
Curve Reconstruction via the Global Statistics of Natural Curves

Ehud Barnea and Ohad Ben-Shahar

Dept. of Computer Science, Ben-Gurion University

Beer-Sheva, Israel

{barneaeh, ben-shahar}@cs.bgu.ac.il

Abstract

Reconstructing the missing parts of a curve has been

the subject of much computational research, with applica-

tions in image inpainting, object synthesis, etc. Different

approaches for solving that problem are typically based on

processes that seek visually pleasing or perceptually plausi-

ble completions. In this work we focus on reconstructing the

underlying physically likely shape by utilizing the global

statistics of natural curves. More specifically, we develop

a reconstruction model that seeks the mean physical curve

for a given inducer configuration. This simple model is both

straightforward to compute and it is receptive to diverse ad-

ditional information, but it requires enough samples for all

curve configurations, a practical requirement that limits its

effective utilization. To address this practical issue we ex-

plore and exploit statistical geometrical properties of nat-

ural curves, and in particular, we show that in many cases

the mean curve is scale invariant and oftentimes it is exten-

sible. This, in turn, allows to boost the number of examples

and thus the robustness of the statistics and its applicabil-

ity. The reconstruction results are not only more physically

plausible but they also lead to important insights on the re-

construction problem, including an elegant explanation why

certain inducer configurations are more likely to yield con-

sistent perceptual completions than others.

1. Introduction

The reconstruction of visual curves is the process of fill-

ing in curve fragments that are completely unobservable due

to occlusion or adversarial acquisition conditions. When at-

tempting this task one could pursue one of two different

goals, either the original physical shape or the perceived

one. (Note that oftentimes these two curves are quite differ-

ent.). Different models for the generation of missing parts

of curves were indeed suggested [25, 13, 18, 11, 2, 10, 19,

33] and employed in various applications such as image in-

painting [26, 23, 24, 29], and computer graphics [10, 9].

With much of the theoretical work done in the context of
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Figure 1. Curve reconstruction via global statistics of natural

curves. (a) To measure natural curve prior for a given relative

inducer configuration, curve fragments having the desired rela-

tive inducers (end points + tangent orientation) are collected from

ground truth curves labeled by humans [8]. (b) The curves are then

normalized to the same frame of reference and sampled along their

arc length with n equally spaced points. In this example n = 5
and to avoid clutter only 4 curves are shown. (c) Each point i

along the arc length of the reconstructed curve is calculated as the

mean of the corresponding points in the dataset, or more abstractly,

as the expected value of the distribution of all ith points of curves

that match the same inducers. (d) While some variance is observed

among the centers of all 245 curves, the distribution appears rather

tight, somewhat anisotropic, and approximately normal, suggest-

ing that the expected value nicely represents the likely outcome.

curve completion that supports perceptual plausibility (i.e.,

matching the perceived completion under cases such as oc-

clusion), most studies have focused on defining different

shape criteria for the generation of visually pleasing curves

(for example those with minimal total curvature [25, 18, 11]

or minimal change of curvature [13]) rather than relying on

any measurable prior on natural curves. Additionally, the

computation of these curves entails a minimization proce-

dure that usually requires an iterative scheme that is sus-

ceptive to local minima and cannot be easily expanded to
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include additional information (such as the curvature at the

visible end points or the shape of the occluder, among oth-

ers). Critically, no consensus exists in the literature regard-

ing which completion criteria are preferred, and evaluation

is hardly performed vis-a-vis physical objects (whose shape

one tries to reconstruct) or perceptual findings.

Somewhat differently, and avoiding arbitrary shape con-

straints as above, Ben-Yosef and Ben-Shahar suggested a

biologically plausible theory based on an abstraction of the

primary visual cortex and a least action criterion [2]. This

was recently elaborated as a constrained Elastica model in

the unit tangent bundle with emergent properties like sen-

sitivity to curvature [1]. Other works employed probabilis-

tic schemes such as first-order and multi-scale higher-order

Markov models [31, 19]. These models too, however, suffer

from some of the issues discussed above.

