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Abstract

This paper considers a learnable approach for compar-

ing and aligning videos. Our architecture builds upon and

revisits temporal match kernels within neural networks: we

propose a new temporal layer that finds temporal align-

ments by maximizing the scores between two sequences

of vectors, according to a time-sensitive similarity metric

parametrized in the Fourier domain. We learn this layer

with a temporal proposal strategy, in which we minimize a

triplet loss that takes into account both the localization ac-

curacy and the recognition rate.

We evaluate our approach on video alignment, copy de-

tection and event retrieval. Our approach outperforms the

state on the art on temporal video alignment and video copy

detection datasets in comparable setups. It also attains the

best reported results for particular event search, while pre-

cisely aligning videos.

1. Introduction

Thanks to the success of neural networks and the avail-

ability of large annotated collections of images like Im-

agenet [4] and COCO [23], we have recently witnessed

drastic improvements on many core computer vision prob-

lems, such as image classification [22, 14] and segmenta-

tion [13]. The analysis of videos has largely benefited from

this game-changing adoption of neural networks, in partic-

ular by exploiting state-of-the-art image networks. Cur-

rent methods for tackling video-related tasks mostly rely

on the trunk of neural network architectures trained on im-

ages [32, 34, 9, 21].

Many attempts to exploit the temporal axis of videos

within neural architectures have been proposed. These ap-

proaches typically extract information at the frame level and
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Figure 1: We present a learnable temporal layer that com-

pares and precisely aligns videos by means of multi-period

temporal kernels parametrized in the Fourier domain.

subsequently enforce or mesure the temporal consistency.

For instance, Kang et al. [21] propose a temporal convolu-

tional network to regularize object detection results. Fer-

nando et al. [9] postulate that a method able to temporally

re-order the frames of a video would be more suitable to

detect the evolution of appearance, and use this supervision

signal to improve action recognition. Diba et al. [5] in-

vestigate different ways of aggregating feature maps from

image-level convolutional neural networks to achieve an

end-to-end learning of a video representation.

On the contrary, only few works consider learning a joint

spatio-temporal representation, like the C3D network [32].

Several difficulties may explain this situation. First, the

amount of temporally-labelled data is limited: for large col-

lections the annotation is provided at the video level only,

or automatically extracted, or both [1]. Second, the num-

ber of parameters to learn a spatio-temporal representation

is generally much larger than for still images. Third, de-

pending on the task, it is not obvious that temporality is at

all useful. For instance, the recent high-profile leaderbord
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competition1 on video understanding was won by a tech-

nique agnostic of temporality [24].

In this paper, we tackle the task of retrieving and align-

ing similar video instances. This problem arises in differ-

ent applications such as copy detection, particular event de-

tection, video editing and re-purposing. In the literature,

one can distinguish the methods offering temporal align-

ment and those discarding the time information, typically

through temporal pooling operations. According to a com-

parative study on copy detection conducted in 2014 [19], the

best methods were relying on local descriptors and frame-

based matching [18], even though temporal alignment is of-

ten needed later, for example to manually verify a copyright

infringement. In contrast, the state of the art for particular

event retrieval [6, 11] exploits a single vector per video.

Similarly, because accurate video alignment requires

matching with a frame-level granularity, methods based on

temporal pooling [8, 32, 10, 25] inevitably introduce some

invariance to small time shifts. They are therefore not ap-

propriate for achieving high localization accuracy.

In order to preserve the capability to align videos while

offering a competitive recognition accuracy, another line of

research considers Fourier-domain representations, like the

circulant temporal encoding (CTE) [28, 7] inspired by prior

works on tracking with correlation filters [16, 17]. In our

work, we consider the temporal matching kernel (TMK) by

Poullot et al. [26]. This representation consists of com-

plementary periodic encodings of a sequence of frames

into a fixed-sized representation. It provides both an accu-

rate matching and alignment hypothesis, and outperforms

CTE [28] in terms of alignement accuracy.

An advantage of TMK is that it disentangles the visual

and temporal aspects while keeping the temporal consis-

tency. Our proposal revists temporal match kernels in the

context of a neural network. More specifically, we propose

a temporal layer inspired by TMK [26]. The design is mod-

ified and the parameters are learned with a supervision sig-

nal that takes into account both the matching quality and the

precision of the alignement. This is in contrast to the orig-

inal technique, where the parameters are hand-crafted by a

choice of a specific kernel (Von Mises). To train our layer,

we adopt a temporal proposal strategy providing both pos-

itive and negative examples. The learning is performed on

both real and synthetic data simulating temporal and visual

attacks undergone by videos for our different tasks.

