
RoadTracer: Automatic Extraction of Road Networks from Aerial Images

Favyen Bastani1, Songtao He1, Sofiane Abbar2, Mohammad Alizadeh1, Hari Balakrishnan1,

Sanjay Chawla2, Sam Madden1, David DeWitt1

1MIT CSAIL, 2Qatar Computing Research Institute, HBKU
1{fbastani,songtao,alizadeh,hari,madden,dewitt}@csail.mit.edu, 2{sabbar,schawla}@hbku.edu.qa

Abstract

Mapping road networks is currently both expensive and

labor-intensive. High-resolution aerial imagery provides a

promising avenue to automatically infer a road network.

Prior work uses convolutional neural networks (CNNs) to

detect which pixels belong to a road (segmentation), and

then uses complex post-processing heuristics to infer graph

connectivity. We show that these segmentation methods

have high error rates because noisy CNN outputs are dif-

ficult to correct. We propose RoadTracer, a new method to

automatically construct accurate road network maps from

aerial images. RoadTracer uses an iterative search pro-

cess guided by a CNN-based decision function to derive the

road network graph directly from the output of the CNN.

We compare our approach with a segmentation method on

fifteen cities, and find that at a 5% error rate, RoadTracer

correctly captures 45% more junctions across these cities.

1. Introduction

Creating and updating road maps is a tedious, expensive,

and often manual process today [11]. Accurate and up-to-

date maps are especially important given the popularity of

location-based mobile services and the impending arrival

of autonomous vehicles. Several companies are investing

hundreds of millions of dollars on mapping the world, but

despite this investment, error rates are not small in prac-

tice, with map providers receiving many tens of thousands

of error reports per day.1 In fact, even obtaining “ground

truth” maps in well-traveled areas may be difficult; recent

work [10] reported that the discrepancy between Open-

StreetMap (OSM) and the TorontoCity dataset was 14%

(the recall according to a certain metric for OSM was 0.86).

Aerial imagery provides a promising avenue to auto-

matically infer the road network graph. In practice, how-

ever, extracting maps from aerial images is difficult be-

cause of occlusion by trees, buildings, and shadows (see

1See, e.g., https://productforums.google.com/forum/

#!topic/maps/dwtCso9owlU for an example of a city (Doha, Qatar)

where maps have been missing entire subdivisions for years.

Figure 1. Occlusions by trees, buildings, and shadows make it hard

even for humans to infer road connectivity from images.

Figure 1). Prior approaches do not handle these problems

well. Almost universally, they begin by segmenting the im-

age, classifying each pixel in the input as either road or

non-road [5, 10]. They then implement a complex post-

processing pipeline to interpret the segmentation output and

extract topological structure to construct a map. As we will

demonstrate, noise frequently appears in the segmentation

output, making it hard for the post-processing steps to pro-

duce an accurate result.

The fundamental problem with a segmentation-based ap-

proach is that the CNN is trained only to provide local infor-

mation about the presence of roads. Key decisions on how

road segments are inter-connected to each other are dele-

gated to an error-prone post-processing stage that relies on

heuristics instead of machine learning or principled algo-

rithms. Rather than rely on an intermediate image represen-

tation, we seek an approach that produces the road network

directly from the CNN. However, it is not obvious how to

train a CNN to learn to produce a graph from images.

We propose RoadTracer, an approach that uses an itera-

tive graph construction process for extracting graph struc-

tures from images. Our approach constructs the road net-

work by adding individual road segments one at a time, us-

ing a novel CNN architecture to decide on the next segment

to add given as input the portion of the network constructed

so far. In this way, we eliminate the intermediate image

representation of the road network, and avoid the need for

14720

https://productforums.google.com/forum/#!topic/maps/dwtCso9owlU
https://productforums.google.com/forum/#!topic/maps/dwtCso9owlU

extensive post-processing that limits the accuracy of prior

methods.