In this work we suggest to incorporate a stronger and

more realistic prior for reconstruction by following the

global shape statistics of natural curves. Like others, we

will assume that the reconstruction is performed between

two inducers – a pair of end points, their tangent orientation,

and possibly additional information about the observed part

of the curve as it penetrates the occluder. Simply put, we

first sample from the distribution of natural curves that cor-

responds to each relative inducer configuration. This oper-

ation can be done empirically from annotated datasets [8].

Representing each curve as a discrete set of n points dis-

tributed uniformly along the arc length, we then extract

the point-wise mean of the collected curves, from which

a “mean curve” can be compiled. In contrast to other meth-

ods employing only local statistics of adjacent point pairs,

this computation examines curves in their entirety, thus em-

ploying global statistics.

Even when lacking any local consideration, this process

generates surprisingly smooth and visually pleasing curves,

as shown in Fig. 1. And yet, for many inducer configura-

tions, especially for longer curves, the number of observed

samples may be small, prohibiting robust statistics and thus

proper reconstruction. To alleviate this problem we show

that the mean curve is scale invariant in many cases and fur-

ther investigate its extensibility, allowing to collect and gen-

erate many more samples for each configuration, providing

a significantly more robust reconstruction process.

In addition to their pleasing appearance, the generated

curves and our proposed completion model enjoy several fa-

vorable properties. By design, the resultant curves strongly

represent the distribution of physical image curves and thus

the structure of objects in natural images. By definition of

the expected value, these curves are also “closest” to all

dataset curves with the same inducer configuration. The

proposed method can also easily extend to include the cur-

vature at the end points, the shape of the occluder, or any

other information, by simply conditioning the measured

probability distribution (and thus the reconstruction com-

putation) on the desired properties or conditions. Further-

more, the proposed reconstruction approach provides novel

insights into the reconstruction problem. For example, we

show that for “convenient” configurations (when the in-

ducers are relatable [12] or even just “facing” each other)

the distribution of curves in natural images is quite narrow

and the mean curve is similar to most ground-truth curves,

providing a reconstruction that closely matches the ground

truth physical curves in most cases. However, curves with

“abnormal” or “difficult” inducer configurations (e.g., when

the inducers face away from each other) exhibit much

greater variance, which implies that any reconstruction, re-

gardless of the underlying principle employed, is likely to

generate a curve that does not reproduce the original shape.

Such an analysis suggests that in these cases additional in-

formation is strongly recommended, as well as a model that

can exploit it (like the one suggested here).

2. Prior art

Different methods have been suggested for the genera-

tion of curves, with either the goal of completing curves

when no information is known apart for the inducer con-

figuration (usually the result of occlusions), or when the

curve part to complete is visible but difficult to discern

due to noisy or faint edge appearance. To the best of our

knowledge no work has focused on reconstruction of miss-

ing curve parts to match the physical reality, and so our re-

view of the prior art focuses on methods obtaining visually

pleasing or perceptually plausible completions over large

gaps.

Much of the previous work on curve completion is based

on defining a set of axioms or properties that the completed

curve should satisfy, in what has been dubbed the axiomatic

approach [2, 1]. Given such axioms, a model and com-

putational approach that generate such curves is then de-

veloped. Among the first is the Biarc model suggested by

Ullman [25] that seeks curves of least curvature that are

also smooth, isotropic, and extensible. Loosening some of

these constraints, the Biarc model constructs the completed

curve using two circular arcs (that meet at a curvature dis-

continuity). Taking least curvature strictly later gave rise

to the Elastica model [18, 11, 3, 22, 30, 16]. A different

property, suggested by Kimia et al. [13], is the minimiza-

tion of change in curvature, resulting in a family of visu-

ally pleasing curves known as Euler Spirals. This comple-

tion model has been improved later in various follow up

papers [32, 33, 27].