As a complementary contribution, we provide guidelines

for tuning the hyper-parameters, in particular the design of

better complementary elementary kernels. This, by itself,

provides a significant boost, leading us to outperform the

state of the art for temporal video alignment, copy detection

and event retrieval on the public benchmarks Madonna [7],

Climbing [7], VCDB [19] and EVVE [28].

1https://www.kaggle.com/c/youtube8m/leaderboard

The rest of this paper is organized as follows. After re-

viewing the fundamentals of temporal match kernels in Sec-

tion 2, we introduce our approach in Section 3 and evaluate

it in Section 4.

2. Related work and Temporal kernels

For a given video to describe, we consider a sequence

of frame descriptors extracted at distinct timestamps T =
{t1, . . . , ti, . . . }. Each frame fi is represented as a tuple

(xi, ti), where xi is a d-dimensional vector and ti denotes

the scalar timestamp of the frame. The frame descriptor

xi is typically obtained by post-processing hand-crafted or

CNN-based representations. We assume that the frame de-

scriptors are ℓ2-normalized and are compared with inner

products, or equivalently with the cosine similarity.

Joint frame and timestamp encoding. We consider a ker-

nel function between frames descriptors such that the simi-

larity between a pair of descriptors takes into account their

absolute position in time. This operation is commonly re-

ferred to as a modulation. Formally, it amounts to defining

a kernel between frame descriptors x and x
′ with respective

timestamps t and t′ as

k ((x, t), (x′, t′)) = 〈x,x′〉kt(t, t′) (1)

= 〈x,x′〉ϕ(t)⊤ϕ(t′), (2)

where ϕ(·) is a feature map function approximating the ker-

nel kt between timestamps, which lowers the similarity be-

tween frames that are distant in time. By convention, we

set kt(t, t
′) = 0 if t or t′ are outside the range of the valid

timestamps for the two videos. Further algebraic manipula-

tion reveals that this kernel can be expressed as

k((x, t), (x′, t′)) = (x⊗ ϕ(t))
⊤
(x′ ⊗ ϕ(t′)) , (3)

where ⊗ is the Kronecker product. Therefore, we describe

the tuple (xt, t) by a single feature vector, namely xt⊗ϕ(t).

Temporal match kernel. Given two videos represented by

the sequences of frame descriptors X = {(xi, ti)}i and

X
′ = {(x′

j , t
′
j)}j , we consider the temporal kernel

Kδ(X,X′) =
∞∑

i=0

∞∑

j=0

k((xi, ti), (x
′
j , t

′
j + δ)), (4)

that compares the videos on a frame-by-frame basis, assum-

ing that the videos are shifted in time by the duration δ.

With Eqn. 3, this kernel is subsequently re-written as

Kδ(X,X′) =
( ∞∑

i=0

xi ⊗ ϕ(ti)

︸ ︷︷ ︸

ψ0(X)

)⊤( ∞∑

j=0

x
′
j ⊗ ϕ(t′j + δ)

︸ ︷︷ ︸

ψδ(X′)

)

,

(5)
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where ψ0(X) is the descriptor associated with the first

video, and ψδ(X
′) is the descriptor associated with the sec-

ond video and re-mapped to the new time origin δ.

In the temporal match kernel from Poullot et al. [26],

kt is expressed by means of a Fourier approximation with

period T and M coefficients. In this case, the feature vector

representing a video can be written as

ψ0(X) =
[
V ⊤
0 , V

⊤
1,c, V

⊤
1,s, ..., V

⊤
M,c, V

⊤
M,s

]⊤
, (6)

where:

V ⊤
0 =

√
a0

∑

ti∈T
xi (7)

V ⊤
m,c =

√
am

∑

ti∈T
xi cos (2mπti/T ) (8)

V ⊤
m,s =

√
am

∑

ti∈T
xi sin (2mπti/T ) , (9)

where am are the coefficients of the Fourier series. If T
consists of evenly-spaced timestamps2, this is equivalent to

taking the Fourier transform of the input time series with

period T and convolving it with ϕ(t). It leads to a feature

vector with dimensionality d× (2m+ 1).