Training the CNN decision function is challenging be-

cause the input to the CNN at each step of the search de-

pends on the partial road network generated using the CNN

up to that step. We find that standard approaches that use

a static set of labeled training examples are inadequate. In-

stead, we develop a dynamic labeling approach to produce

training examples on the fly as the CNN evolves during

training. This procedure resembles reinforcement learning,

but we use it in an efficient supervised training procedure.

We evaluate our approach using aerial images covering

24 square km areas of 15 cities, after training the model on

25 other cities. We make our code and a demonstration of

RoadTracer in action available at https://roadmaps.

csail.mit.edu/roadtracer. We implement two

baselines, DeepRoadMapper [10] and our own segmenta-

tion approach. Across the 15 cities, our main experimental

finding is that, at a 5% average error rate on a junction-

by-junction matching metric, RoadTracer correctly captures

45% more junctions than our segmentation approach (0.58

vs 0.40). DeepRoadMapper fails to produce maps with bet-

ter than a 19% average error rate. Because accurately cap-

turing the local topology around junctions is crucial for ap-

plications like navigation, these results suggest that Road-

Tracer is an important step forward in fully automating map

construction from aerial images.

2. Related Work

Classifying pixels in an aerial image as “road” or “non-

road” is a well-studied problem, with solutions generally

using probabilistic models. Barzobar et al. build geometric-

probabilistic models of road images based on assumptions

about local road-like features, such as road geometry and

color intensity, and draw inferences with MAP estima-

tion [2]. Wegner et al. use higher-order conditional ran-

dom fields (CRFs) to model the structures of the road net-

work by first segmenting aerial images into superpixels,

and then adding paths to connect these superpixels [17].

More recently, CNNs have been applied to road segmen-

tation [12, 6]. However, the output of road segmentation,

consisting of a probability of each pixel being part of a road,

cannot be directly used as a road network graph.

To extract a road network graph from the segmentation

output, Cheng et al. apply binary thresholding and morpho-

logical thinning to produce single-pixel-width road center-

lines [5]. A graph can then be obtained by tracing these cen-

terlines. Máttyus et al. propose a similar approach called

DeepRoadMapper, but add post-processing stages to en-

hance the graph by reasoning about missing connections

and applying heuristics [10]. This solution yields promising

results when the road segmentation has modest error. How-

ever, as we will show in Section 3.1, heuristics do not per-

form well when there is uncertainty in segmentation, which

can arise due to occlusion, ambiguous topology, or complex

topology such as parallel roads and multi-layer roads.

Rather than extract the road graph from the result of seg-

mentation, some solutions directly extract a graph from im-

ages. Hinz et al. produce a road network using a complex

road model that is built using detailed knowledge about

roads and their context, such as nearby buildings and ve-

hicles [8]. Hu et al. introduce road footprints, which are

detected based on shape classification of the homogeneous

region around a pixel [9]. A road tree is then grown by

tracking these road footprints. Although these approaches

do not use segmentation, they involve numerous heuristics

and assumptions that resemble those in the post-processing

pipeline of segmentation-based approaches, and thus are

susceptible to similar issues.

Inferring road maps from GPS trajectories has also been

studied [4, 14, 13]. However, collecting enough GPS data

that can cover the entire map in both space and time is chal-

lenging, especially when the region of the map is large and

far from the city core. Nevertheless, GPS trajectories may

be useful to improve accuracy in areas where roads are not

visible from the imagery, to infer road connectivity at com-

plex interchanges where roads are layered, and to enable

more frequent map updates.

3. Automatic Map Inference

The goal of automatic map inference is to produce a road

network map, i.e., a graph where vertices are annotated with

spatial coordinates (latitude and longitude), and edges cor-

respond to straight-line road segments. Vertices with three

or more incident edges correspond to road junctions (e.g.

intersections or forks). Like prior methods, we focus on in-

ferring undirected road network maps, since the direction-

ality of roads is generally not visible from aerial imagery.

