on this

observation, we can use our generative model to reconstruct

the faces, and compare the identity of the original faces and

the reconstruction results to identify adversarial examples.

We use the LFW [20] to conduct the experiments. For

each of the 3000 pairs of different identities, we gener-

ate two adversarial examples by performing adversarial at-

tacks with each other. In total we obtain 6000 adver-

sarial examples for each predefined threshold. Here, we

choose four different thresholds to conduct the experiments:

[0.4, 0.6, 0.8, 1]. At the same time, we have 6000 source

images and their reconstruction. Although we can train an-

other neural network to distinguish adversarial and source

examples [23], the problem is that this neural network can

be attacked again. Instead, we use the LBP [27] feature.

We extract LBP features from the input and its reconstruc-

tion image and then concatenate them. Finally, we train a

linear SVM to conduct binary classification. The results are

(a) (b) (c)

(d) (e) (f)

Figure 9. Adversarial example detection in face verification sys-

tems. (a) is the source image, (b) is the adversarial example which

aims to attack face image (c). (d), (e) and (f) are the reconstruc-

tion results from our framework. We can clearly observe that al-

though the adversarial example shares a similar appearance with

the source image, their reconstruction results have different ap-

pearances.

threshold 1.0 0.8 0.6 0.4

acc 76.73% 82.58% 87.18% 92.41%
Table 4. Results of adversarial examples detection at differen-

t thresholds.

shown in Table 4, we can achieve 92.41% accuracy if we

require the feature distance to be less than 0.4.

5. Conclusion

In this paper, we propose an Open-Set Identity Preserv-

ing Generative Adversarial Network framework for disen-

tangling the identity and attributes of faces, synthesizing

faces from the recombined identity and attributes. The

framework shows superior performance in generating real-

istic and identity preserving face images, even for identities

outside the training dataset. Our experiments demonstrate

that our framework can also be applied to other tasks, such

as face image frontalization, face attribute morphing, and

adversarial example detection in face verification systems.

In future work, we hope to explore whether our framework

can be applied to other datasets, like birds, flowers, and ren-

dered chairs.
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