Alternative choices for ϕ exist. For instance, this kind of

kernel approximation was first defined with random Fourier

features [27]. Vedaldi and Zisserman [33] show that ex-

plictly using the Fourier decomposition gives a much better

approximation of shift-invariant kernels. By departing from

the Fourier basis, Chum [3] shows how to learn sparse fea-

ture maps improving the compromise between the number

of coefficients and the approximation of a kernel.

Trigonometric polynomial of scores. At this stage, ψ0(X)
is a representation of the video. The first component V0
is the average frame descriptor and can be used to directly

compare two videos, in this case discarding the temporal

information. Yet one of the strength of the chosen kernel-

ization is that it keeps a latent variable and allows the maxi-

mization of the kernel w.r.t. this variable. This property was

first exploited by Tolias et al. [30] when aggregating local

descriptors. Bursuc et al. [2] exploit it to define a kernel lo-

cal descriptor that automatically adjust the orientation and

scale to maximize the matching score when provided with

two candidate descriptors.

In our context, the latent variable is the relative time off-

set between the two videos. Consider a given alignment hy-

pothesis and two videos X and X
′: the similarity between

2For typical choices of the kernel ϕ, one can use unevenly-spaced

timestamps, such as those chosen by a frame selection technique. The

method can also compare videos with different frame rates (25 Hz vs

30 Hz). In this paper, the timestamps evenly selected at a frequency of

15 Hz in order to be closer to the setup proposed in the literature [28, 7].

two video sequences is computed, for a given alignment hy-

pothesis, as

Kδ(X,X′) = V ⊤
0 V

′
0

+
M∑

m=1

cos

(
2mπδ

T

)

(V ⊤
m,cV

′
m,c + V ⊤

m,sV
′
m,s)

+

M∑

m=1

sin

(
2mπδ

T

)

(−V ⊤
m,cV

′
m,s + V ⊤

m,sV
′
m,c).

(10)

Therefore, the score as a function of δ is a trigonomet-

ric polynomial of degree M . Evaluating this polynomial at

regular timestamps is efficient and only requires 1+4M dot

products between vectors of dimension d.

Multiple periods. Poullot et al. [26] employ multiple ker-

nels with distinct periods, shorter than the video length, and

take the sum of the kernel scores as the final similarity mea-

sure. This increases localization accuracy while inducing a

large period for the kernel summation.

3. Proposed approach: LAMV

We revisit the temporal match kernel as a global video

descriptor to compute the similarity between videos and

align them temporally. This approach is referred to as

LAMV (Learning to Align and Match Videos). For this, we

transform the kernel into a differentiable layer, and learn the

coefficients of the feature transform by imposing a triplet

loss that jointly takes into account (i) the similarity scores

produced when comparing two videos globally, and (ii) the

temporal alignment accuracy when processing overlapping

videos. The batches on which the loss is evaluated contain

hard negative proposals. We also devise a normalization

strategy that enhances retrieval and alignment performance.

3.1. Overview: Layerizing temporal match kernels

All the operations involved in the computation of scores

produced by the temporal match kernel are differentiable

with respect to their parameters ai, even when using multi-

ple periods. The kernel can be seen as a differentiable layer

that can compute the similarity between two videos. The

Fourier coefficients of the feature map ϕ(·) are parameters

that can be learned by backpropagating a supervision signal

built on the similarity scores.

The LAMV layer can aggregate frame-level features to

compute a video feature vector, and it can then compare two

videos by shifting one of the two descriptors. In this regard,

its structure resambles that of Siamese networks, in which

the same function is applied to two branches, then compared

by a distance function.

Given a set P of periods for which the kernel is com-

puted, each video segment X is encoded by taking a Fourier
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Figure 2: Response of the individual filters (top) when matching a video with a temporally-cropped excerpt of the same

video. The bottom figure shows the combination of the response. The ground truth alignment point is δ∗ = 1000.

transform for each of the periods in P , and subsequently

applying the feature map ϕ(·) according to Eqn. 6. This

process results into a tensor ψ0(X) with dimensionality

d × (2m + 1) × |P|, where one of the axes is along the

different periods.