In Section 3.1, we present an overview of segmentation-

based map-inference methods used by current state-of-the-

art techniques [5, 10] to construct a road network map from

aerial images. We describe problems in the maps inferred

by the segmentation approach to motivate our alternative

solution. Then, in Section 3.2, we introduce our iterative

map construction method. In Section 4, we discuss the pro-

cedure used to train the CNN used in our solution.

3.1. Prior Work: Segmentation Approaches

Segmentation-based approaches have two steps. First,

each pixel is labeled as either “road” or “non-road”. Then,

a post-processing step applies a set of heuristics to convert

the segmentation output to a road network graph.

State-of-the-art techniques share a similar post-

processing pipeline to extract an initial graph from the

segmentation output. The segmentation output is first

thresholded to obtain a binary mask. Then, they apply

4721

https://roadmaps.csail.mit.edu/roadtracer
https://roadmaps.csail.mit.edu/roadtracer

Figure 2. Stages of segmentation post-processing. (a) shows the

segmentation output. In (b), a graph is extracted through morpho-

logical thinning [18] and the Douglas-Peucker method [7]. Refine-

ment heuristics are then applied to remove basic types of noise,

yielding the graph in (c).

Figure 3. An example where noise in the segmentation output (left)

is too extensive for refinement heuristics to correct. We show the

graph after refinement on the right. Here, we overlay the inferred

graph (yellow) over ground truth from OSM (blue).

morphological thinning [18] to produce a mask where roads

are represented as one-pixel-wide centerlines. This mask

is interpreted as a graph, where set pixels are vertices and

edges connect adjacent set pixels. The graph is simplified

with the Douglas-Peucker method [7].

Because the CNN is trained with a loss function evalu-

ated independently on each pixel, it will yield a noisy output

in regions where it is unsure about the presence of a road.

As shown in Figure 2(a) and (b), noise in the segmentation

output will be reflected in the extracted graph. Thus, several

methods have been proposed to refine the initial extracted

graph. Figure 2(c) shows the graph after applying three re-

finement heuristics: pruning short dangling segments, ex-

tending dead-end segments, and merging nearby junctions.

Although refinement is sufficient to remove basic types

of noise, as in Figure 2, we find that many forms of noise

are too extensive to compensate for. In Figure 3, we show

an example where the segmentation output contains many

gaps, leading to a disconnected graph with poor coverage.

Algorithm 1 Iterative Graph Construction

Input: A starting location v0 and the bounding box B

initialize graph G and vertex stack S with v0
while S is not empty do

action, α := decision func(G,Stop, Image)

u := Stop + (D cosα,D sinα)
if action = stop or u is outside B then

pop Stop from S

else

add vertex u to G

add an edge (Stop, u) to G

push u onto S

end if

end while

Given this segmentation output, even a human would find

it difficult to accurately map the road network. Because the

CNN is trained only to classify individual pixels in an image

as roads, it leaves us with an untenable jigsaw puzzle of

deciding which pixels form the road centerlines, and where

these centerlines should be connected.

These findings convinced us that we need a different ap-

proach that can produce a road network directly, without go-

ing through the noisy intermediate image representation of

the road network. We propose an iterative graph construc-

tion architecture to do this. By breaking down the map-

ping process into a series of steps that build a road network

graph iteratively, we will show that we can derive a road net-

work from the CNN, thereby eliminating the requirement of

a complex post-processing pipeline and yielding more accu-

rate maps.

3.2. RoadTracer: Iterative Graph Construction

In contrast to the segmentation approach, our approach

consists of a search algorithm, guided by a decision function

implemented via a CNN, to compute the graph iteratively.

The search walks along roads starting from a single loca-

tion known to be on the road network. Vertices and edges

are added in the path that the search follows. The decision

function is invoked at each step to determine the best action

to take: either add an edge to the road network, or step back

to the previous vertex in the search tree. Algorithm 1 shows

the pseudocode for the search procedure.

Search algorithm. We input a region (v0, B), where v0 is

the known starting location, and B is a bounding box defin-

ing the area in which we want to infer the road network.