Employing a different approach, in what has been

dubbed the “mechanistic approach” [2, 1], some works de-

fine probabilistic models for the generation of maximum

probability curves or for the calculation of point-wise prob-

abilities of belonging to a curve. In Williams and Jacobs
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[31], for example, the completion is described as the most

probable random walk between the curve inducers. Being

a first order Markov model, this work can be seen as min-

imizing some local probabilistic measure along the curve

while ignoring long range interactions. A similar model

was also employed together with local detection responses

for grouping of visible edges [6]. In a later work, it was

shown that this Markov assumption does not comply with

curvature statistics of natural curves, and so a higher order

model was suggested incorporating multiple scales for the

task of edge boundary detection [19].

Seeking to benefit the advantages of both approach types

while avoiding arbitrary or unfounded assumptions about

the shape of the completed curves, Ben-Yosef and Ben-

Shahar [2] moved the computation framework from the im-

age plane to a space that abstracts the primary visual cor-

tex where the visual system allegedly performs the curve

completion task. With a proper abstraction the problem was

then considered in the unit tangent bundle and the comple-

tion criteria become ones that are inspired by how biolog-

ical neural circuits may behave. The simple models that

emerged, first one that seeks the shortest path in the tan-

gent bundle [2] and later the tangent bundle Elastica [1],

are very simple to describe (though not necessarily to solve)

and provide visually pleasing curves. Like in previous mod-

els, no perceptual validation or evaluation against ground

truth were yet performed.

While most of the prior art in curve completion sought

the perceptual completed curve, it is also reasonable to seek

the likely physical curve between inducers, a task that lends

itself to properties of real word image curves and natural

image statistics. Indeed, some prior art did employ various

statistics for the estimation of different aspects of natural

images, showing that they follow properties such as scale

invariance [20], or that the lengths of curve segments be-

tween two locally maximal curvature points follow a power

low [19]. Focusing on the co-occurrence of oriented edges,

a strong preference of curve elements to co-linearity was

shown by employing the statistics of edge pairs [7], and

further high-order structure was shown by examining the

statistics of edge triplets [14]. In this paper we combine

both schools, i.e., we explore natural image curve statistics

for the task of long range curve reconstruction that best fits

the physical reality (rather than, for example, the perceptual

process or its outcomes).

Our investigation of the statistics of curves follows the

framework of active shape models [4], employing the mean

and variance of point correspondences and allowing a sim-

pler investigation of shape variability relative to more com-

plex methods for averaging curves [21].

3. Global Curve Statistics - Analysis and Re-

construction

Given an input inducer configuration C = (I1, I2) for

inducers I1 = (I1x, I
1
y , I

1
θ ) and I2 = (I2x, I

2
y , I

2
θ ) at loca-

tions I1xy = (I1x, I
1
y ), I

2
xy = (I2x, I

2
y ) and orientations I1θ ,

I2θ , we seek to generate a curve represented as a set of n

points α(C) = {x1, ...,xn} that closely matches the way

physical visual (i.e., image) curves behave between such

two inducers. That latter behavior will be measured from

a large collection of observable image curves.

For this data driven reconstruction we suggest to employ

the distribution of natural curves for a given configuration:

P (x1, ...,xn|I
1, I2) . (1)

Previous works that employed the statistics of curves sought

the most likely completion, which they were able to calcu-

late by making assumptions that enable to express this dis-

tribution with smaller functions that capture local statistics

of shape. Here, we suggest a global approach of estimating

the mean curve instead, and as observed in Fig. 1d, it may

also provide a good estimation of the most likely curve.

In the following we describe the data collection and com-

pletion process, as well as its practical difficulties to gen-

erate proper reconstructions when the inducers are too far,

among other conditions. To make the process more gen-

erally applicable, we show that the mean curve possesses

certain properties that facilitate more stable and visually

appealing completion even under those challenging condi-

tions.

3.1. Collection and Representation of the Prior

As exemplified in Fig. 1, the basic reconstruction of a

curve between a given inducer configuration C follows sev-

eral steps. Note that most of the computations can and are

done just once as preprocessing and need not repeat them-

selves for each reconstruction query, which essentially can

be answered by a lookup operation.