Two video features are compared for a set of time shifts

{δ0, ..., δi, ...} by taking the dot products of Eqn. 10 for

each period and then summing, resulting in a scalar score

for each shift. Once a loss function Lδ is defined over the

score obtained for a time shit δ, its partial derivative with

respect to the learnable Fourier coefficients of each of the

periods in P are expressed from the derivatives as

δKδ(X,X′)
∂a0

= Ṽ ⊤
0 Ṽ

′
0 (11)

and

δKδ(X,X′)
∂am

= cos

(
2mπδ

T

)

(Ṽ ⊤
m,cṼ

′
m,c+ Ṽ

⊤
m,sṼ

′
m,s)+

+ sin

(
2mπδ

T

)

(−Ṽ ⊤
m,cṼ

′
m,s + Ṽ ⊤

m,sṼ
′
m,c) (12)

where we define Ṽ0 and Ṽm,∗ as V0√
a0

and
Vm,∗√
am

, respectively.

Normalizations. With the aim of reducing the interferences

caused by the strong self-similarity present in videos, we

apply two normalization steps which improve the alignment

and retrieval performance of the descriptor. First, the Ṽ0 and

Ṽm,∗ vectors are ℓ2-normalized, so that ψ0(X) becomes a

concatenation of normalized vectors, each weighted by its

corresponding coefficient. Then, we ℓ2-normalize ψ0(X)
over its frequency axis. The norms computed in this stage

are independent of δ, so the video feature vector ψ0(X) can

be normalized once and then shifted multiple times using

trigonometric polynomials to compute the final scores.

Figure 2 reports an example of the scores obtained at

different time shifts for two matching videos. As it can be

seen, long periods (T = 651s) fail to provide enough local-

ization accuracy, while shorter periods (T = 16.9s) provide

good localization but generate frequent false positives. The

sum of the scores obtained with different periods increases

localization accuracy while avoiding false positives.

3.2. Loss function

Ideally, kernel scores Kδ(·, ·) should be higher for over-

lapping videos and lower for non overlapping videos, so

to enhance the retrieval of similar or overlapping videos.

At the same time, the layer should perform a precise lo-

calization, which corresponds to requiring that the kernel

scores for a pair of overlapping videos are higher near to

the ground truth alignment point, and lower for incorrect

alignment points.

Given a triplet of videos (X0,X+,X−), where X+

overlaps with X0 and X− does not overlap with X0, we

define a retrieval loss that enforces kernel scores to be glob-

ally higher for the overlapping pair than for the non over-

lapping pair. This is done by placing a margin loss between

the maximum of the kernel scores obtained when evaluating

(X0,X+) and (X0,X−):

Lr = max (0,mr +K∗(X0,X−)−K∗(X0,X+)) , (13)

where K∗(X,X′) is the maximum of Kδ(X,X′),
i.e. K∗(X,X′) = maxδ Kδ(X,X′), and mr is the retrieval

margin.

To enforce a correct localization inside the overlapping

pair, instead, we define a localization loss which imposes a

margin between the kernel scores in a neighborhood of the

correct alignment point δ∗, and the kernel scores outside the

neighborhood:

Ll = max(0,ml+KN (δ∗)(X0,X+)−KO(δ∗)(X0,X+)),
(14)

where ml is the localization margin, δ∗ is the ground

truth alignment point, KN (δ∗)(X0,X+) is the maximum

of kernel scores in a neighborhood [δ∗ − r, δ∗ + r], and

KO(δ∗)(X0,X+) is the maximum of kernel scores outside

the neighborhood r.

7807



1 fr.0.1 s 1 s 10 s
Localization error 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Qu
er

ie
s l

oc
al

ize
d 

be
tte

r t
ha

n 

T = [977s]
T = [977s, 651s]
T = [977s, 651s, 293s]
T = [977s, 651s, 293s, 182s]
T = [977s, 651s, 293s, 182s, 69s]

T = [977s, 651s, 293s, 182s, 69s, 36s]
T = [977s, 651s, 293s, 182s, 69s, 36s, 17s]
T = [69s, 17s]
T = [651s, 182s, 69s, 17s]

Figure 3: Fraction of correct alignments as a function of the

acceptance threshold for several combinations of periods.