The search algorithm maintains a graph G and a stack of

vertices S that both initially contain only the single vertex

v0. Stop, the vertex at the top of S, represents the current

location of the search.

At each step, the decision function is presented with G,

Stop, and an aerial image centered at Stop’s location. It can

4722

Figure 4. Exploring a T intersection in the search process. The

blue path represents the position of the road in the satellite im-

agery. Circles are vertices in G, with Stop in purple and v0 in or-

ange. Here, the decision function makes correct decisions on each

step.

decide either to walk a fixed distance D (we use D = 12
meters) forward from Stop along a certain direction, or to

stop and return to the vertex preceding Stop in S. When

walking, the decision function selects the direction from

a set of a angles that are uniformly distributed in [0, 2π).
Then, the search algorithm adds a vertex u at the new loca-

tion (i.e., D away from Stop along the selected angle), along

with an edge (Stop, u), and pushes u onto S (in effect mov-

ing the search to u).

If the decision process decides to “stop” at any step, we

pop Stop from S. Stopping indicates that there are no more

unexplored roads (directions) adjacent to Stop. Note that

because only new vertices are ever pushed onto S, a “stop”

means that the search will never visit the vertex Stop again.

Figure 4 shows an example of how the search proceeds

at an intersection. When we reach the intersection, we

first follow the upper branch, and once we reach the end

of this branch, the decision function selects the “stop” ac-

tion. Then, the search returns to each vertex previously ex-

plored along the left branch. Because there are no other

roads adjacent to the upper branch, the decision function

continues to select the stop action until we come back to the

intersection. At the intersection, the decision function leads

the search down the lower branch. Once we reach the end

of this branch, the decision function repeatedly selects the

stop action until we come back to v0 and S becomes empty.

When S is empty, the construction of the road network is

complete.

Since road networks consist of cycles, it is also possi-

ble that we will turn back on an earlier explored path. The

search algorithm includes a simple merging step to handle

this: when processing a walk action, if u is within distance

3D of a vertex v ∈ G, but the shortest distance in G from

Stop to v is at least 6D, then we add an edge (u, v) and don’t

push u onto S. This heuristic prevents small loops from be-

ing created, e.g. if a road forks into two at a small angle.

Lastly, we may walk out of our bounding box B. To

avoid this, when processing a walk action, if u is not con-

tained in B, then we treat it as a stop action.

CNN decision function. A crucial component of our al-

gorithm is the decision function, which we implement with

a CNN. The input layer consists of a d × d window cen-

tered on Stop. This window has four channels. The first

three channels are the RGB values of the d × d portion of

aerial imagery around Stop. The fourth channel is the graph

constructed so far, G. We render G by drawing anti-aliased

lines along the edges of G that fall inside the window. In-

cluding G in the input to the CNN is a noteworthy aspect

of our method. First, this allows the CNN to understand

which roads in the aerial imagery have been explored ear-

lier in the search, in effect moving the problem of exclud-

ing these roads from post-processing to the CNN. Second,

it provides the CNN with useful context; e.g., when encoun-

tering a portion of aerial imagery occluded by a tall build-

ing, the CNN can use the presence or absence of edges on

either side of the building to help determine whether the

building occludes a road.

The output layer consists of two components: an action

component that decides between walking and stopping, and

and an angle component that decides which angle to walk

in. The action component is a softmax layer with 2 outputs,

Oaction = 〈owalk, ostop〉. The angle component is a sig-

moid layer with a neurons, Oangle = 〈o1, . . . , oa〉. Each oi
corresponds to an angle to walk in. We use a threshold to

decide between walking and stopping. If owalk ≥ T , then

walk in the angle corresponding to argmaxi(oi). Other-

wise, stop.

We noted earlier that our solution does not require com-

plex post-processing heuristics, unlike segmentation-based

methods where CNN outputs are noisy. The only post-

processing required in our decision function is to check a

threshold on the CNN outputs and select the maximum in-

dex of the output vector. Thus, our method enables the CNN

to directly produce a road network graph.