As a first step, we collect a set of natural image curve

fragments with configurations that are similar to C. To that

end, we employ the existing Curve Fragment Ground-Truth

Dataset (CFGD) [8] that contains ground-truth annotations

of perceived image curves collected from three different an-

notators on highly varied scenes from the Berkeley Seg-

mentation Dataset (BSDS) [15], leading to ~40K perceived

curves represented as a set of ordered points. Via proper

processing we consider any sub-curve of each CFGG curve

as a fragment in its own right, an operation implemented by

choosing any possible pair of points along a given CFGD

curve as starting and ending points of a fragment. This pro-

cess provides a total of ~19M fragments.

Next, to make these fragments useful for our statistical

analysis, we represent them by the relative configuration of

their inducers:
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Cr = p = (px, py, pθ) = (I1x − I
2

x, I
1

y − I
2

y , I
1

θ − I
2

θ ) (2)

where pxy = (px, py) and pθ are the location and ori-

entation of the second inducer relative to the first one. In

particular, we translate and rotate the curve fragment with

configuration C such that the location of its first inducer

I1xy = (I1x, I
1
y ) overlaps the origin of the coordinate system,

and its orientation I1θ coincides with the X axis. This oper-

ation effectively assumes invariance of shape to translations

and rotations and allows a representation of the transformed

fragments by the second inducer only. Assuming also in-

variance to reflection, we finally reflect all fragments with

positive relative elevation (i.e., py > 0) so all curves end

in the bottom half of the coordinate system. Finally, for a

quick lookup of fragments later on, they are stored accord-

ing to their relative configuration p. All this pre-processing

is exemplified in Fig. 1a,b.

To extract the probability distribution of natural curves

that match C, we now collect all curve fragments that fit

the corresponding relative inducer configuration, allowing

some tolerance in position and orientation. Formally, we in-

clude all curve fragments with relative configuration C̃r =

q, such that
‖pxy−qxy‖

‖pxy‖
< t1 and dπ(pθ, qθ) < t2, where dπ

is the angular distance between two angles. That is, we in-

clude fragments if their inducer configurations deviate from

pxy only marginally in normalized distance and in relative

orientation, where the margin is determined by two prede-

fined small thresholds t1 and t2. Note that since the col-

lected fragments have similar but not identical configura-

tions, they are further finely transformed to allow meaning-

ful pooling in the reconstruction step. In practice, they are

just slightly scaled so their end point qxy exactly matches

pxy. In the interest of space, the few trivial technical details

of this step are listed in the supplementary materials1. Note

that small discrepancies in orientations qθ and pθ may still

persist but do not affect the reconstruction process.

3.2. Basic Curve Reconstruction

As the reconstruction of missing curve fragments is

based on the “mean curve”, the latter must be represented

in a convenient way. For configuration C with relative con-

figuration Cr, we represent transformed fragments in the

collected data as a set of n points αi(Cr) = {x1, ...,xn}
sampled from the original points such that the arc length

between each two adjacent points in αi(Cr) is equal (blue

points in Fig. 1b). The mean curve α(Cr) is estimated as:

α(Cr) =
1

m(Cr)

m(Cr)∑

i=1

αi(Cr) , (3)

1Supp. material is provided in http://icvl.cs.bgu.ac.il

where m is the number of available fragments αi for rela-

tive configuration Cr (Fig. 1c). Finally, α(Cr) is translated

and rotated back to configuration C, providing α(C). The

reconstructed curve as a whole is obtained by interpolating

these points, either linearly (as in Fig. 1c) or using more

elaborate methods.

As exemplified in Fig. 1, this process often provides intu-

itive, visually pleasing, and veridical reconstructions. Such

results come as no surprise once we examine the nearly

normal distribution of the curve sample points, for exam-

ple the one for the central curve point depicted in Fig. 1d.

Note that this happens despite the observation that the cen-

ter point, being “furthest” away from both inducers along

the arc length, is the one where curves are most likely to

show the greatest variation.