3.3. Learning with temporal proposals

To learn the parameters of the layer, we exploit a dataset

of video sequences aligned on a global timeline. In this

setting, we know which sequences overlap with which se-

quences, and we can build suitable training triplets.

Overlapping sequences can be very long and using the

entire sequences would result in a reduction of the mini-

batch size (because of GPU memory limitations). On the

other hand, using very short snippets would downgrade the

recognition performance of the layer and create inconsisten-

cies between the train and test phases. The length of training

snippets should be related to the longest period in P . In our

case, we build training triplets made of 500 frames snippets

(which at 15 fps amounts to 33.3 s).

To speed up convergence, we perform negative mining.

At each epoch, we build a training triplet for each pair of

overlapping videos contained in the dataset. The X0 snip-

pet is sampled randomly from one of the two videos, while

the matching snippet X+ is obtained by randomly sampling

a sequence from the other video, with at least a 75% over-

lap with X+. In this way, we guarantee that the ground truth

alignment point is random, and that coefficients of long pe-

riods can be properly learned. To select a hard negative

X−, we sample a random snippet from 20 videos which do

not overlap with X0 and X+, and select the one having the

highest K∗(X0, ·) for the current set of weights.

3.4. Multiple period design

The choice of the periods in P influences both localiza-

tion and recognition, as well as the maximum video length

the network can process. When summing two periodic sig-

nals with periods T1 and T2, the resulting signal is periodic

with period T1 ·T2/gcd(T1, T2), where gcd(·, ·) is the great-

60 50 40 30 20 10 0 10 20 30 40 50 60
t (s)

k t

m=16
m=32
m=64

(a) Cross-correlation kernel (T = 976.9s).

60 50 40 30 20 10 0 10 20 30 40 50 60
t (s)

k t
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T=292.7s
T=182.1s

(b) Kernels in Poullot et al. [26] (M = 16).
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(c) LAMV (M = 16).

Figure 4: Comparison between a cross-correlation kernel,

the temporal kernels proposed in the paper by Poullot et

al. [26] and those learned in LAMV.

est common divisor. To increase the periodicity of Kδ(·, ·)
while preserving a sufficient choice between short and long

periods, periods in P are conveniently selected to be rela-

tively prime. In this case, the period of Kδ(·, ·) is
∏

Ti∈P Ti.

To design the set of periods, we run a coarse grid search

on the Madonna dataset for video alignment. Since no fea-

ture learning is involved, findings can be applied to other

video alignment datasets. Starting with a single long period

(T = 14653 frames, equal to 977s) sufficient to cover the

longest video in the dataset, we subsequently add shorter

and relatively prime periods, by approximately scaling with

a factor of 1.5, and test all combinations.

Figure 3 reports the localization accuracy obtained when

matching each sequence in the dataset to the rest of the

database. Given a query, we use the maximum of kernel

scores K∗
δ(·, ·) as a global similarity score to sort the re-

maining videos in the database, and then select the offset

with the maximum score to compute the localization error.

Starting from the longest period, as shorter periods are

added, the localization accuracy increases monotonically

(solid lines). On the other hand, this increases the size of

the final descriptor, so we investigate the choice of a subset

of periods. Using only short periods leads to precise local-

ization and insufficient recognition (an example is reported

in dashed line), while a combination of short and medium

long periods provides the same performance at a fraction of

the size (solid line with markers). In the rest of the experi-

ments, we will use this combination of four periods.
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Dataset # videos # hours Task

Madonna 165 14.3 aligning/matching

Climbing 89 6.3 aligning

VCDB 528 27 copy detection

VCDB + 100k 100,528 2,000 copy detection

VCD 1,541 6.3 copy detection

YFCC100M 787,000 8,081 training

EVVE 2,995 166 event instance

Table 1: Characteristics of the datasets.

Discussion Figure 4 compares the temporal kernels learned

by our procedure on the Madonna dataset (further details

are provided in Sec. 4), with those employed in TMK [26]

and with a cross-correlation kernel. We report the cross-

correlation kernel using the longest period of TMK, and for

an increasing number of frequencies. For m = 64 this has

the same size as the TMK and our descriptor. While the

limited number of frequencies induces of oscillations in the

cross-correlation kernel, TMK avoids this phenomenon by

using Von Mises kernels which have flat responses out of

the target bandwidth. Kernels learned by LAMV, in con-

trast, have shorter periods and stronger higher-frequency

coefficients, which experimentally shows to be beneficial

for matching and localization.