4. Iterative Graph Construction CNN Training

We now discuss the training procedure for the decision

function. We assume we have a ground truth map G∗ (e.g.,

from OpenStreetMap). Training the CNN is non-trivial: the

CNN takes as input a partial graph G (generated by the

search algorithm) and outputs the desirability of walking

at various angles, but we only have this ground truth map.

How might we use G∗ to generate training examples?

4.1. Static Training Dataset

We initially attempted to generate a static set of train-

ing examples. For each training example, we sample a re-

gion (v0, B) and a step count n, and initialize a search.

We run n steps of the search using an “oracle” decision

4723

Figure 5. A CNN trained on static training examples exhibits prob-

lematic behavior during inference. Here, the system veers off of

the road represented by the blue path.

function that uses G∗ to always make optimal decisions.

The state of the search algorithm immediately preceding

the nth step is the input for the training example, while

the action taken by the oracle on the nth step is used to

create a target output O∗

action = 〈o∗walk, o
∗

stop〉, O
∗

angle =
〈o∗1, . . . , o

∗

a〉. We can then train a CNN using gradient de-

scent by back-propagating a cross entropy loss between

Oaction and O∗

action, and, if o∗walk = 1, a mean-squared

error loss between Oangle and O∗

angle.

However, we found that although the CNN can achieve

high performance in terms of the loss function on the train-

ing examples, it performs poorly during inference. This is

because G is essentially perfect in every example that the

CNN sees during training, as it is constructed by the oracle

based on the ground truth map. During inference, however,

the CNN may choose angles that are slightly off from the

ones predicted by the oracle, resulting in small errors in G.

Then, because the CNN has not been trained on imperfect

inputs, these small errors lead to larger prediction errors,

which in turn result in even larger errors.

Figure 5 shows a typical example of this snowball ef-

fect. The CNN does not output the ideal angle at the turn;

this causes it to quickly veer off the actual road because

it never saw such deviations from the road during training,

and hence it cannot correct course. We tried to mitigate this

problem by using various methods to introduce noise on G

in the training examples. Although this reduces the scale

of the problem, the CNN still yields low performance at in-

ference time, because the noise that we introduce does not

match the characteristics of the noise introduced inherently

by the CNN during inference. Thus, we conclude a static

training dataset is not suitable.

4.2. Dynamic Labels

We instead generate training examples dynamically by

running the search algorithm with the CNN as the decision

function during training. As the CNN model evolves, we

generate new training examples as well.

Given a region (v0, B), training begins by initializing an

instance of the search algorithm (G,S), where G is the par-

tial graph (initially containing only v0) and S is the vertex

stack. On each training step, as during inference, we feed-

forward the CNN to decide on an action based on the output

Figure 6. A naive oracle that simply matches Stop to the closest

location on G
∗ fails, since it directs the system towards the bottom

road instead of returning to the top road. Here, the black circles

make up G, while the blue corresponds to the actual road position.

layer, and update G and S based on that action.

In addition to deciding on the action, we also determine

the action that an oracle would take, and train the CNN to

learn that action. The key difference from the static dataset

approach is that, here, G and S are updated based on the

CNN output and not the oracle output; the oracle is only

used to compute a label for back-propagation.

The basic strategy is similar to before. On each train-

ing step, based on G∗, we first identify the set of angles R

where there are unexplored roads from Stop. Next, we con-

vert R into a target output vector O∗. If R is empty, then

o∗stop = 1. Otherwise, o∗walk = 1, and for each angle θ ∈ R,

we set o∗i = 1, where i is the closest walkable angle to θ.

Lastly, we compute a loss between O and O∗, and apply

back-propagation to update the CNN parameters.

A key challenge is how to decide where to start the walk

in G∗ to pick the next vertex. The naive approach is to start

the walk from the closest location in G∗ to Stop. However,

as the example in Figure 6 illustrates, this approach can di-

rect the system towards the wrong road when G differs from

G∗.