That said, and as Fig. 2 shows, the quality of results

highly depends on the number of ground truth curve frag-

ments that are observed in the prior (denoted as darker blue

curves), or more formally, on the power of the statistics

for any given inducer configuration. Empirically, recon-

structions appear noisy when sample size is small, a situa-

tion more common for example when inducers are oriented

away from each other, especially for larger gaps (i.e. long

curves). Clearly, one way to address this difficulty is col-

lecting more data and annotating many more curves, two

operations that require much human labor. However, one

can do much better even with existing data (in our case,

the CFGD collection [8]) and indeed, to alleviate the prob-

lem we now examine and exploit certain properties of the

mean curve that allow “sharing” fragments between config-

urations, boosting the number of examples and the power

of the statistics, and thus greatly improve the results in the

“problematic” cases also.

0

100

200

>300

0

100

200

>300

(a) (b)

Figure 2. Basic reconstructions of different inducer configurations

based on the mean curve. All configurations share one inducer

(red) but have different second inducers (green), in this case at the

same distance (80 pixels). Curve colors represent the number of

corresponding fragments that were found in the dataset and thus

used during reconstruction. Note how larger sample sets allow

more intuitive and visually pleasing reconstructions.

3.3. Boosting via Invariance to Scale

If curve fragments (or curves in general) were scale

invariant, curves (either physical or reconstructed) would
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scale similarly to their inducer configuration. Hence, if we

could obtain evidence to that effect, the distribution of curve

fragments at one scale could help determine the reconstruc-

tions at other scales also and the scarcity of samples for

certain configurations, especially for longer curves, would

be alleviated. Clearly, with such a capacity, one would even

be able to generate reconstructions of arbitrarily long curves

at arbitrary scales even if such curves were never observed

in the prior. In this section we show that the mean curve

is scale invariant in most cases, facilitating data boosting

and better reconstructions in general. We note that these

findings are congruent with earlier natural image statistics

[20, 7], though here we show them for the shape of whole

curves. For the interest of space we focus the presentation

on the curve center points.

Loosely speaking, the reconstructed curve for some in-

ducer configuration is invariant to scale if it is similar to the

reconstruction at any other scale after proper scaling of the

configuration. Since scaling is analogous to changing view-

ing distance, and since such an operation does not change

the observed orientation, scaling essentially affects only the

distance between inducers, and the “scale” s of a curve frag-

ment is determined by that distance alone.

With this in mind, to examine the scale invariance hy-

pothesis we explore the effect of scale on the reconstruction

at a base relative configuration Cr = p with nominal scale 1

(i.e., with ‖pxy‖ = 1). At each scale s, fragments for rela-

tive configuration C̃r = (spxy, pθ) are collected and trans-

formed as described in Sec. 3.1, and then brought to a com-

mon scale by transforming them once more such that the

distance between their inducers is 1. Focusing on the center

points of the transformed fragments from the original scale

s, let µs and σs be their mean and standard deviation. We

summarize the information across scales as the standard de-

viation of the means µs (see Fig 3b ) and the expected value

of the standard deviations σs (Fig 3c).

Since the STD of µs is the mean difference between the

reconstructed central curve points across scales, one would

expect it to be smaller the more invariant the curves to scale.

In Fig. 3 we examine this difference in the reference scale of

1. As shown, for “normal” inducer configurations the STD

of µs is very small compared to the scale, suggesting that

the mean curve is indeed invariant to scale in these cases.

For other, more “abnormal” configurations we see greater

STD, suggesting that the calculated mean curve is different

across scales. Note that this in itself does not necessarily in-

dicate that the mean curve is scale variant in such difficult

configurations, for the average σs in these cases is large as

well (Fig. 3c), requiring more samples to guarantee an ac-

curate estimation of the mean according to Chebyshev’s in-

equality applied for the empirical mean [17].