4. Experiments

We assess the performance of the proposed method on

three settings: temporal video alignment, video copy de-

tection and event retrieval. All can be casted as joint re-

trieval and localization tasks, in which given a query video

we want to retrieve overlapping videos, and precisely local-

ize the query with respect to retrieved videos. In the case of

temporal video alignment, the same action is recorded from

different cameras, while in video copy detection the trans-

formation matching videos is limited to 2D geometric and

photometric distortions. In event retrieval, finally, the same

event is captured in different videos which do not necessar-

ily overlap, making this a more high level context.

4.1. Datasets

Table 1 summarizes the datasets we use. The Madonna

dataset [7] clips are decomposed in segments, and the seg-

ments are temporally aligned on a common timeline. The

image matching involves challenging viewpoint changes

and wildly different frame representations. To build train

and test splits, we identify the connected components inside

the dataset (i.e. sets of sequences that overlap temporally)

and build five folds which do not cross different connected

components. We then use five-fold evaluation on these, and

evaluate the fraction of accurately aligned videos. Similar

to Madonna, the Climbing dataset [7] contains 89 aligned

videos from a rock climbing session. It features only one

connected component, therefore we use it only for testing.

The VCDB dataset for copy detection [19] consists of clips

from sharing sites. They are all copies, possibly partial, of

one of 30 source clips (Kennedy assassination, Titanic fly

scene, etc.). The manual annotation gives the exact extent

of the overlapping part between each pair of the clips. Most

clips are quite easy to match automatically, but there are

also difficult transforms like large overlays or film-from-

screen copies. For evaluation, each clip is matched with all

the remaining, and a segment-level version of precision and

recall is computed, as defined in [19]. An additional set of

100k distractors is also provided by the same authors.

The EVVE dataset [28] contains clips that illustrate one

out of 13 “events”. The events can be news events (Flood in

Thailand), or an event occurring at a specific location (Wed-

ding of Kate and William), or a re-occurring event (eruption

of the Stokkur geyser). The depictions can be exactly the

same (for example, for the wedding, there is a single offi-

cial video), or slightly different (different views of the same

concert), or just have a common topic (the flood) that is hard

to match visually. The evaluation is done with a retrieval

protocol: there is a query/database split of the dataset and

the result is evaluated in terms of mean average precision.

The YFCC100M [29] dataset is a dataset that contains

800,000 videos, whose annotations we ignore. We use it

as a background set for unsupervised training.

Finally, VCD is a synthetic video copy dataset that we gen-

erated for training our layer on vido copy detection and

event retrieval. We combined pairs of videos from from

YFCC100M [29]. One of the videos is used as foreground

and inserted in the other, used as background. The fore-

ground video is clipped to a few seconds, resized and trans-

formed geometrically (rotation, perspective transform, etc.)

and photometrically (convert to gray, low-quality encoding,

etc.) in various random ways. The ground-truth alignment

is recorded. The data and alignment is used to train the

alignment quality on an independent dataset. We split the

dataset in two equal parts for training and validation.

4.2. Implementation details

The video clips are decoded at a fixed frame rate of

15 fps. As frame descriptors, we employ MultiVLAD

whitened descriptors [28] and vanilla RMAC [31]. RMAC

is a pooling layer that extracts bounding boxes from an ar-

bitrary activation map in a CNN stack, and pools them into

a fixed-size vector. The CNN can be fine-tuned [12], but we

found that a pre-trained CNN works just as well in a context

where the type of images to match is not known in advance.

RMAC requires an unsupervised training phase (to find the

PCA matrix), that we train on YFCC100M [29]. In prelim-

inary experiments, we found that extracting RMAC from

the 29th activation map of a Resnet-34 [15] gives the best
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@ 0.1s @ 1s @ 10s