To solve this problem, we apply a map-matching algo-

rithm to find a path in G∗ that is most similar to a path in

G ending at Stop. To obtain the path p in G, we perform a

random walk in G starting from Stop. We stop the random

walk when we have traversed a configurable number of ver-

tices w (we use w = 10), or when there are no vertices

adjacent to the current vertex that haven’t already been tra-

versed earlier in the walk. Then, we match this path to the

path p∗ in G∗ to which it is most similar. We use a standard

map-matching method based on the Viterbi algorithm [15].

If v is the endpoint of the last edge in p∗, we start our walk

in G∗ at v.

Finally, we maintain a set E containing edges of G∗ that

have already been explored during the walk. E is initially

empty. On each training step, after deriving p∗ from map-

matching, we add each edge in p∗ to E. Then, when per-

forming the walk in G∗, we avoid traversing edges that are

in E again.

4724

5. Evaluation

Dataset. To evaluate our approach, we assemble a large

corpus of high-resolution satellite imagery and ground truth

road network graphs covering the urban core of forty cities

across six countries. For each city, our dataset covers a re-

gion of approximately 24 sq km around the city center. We

obtain satellite imagery from Google at 60 cm/pixel reso-

lution, and the road network from OSM (we exclude cer-

tain non-roads that appear in OSM such as pedestrian paths

and parking lots). We convert the coordinate system of the

road network so that the vertex spatial coordinate annota-

tions correspond to pixels in the satellite images.

We split our dataset into a training set with 25 cities and a

test set with 15 other cities. To our knowledge, we conduct

the first evaluation of automatic mapping approaches where

systems are trained and evaluated on entirely separate cities,

and not merely different regions of one city, and also the

first large-scale evaluation over aerial images from several

cities. Because many properties of roads vary greatly from

city to city, the ability of an automatic mapping approach to

perform well even on cities that are not seen during training

is crucial; the regions where automatic mapping holds the

most potential are the regions where existing maps are non-

existent or inaccurate.

Baselines. We compare RoadTracer with two baselines:

DeepRoadMapper [10] and our own segmentation-based

approach. Because the authors were unable to release their

software to us, we implemented DeepRoadMapper, which

trains a residual network with a soft intersection-over-union

(IoU) loss function, extracts a graph using thresholding and

thinning, and refines the graph with a set of heuristics and a

missing connection classifier.

However, we find that the IoU loss results in many

gaps in the segmentation output, yielding poor performance.

Thus, we also implement our own segmentation approach

that outperforms DeepRoadMapper on our dataset, where

we train with cross entropy loss, and refine the graph using

a four-stage purely heuristic cleaning process that prunes

short segments, removes small connected components, ex-

tends dead-end segments, and merges nearby junctions.

Metrics. We evaluate RoadTracer and the segmentation

schemes on TOPO [3], SP [16], and a new junction met-

ric defined below. TOPO and SP are commonly used in

the automatic road map inference literature [4, 14, 17, 1].

TOPO simulates a car driving a certain distance from sev-

eral seed locations, and compares the destinations that can

be reached in G with those that can be reached in G∗ in

terms of precision and recall. SP generates a large number

of origin-destination pairs, computes the shortest path be-

tween the origin and the destination in both G and G∗ for

each pair, and outputs the fraction of pairs where the short-

est paths are similar (distances within 5%).

Figure 7. Average Fcorrect and Ferror over the 15 test cities.

However, we find that both TOPO and SP tend to assign

higher scores to noisier maps, and thus don’t correlate well

with the usability of an inferred map. Additionally, the met-

rics make it difficult to reason about the cause of a low or

high score.

Thus, we propose a new evaluation metric with two

goals: (a) to give a score that is representative of the in-

ferred map’s practical usability, and (b) to be interpretable.