Following this analysis, we now leverage the invariance

of the mean curve to scaling (assuming scale invariance also

when it could not be asserted) by extracting the distribu-

tion of natural curves that match Cr = p from fragments

C̃r = q that are close to any of its scaled versions. Formally,

we include all curve fragments with relative configuration

C̃r = q, such that the angular distance between vectors

pxy,qxy and orientation distance dπ(pθ, qθ) are smaller

than predefined thresholds t1,t2. To quickly collect such

curves, fragments are stored ahead of time according to the

angle to qxy from the X axis, and their orientation qθ.

The process of utilizing curves at all scales greatly im-

proves the results and now provides intuitive, visually pleas-

ing, and more veridical reconstructions (see Fig. 4b) for

many more inducer configurations (Fig. 2). Another fa-

vorable property is the ability to generate curves regardless

of the distance between given inducers. That said, it can

be seen that the number of examples, for some “difficult”

configurations remains small and thus the reconstruction in

such cases is still noisy, a problem that would possibly be

alleviated with the inclusion of additional samples. To this

end, we now turn to explore yet another possible property

of curves known as extensibility.

3.4. Boosting via Midway Extensibility

As discussed above, scale invariance alone does not suf-

fice to increase the number of samples and qualify as a ro-

bust prior in all cases. Typically, the cases that remain prob-

lematic have their inducers face away from each other and

so the mean curve bends rapidly near the inducers and keeps

a straighter shape half way from them (Fig. 4b). Due to

this behavior, another inducer placed in the center of such

curve (and oriented along its tangent) would represent much

smaller orientation relative to either of the inducers, effec-

tively better “facing” both of them and thus forming less dif-

ficult configurations with either. As observed in Figs. 2,4b,

such simpler configuration tend to have many more dataset

samples and smoother reconstructions. Therefore, generat-

ing a curve by reconstructing two sub-curves from the origi-

nal inducers to the curve’s center is likely to provide a more

robust, visually pleasing and veridical reconstruction.

We refer to this scheme as midway extensibility, a special

case of general extensibility, a property sought after in ax-

iomatic approaches (e.g., [25], cf. [2, 1]). A reconstruction

approach is considered extensible if for any pair of oriented

inducers I3,I4 extracted from a reconstructed curve α be-

tween inducers I1,I2, it generates a curve β that is identi-

cal to α between I3,I4. Here, we explore the extensibility

of the mean curve by its center point, and define a recon-

struction scheme as midway extensible if for any generated

curve α between inducers I1,I2, α is identical to the curve

β = β1 ⊕ β2, calculated as the concatenation of curves β1

and β2 that are generated between inducers I1,I3 and I3,I2,

where I3 is the inducer extracted from the center of α.

To investigate the property of midway extensibility in
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(a) (b) (c)
Figure 3. Empirical analysis of scale invariance for a subset of inducer configurations. (a) Considered are all pairs of horizontal inducers

with two arbitrary orientations. (b) A map of the STD of µs of the curve center point across different scales shows very stable behavior

when the inducers are “facing” each other with gradually decaying stability as the inducers “face” away from each other. (c) The average

of σs across scales similarly shows very stable behavior when the inducers roughly “face” each other, gradually turning unstable as they

“face” away from each other. The two maps in conjunction imply scale invariance for facing inducers, and no conclusive insights otherwise.

the context of our mean curve we employ the scale invari-

ant procedure described in Sec.3.3 to generate a curve β

(Fig. 4c) for each curve α in Fig. 4b by generating two

scale invariant curves β1, β2 from the original inducers to

the center of α. While this was done for all inducer con-

figurations, to determine whether the mean curve exhibits

midway extensibility we compare the corresponding recon-

structions α and β only in cases where α was generated

with many observations, as these are the only cases where

the reconstruction is likely to be precise in the first place.