Frame descriptor is MVLAD

CTE (m = 16) 9.6 14.3 14.8

CTE (m = 64) 16.1 35.7 36.5

TMK [26] 11.7 43.5 65.2

LAMV, freq norm. 32.3 67.4 71.3

LAMV, Ṽ norm. 40.0 74.8 76.1

LAMV, Ṽ + freq norm. 47.3 84.7 86.0

Frame descriptor is RMAC

CTE (m = 16) 14.0 33.8 41.0

CTE (m = 64) 22.1 51.4 55.0

TMK [26] 7.7 38.7 73.4

LAMV, freq norm. 28.7 57.8 66.1

LAMV, Ṽ norm. 33.0 68.7 73.0

LAMV, Ṽ + freq norm. 39.6 76.1 82.9

@ 0.1s @ 1s @ 10s

Frame descriptor is MVLAD

CTE (m = 16) 0.0 18.0 32.6

CTE (m = 64) 4.5 37.1 47.2

TMK [26] 2.2 16.9 38.2

LAMV, freq norm. 13.5 32.6 41.6

LAMV, Ṽ norm. 19.1 51.7 61.8

LAMV, Ṽ + freq norm. 20.2 52.8 61.8

Frame descriptor is RMAC

CTE (m = 16) 4.4 10.1 21.3

CTE (m = 64) 7.9 24.7 29.2

TMK [26] 0.0 6.7 32.6

LAMV, freq norm. 7.9 19.1 25.8

LAMV, Ṽ norm. 6.7 33.7 40.1

LAMV, Ṽ + freq norm. 6.7 34.8 42.7

Table 2: Evaluation on the Madonna (left) and Climbing (right) datasets for temporal video alignment. The evaluation

measure the percentage of queries localized better than a threshold (0.1s, 1s, 10s).

F1 score

Temporal Hough voting (SIFT+BoV) [19] 55.0

Temporal network (SIFT+BoV) [19] 60.0

Temporal network (AlexNet) [20] 65.0

TMK (RMAC) [26] 67.4

LAMV, freq norm. 62.8

LAMV, Ṽ norm. 60.0

LAMV, Ṽ + freq norm. 68.7

Table 3: Evaluation on the VCDB dataset for video copy

detection. The evaluation measure is the maximum F1 score

on segment-level precision and recall measures [20].

matching results, so we keep this setting throughout. We

also tested with C3D features [32]. The localization and re-

trieval accuracy was not satisfactory with these techniques.

We build mini-batches with 128 triplets. We combine the

retrieval loss Lr and the localization loss Ll, respectively,

with weights 1/4 and 3/4. The retrieval margin mr is set to

0.01, and the localization margin ml to 0.001. The radius r
is set to 1s. We train the network using SGD with Nesterov

momentum 0.9 and a learning rate of 0.001.

The set of periods P is set to {9767, 2731, 1039, 253},

which, in seconds, correspond to {651s, 182s, 69s, 17s}.

When computing the TMK and the LAMV descriptor, the

number of frequencies M is always set to 16, so to have

comparable descriptor sizes.

4.3. Experimental results

Video alignment. We assess the localization and retrieval

performances of our model on temporal video alignment by

learning on Madonna with five-folds evaluation, and using

MVLAD and RMAC descriptors. For each fold we use each

sequence in the test set as query against the remaining se-

quences in the same set. As in Section 3.4, we use the max-

imum of kernel scores to sort the set, and then select the off-

set with maximum score from the first retrieved sequence.

We compare LAMV against our reimplementations of

TMK [26] and CTE [28] with 16 and 64 frequencies. The

size of our descriptor is equal to that of TMK and of CTE

with 64 frequencies. Table 2 reports the localization er-

rors: our model attains the best localization accuracy using

both descriptors, both for low and high localization errors in

comparable settings. To validate the two stage normaliza-

tion proposed in Section 3.1, we also show the performance

of LAMV when applying both or only one of the two nor-

malizations. Using the combined normalization helps to lo-

calize videos with greater accuracy, and to enhance the re-

trieval capabilities of the layer, as testified by the increased

localization at higher thresholds.

We investigate the generality of the models learned for

temporal video alignment by testing each of them on the

Climbing dataset, which contains a different scenario. Av-

eraged results are reported in Table 2 (right). Our method

obtains a higher localization accuracy and retrieval perfor-

mances when compared to the same baselines, and the ef-

fectiveness of the two-step normalization is confirmed also

in this setting. In Figure 5 we report a sample of challeng-

ing sequences taken from different point of views that are

correctly aligned by our method.

Video copy detection. For video copy detection, we train

on VCD using RMAC features, which show good invari-

ance to copy detection transformations, and test on the

recent VCDB dataset. Results are reported in Table 3.