Our metric compares the ground truth and inferred maps

junction-by-junction, where a junction is any vertex with

three or more edges. We first identify pairs of correspond-

ing junctions (v, u), where v is in the ground truth map and

u is in the inferred map. Then, fv,correct is the fraction of in-

cident edges of v that are captured around u, and fu,error is

the fraction of incident edges of u that appear around v. For

each unpaired ground truth junction v, fv,correct = 0, and

for each unpaired inferred map junction u, fu,error = 1. Fi-

nally, if ncorrect =
∑

v fv,correct and nerror =
∑

u fu,error, we

report the correct junction fraction Fcorrect =
ncorrect

junctions in G∗

and error rate Ferror =
nerror

nerror+ncorrect
.

TOPO and our junction metric yield a precision-recall

curve, while SP produces a single similar path count.

Quantitative Results. We evaluate performance of the

three methods on 15 cities in the test set. We supply starting

locations for RoadTracer by identifying peaks in the output

of our segmentation-based approach. All three approaches

are fully automated.

Both RoadTracer and the segmentation approaches have

parameters that offer a tradeoff between recall and error rate

(1 − precision). We vary these parameters and plot results

for our junction metric and TOPO on a scatterplot where

4725

Figure 8. Average TOPO recall and error rate over the test cities.

Scheme Correct Long Short NoPath

DeepRoadMapper 0.21 0.29 0.03 0.47

Seg. (Ours) 0.58 0.14 0.27 0.01

RoadTracer 0.72 0.16 0.10 0.02

Table 1. SP performance. For each scheme, we only report re-

sults for the threshold that yields the highest correct shortest paths.

Long, Short, and NoPath specify different reasons for an inferred

shortest path being incorrect (too long, too short, and discon-

nected).

Figure 9. Tradeoff between error rate and recall in a small crop

from Boston as we increase the threshold for our segmentation

approach. The junction metric error rates in the crop from left to

right are 18%, 13%, and 8%. The map with 18% error is too noisy

to be useful.

one axis corresponds to recall and the other corresponds

to error rate. For DeepRoadMapper and our segmentation

approach, we vary the threshold used to produce a binary

mask. We find that the threshold does not impact the graph

produced by DeepRoadMapper, as the IoU loss pushes most

outputs to the extremes, and thus only plot one point. For

RoadTracer, we vary the walk-stop action threshold T .

We report performance in terms of average Fcorrect and

Ferror across the test cities in Figure 7, and in terms of aver-

age TOPO precision and recall in Figure 8.

On the junction metric, RoadTracer has a better Ferror for

a given Fcorrect. The performance improvement is most sig-

nificant when error rates are between 5% and 10%, which

is the range that offers the best tradeoff between recall and

error rate for most applications—when error rates are over

10%, the amount of noise is too high for the map to be us-

able, and when error rates are less than 5%, too few roads

are recovered (see Figure 9). When the error rate is 5%,

the maps inferred by RoadTracer have 45% better average

recall (Fcorrect) than those inferred by the segmentation ap-

proach (0.58 vs 0.40).

On TOPO, RoadTracer has a lower error rate than the

segmentation approaches when the recall is less than 0.43.

Above 0.43 recall, where the curves cross, further lower-

ing T in RoadTracer yields only a marginal improvement

in recall, but a significant increase in the error rate. How-

ever, the segmentation approach outperforms RoadTracer

only for error rates larger than 0.14; we show in Figure 9

that inferred maps with such high error rates are not usable.

We report SP results for the thresholds that yield highest

number of correct shortest paths in Table 1. RoadTracer

outperforms the segmentation approach because noise in the

output of the segmentation approach causes many instances

where the shortest path in the inferred graph is much shorter

than the path in the ground truth graph.

Our DeepRoadMapper implementation performs poorly

on our dataset. We believe that the soft IoU loss is not well-

suited to the frequency of occlusion and complex topology

found in the city regions in our dataset.