A careful inspection of their shapes reveals that while some

differences between such corresponding curves can be ob-

served, they are typically insignificant relative to the scale

of the curve. To measure the deviation from extensibility we

calculate the Fréchet distance [5] relative to the distance be-

tween inducers for corresponding curves in Fig. 4 and in the

complementary figure in the supplementary material, cov-

ering the range of relative configurations. Considering only

curves for which more than 400 fragments were observed,

the maximal distance between such curves is 4.9% of the

distance between inducers, and the mean is 2.5%. Thus,

curves generated by employing midway extensibility do not

vary much from their counterparts that were accurately re-

constructed without extensibility.

Establishing such empirical midway extensibility, we re-

iterate that its sought-after effect is for cases where relative

configurations enjoy only few samples in the prior. Check-

ing the reconstruction facilitated by the two sub curves now

shows significant improvement in such cases (compare the

relevant cases in Fig. 4b,c).

4. Experimental Results

The suggested model calculates the mean curve us-

ing fragments from very similar configurations and across

scales, where midway extensibility is employed if less than

400 fragments were collected. We compare our model with

Libcornu’s implementation of Euler Spiral [32, 28], the lat-

ter being a prominent method for the completion of curves.

Reconstruction for all selected curve configurations can

be seen in Fig. 4 and in the supplementary material. Results

are shown at a single scale and for the lower half visual field,

a consequence of the scale and mirror reflection invariance

properties of both models. Comparing the results visually

suggests that the Euler spiral, being an analytic regularized

model, is generally smoother, but it often provides recon-

structions that appear unnatural and/or far from veridical (in

a sense of corresponding to the actual physical curve as rep-

resented by the prior). When it comes to reconstruction of

missing physical curve fragments our data driven approach

thus provides an intrinsic advantage. A demonstration to

that effect can be shown with the real objects in Fig. 5.

4.1. Reconstruction Evaluation

In addition to the qualitative results discussed above, we

examined the accuracy of the mean curve as a reconstruc-

tion scheme for natural occluded curves. In our representa-

tion, the mean curve is, by construction, the one “closest”

to all observable n-point natural planar curves (abstractly

represented as vectors in 2n dimensional space). However,

uniquely shaped curves do occur in nature and may be far

from the mean. The extent to which such curves can be re-

constructed, and the information or the prior needed to facil-

itate such reconstructions, remain to be studied. That said,

we still seek to obtain a quantitative measure of a method’s

ability to properly reconstruct fragments of natural curves.

Since the BSDS and CFGD benchmarks are not suitable

for this task, we employ the data from CFGD and create

a benchmark for the reconstruction of curves at different

scales (which can be seen as differently sized gaps or holes

in tasks such as image inpainting). To do so, we first split

the original dataset into training and test images, the latter
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Figure 4. Reconstruction results based on (a) Euler spiral, (b) scale invariant mean curve, and (c) extensible and scale invariant mean curve,

where darker curve colors represent a larger number of samples from which the curve was calculated. Red circles in (c) mark the points

in which two reconstructions are connected to a single curve. As exemplified, the final mean curve is not only data driven and thus more

veridical, it is also more compact and it exhibits much smoothness even though no regularization or smoothing was performed.

(a) (b) (c)

Figure 5. Example reconstructions over large gaps of possibly occluded curves based on our approach (green) and Euler spiral (magenta).

Examples (b) and (c) are taken from the reconstruction benchmark, with the ground-truth curves shown in white. Image parts below the

curves are assumed to be completely occluded and are not used for reconstruction.

comprises 10% of the dataset. No curve fragments from test

set images were used when computing the mean curve for

reconstruction, while no curve from the train set was used

for queries or as ground truth for performance evaluation.

More specifically, a set of 5000 curve fragments and their

inducers were randomly selected from the test images such

that fragments are uniformly distributed by their scale (as

the distance between their inducers) to better represent a

scenario such as the reconstruction of curves over randomly

sized gaps. For each ground-truth curve α∗ from this test

set, we then generated the mean curve α = {y1, ..., yn} that

matches its inducer configuration (I1, I2) while using the

fragments and the prior collected only from train images.