We compare with our reimplementation of TMK, and with

three state of the art proposals for copy detection: the tem-

poral Hough voting and the temporal network proposed

in [19] on local SIFT descriptors, and temporal network us-
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Figure 5: Examples of a sequence correctly aligned by LAMV on the Climbing dataset. Each column corresponds to

temporally aligned frames (2 frames per second are represented).

Method mean mAP per category

TMK [26] 51.6 65.9 37.5 13.2 43.9 36.3 28.7 22.6 14.4 16.8 29.7 23.6 86.2 65.9

LAMV 53.6 71.5 38.3 15.8 46.1 38.7 27.7 24.7 13.8 22.2 27.3 27.3 90.8 69.1

LAMV + QE 58.7 83.7 50.0 12.6 58.8 45.5 34.3 26.7 14.2 23.0 29.3 21.6 95.0 77.6

Table 4: Evaluation for event retrieval (mAP on EVVE). The ordering of categories is the same as in the EVVE paper [28].

Method Localization mAP

Frame descriptor is MVLAD

MMV [28] 33.4

CTE [28] X 35.2

Stable hyperpooling [6] 36.3

TMK [26] X 33.5

Frame descriptor is RMAC

Mean RMAC 52.9

TMK [26] X 51.6

LAMV, freq norm. X 53.5

LAMV, Ṽ norm. X 51.9

LAMV, Ṽ + freq norm. X 53.6

CGA [11] (AlexNet+ResNet) 52.3

Average query expansion (N1 = 10)

Stable hyperpooling [6] (MVLAD) 38.9

CGA [11] (AlexNet+ResNet) 58.5

LAMV (RMAC) X 58.7

Table 5: Comparison with the state of the art for event

retrieval (mAP on EVVE).

ing AlexNet features [20]. Temporal Hough voting aligns

matched frames by means of a temporal Hough transform,

while the temporal network uses a network flow optimiza-

tion strategy. They both require to store frame-level descrip-

tors for matching videos. LAMV attains the best F-Score

reported on this dataset, and features a fixed-size video de-

scriptor, independent on the video length. When testing

with the large number of distractors from the VCDB+100K

set, however, we observed that the performance of the tem-

poral network [20] is still higher (58.9 vs 49.3 F1), even

though LAMV outperforms TMK also in this setting (49.3

vs 35.5 F1).

Event retrieval. Finally, we apply our approach on

event retrieval. We compare against the Mean-MultiVLAD

(MMV), obtained by averaging and ℓ2-normalizing Multi-

VLAD frame descriptors, CTE [28], Stable hyper-

pooling [6] and the recent Counting Grid Aggregation

(CGA) [11]. LAMV, CTE and TMK are able to provide a

good localization in addition to retrieval, the others can not.

To factor out the impact of the raw frame descriptor, we also

report the values obtained by using the ℓ2-normalized mean

RMAC descriptor, and run our reimplementation of TMK

on RMAC features. As shown in Table 5, our method out-

performs all the baselines it has been compared to, includ-

ing CGA and TMK. We also evaluate the performance of

LAMV when using average query expansion (AQE) [6]. In

this setting, the top N1 results are averaged and then to pro-

duce an augmented query, which is then used for retrieval.

Overall, our methods attains the best result reported on this

dataset without query expansion and with AQE.

End-to-end training and performance. We tested end-

to-end training of the architecture. In practice it did not

give a significant improvement. This observation is com-

mon with videos, and can be explained by (a) the lack of

real data for these tasks (feature learning is limited with

artificially copied sequences), and (b) by the structure of

TMK and RMAC which creates complex path of gradients,

as also observed in prior works [12]. The matching, for each

δ hypothesis, requires the computation of an inner product

between frame-level features, which is comparable to CTE.

In terms of memory consumption, LAMV is |P| = 4 times

larger than CTE if using the same number of frequencies,

but provides a significant localization accuracy boost.

5. Conclusion

We presented a learnable descriptor based on temporal

match kernels. It can be learned with a triplet loss func-

tion designed to improve its performance when comparing

and temporally aligning videos. Experimental results, con-

ducted on temporal video alignment, video copy detection

and event retrieval, show that our approach beats the state

of the art on all three tasks with a significant margin.
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