We then evaluate the relative reconstruction error (RRE) of

the generated curve α as the Fréchet distance d [5] between

both curves relative to the distance between their inducers:

RRE =
d(α∗, α)∥∥I1xy − I2xy

∥∥ . (4)

Reconstruction results are shown in Fig. 6, where each

point in the X axis represents an RRE threshold and its cor-

responding value in the Y axis represents the ratio of accu-

rately reconstructed curves (ARC) for which the error is less

than that threshold. Overall results are summarized by the

area under the curve (AUC), calculated as the average ARC

at 101 RRE points from 0 to 1 (where the limit of 1 RRE

was chosen arbitrarily). As can be seen, the mean curve

provides more accurate reconstructions than Euler Spiral,
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Figure 6. Reconstruction evaluation showing the ratio of accurate reconstructions for each accuracy threshold defined according to the

relative reconstruction error over the suggested benchmark (left) and for difficult inducer configurations (right). As shown, the graph of the

mean curve dominates over the graph of Euler Spiral completions.

with AUC scores of 0.887 and 0.876, respectively. The only

cases where the Euler Spiral is marginally more accurate are

those with extremely low threshold RRE < 0.017 which,

as we verified, comprises of straight lines only.

While one may argue that the differences in performance

in Fig. 6 (left) are not big, it is also suspected that many of

the details are washed by the frequent cases of “convenient”

inducer configurations where both approaches yield similar

results. Indeed, observing the different reconstructions such

as in Fig. 4, it can be seen that the mean curve and Euler

Spiral differ more for the “difficult” configurations that are

underrepresented in our dataset and in the prior. Therefore,

we conducted a focused evaluation with an additional ran-

dom set of 1000 curves, all with “difficult” configurations

such that θ1 > π
2 and θ2 < π

2 according to the representa-

tion in Fig. 3a. Results over this difficult set are presented

in Fig. 6 (right). This time, the mean curve method obtains

an AUC score of 0.621 and is significantly more accurate

than Euler Spiral, with an AUC of 0.492. Clearly, the mean

curve reconstruction is far more veridical in such cases.

5. Conclusions and Future Work

We have suggested a method for the reconstruction of

missing or occluded curves by employing the global statis-

tics of natural contours. At the foundation of our approach

is the generation of the mean curve, estimated as the mean

of the distribution of natural image curves along their arc

length. As we have shown, the estimated mean curve pro-

vides an intuitive, visually pleasing, and most importantly, a

more veridical reconstruction. A main disadvantage of this

procedure, namely the required number of curve fragments

sampled to represent the statistics of natural curves loyally,

was overcome by exploring and employing certain proper-

ties of curves. We have shown that the mean curve is invari-

ant to scale in many cases and that employing this property

for sharing fragment samples across scales provides better

reconstructions. We also explored midpoint extensibility of

the mean curve and have shown that incorporating this prop-

erty improves the reconstructed curves when the statistical

power of the prior is particularly low.

The data in Fig. 1d shows that for the inducer configu-

ration exemplified, the observed curve centers lie in a small

region relative to the distance between the two inducers, ex-

hibiting relatively small variance. In such cases, the center

of the mean curve is therefore close to most data points (i.e.,

real natural curves), and so it could be considered a correct

reconstruction (i.e. with low enough error). Unfortunately,

however, this is not always the case, as the mean variance

grows larger for certain inducer configurations, as already

shown in Fig. 3b (e.g., for inducers facing away from each

other). In such cases, where the variance of natural curves

is considerable, no single curve can be close to most real

curves, regardless of the reconstruction method that gener-

ated it, and thus cannot be considered correct in most cases.

An immediate consequence of the above is that to ob-

tain correct reconstruction one must reduce the variance

of observed data with which reconstruction is attempted.

Since the prior in the natural world is fixed, the only way

of achieving reduced variance is by introducing additional

constraints on the curve fragments that are relevant for a

reconstruction query, i.e., by requiring more information

about the inducers or the reconstruction scenario. Such in-

formation may include the curvature of the inducers, the

shape of the occluder, etc, and incorporating such consider-

ations is part of our ongoing and future research.
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