Qualitative Results. In Figure 10, we show qualitative re-

sults in crops from four cities from the test set: Chicago,

Boston, Salt Lake City, and Toronto. For RoadTracer and

our segmentation approach, we show inferred maps for the

threshold that yields 5% average Ferror. DeepRoadMapper

only produces one map.

RoadTracer performs much better on frequent occlu-

sion by buildings and shadows in the Chicago and Boston

regions. Although the segmentation approach is able to

achieve similar recall in Boston on the lowest threshold (not

shown), several incorrect segments are added to the map.

In the Salt Lake City and Toronto regions, performance is

comparable. DeepRoadMapper’s soft IoU loss introduces

many disconnections in all four regions, and the missing

connection classifier in the post-processing stage can only

correct some of these.

We include more outputs in the supplementary mate-

rial, and make our code, full-resolution outputs, and videos

4726

Figure 10. Comparison of inferred road networks in Chicago (top), Boston, Salt Lake City, and Toronto (bottom). We overlay the inferred

graph (yellow) over ground truth from OSM (blue). Inferred graphs correspond to thresholds that yield 5% average Ferror for RoadTracer

and our segmentation approach, and 19% Ferror for DeepRoadMapper (as it does not produce results with lower average error).

showing RoadTracer in action available at https://

roadmaps.csail.mit.edu/roadtracer.

6. Conclusion

On the face of it, using deep learning to infer a road

network graph seems straightforward: train a CNN to rec-

ognize which pixels belong to a road, produce the poly-

lines, and then connect them. But occlusions and light-

ing conditions pose challenges, and such a segmentation-

based approach requires complex post-processing heuris-

tics. By contrast, our iterative graph construction method

uses a CNN-guided search to directly output a graph. We

showed how to construct training examples dynamically for

this method, and evaluated it on 15 cities, having trained

on aerial imagery from 25 entirely different cities. To our

knowledge, this is the largest map-inference evaluation to

date, and the first that fully separates the training and test

cities. Our principal experimental finding is that, at a 5% er-

ror rate, RoadTracer correctly captures 45% more junctions

than our segmentation approach (0.58 vs 0.40). Hence, we

believe that our work presents an important step forward in

fully automating map construction from aerial images.

7. Acknowledgements

This research was supported in part by the Qatar Com-

puting Research Institute (QCRI).

References

[1] M. Ahmed, S. Karagiorgou, D. Pfoser, and C. Wenk. A com-

parison and evaluation of map construction algorithms us-

ing vehicle tracking data. GeoInformatica, 19(3):601–632,

2015. 6

[2] M. Barzohar and D. B. Cooper. Automatic finding of main

roads in aerial images by using geometric-stochastic models

and estimation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 18(7):707–721, 1996. 2

4727

https://roadmaps.csail.mit.edu/roadtracer
https://roadmaps.csail.mit.edu/roadtracer

[3] J. Biagioni and J. Eriksson. Inferring road maps from global

positioning system traces. Transportation Research Record:

Journal of the Transportation Research Board, 2291(1):61–

71, 2012. 6

[4] J. Biagioni and J. Eriksson. Map inference in the face of

noise and disparity. In Proceedings of the 20th Interna-

tional Conference on Advances in Geographic Information

Systems, pages 79–88. ACM, 2012. 2, 6

[5] G. Cheng, Y. Wang, S. Xu, H. Wang, S. Xiang, and C. Pan.

Automatic road detection and centerline extraction via cas-

caded end-to-end convolutional neural network. IEEE Trans-

actions on Geoscience and Remote Sensing, 55(6):3322–

3337, 2017. 1, 2

[6] D. Costea and M. Leordeanu. Aerial image geolocalization

from recognition and matching of roads and intersections.

arXiv preprint arXiv:1605.08323, 2016. 2

[7] D. H. Douglas and T. K. Peucker. Algorithms for the re-

duction of the number of points required to represent a digi-

tized line or its caricature. Cartographica: The International

Journal for Geographic Information and Geovisualization,

10(2):112–122, 1973. 3

[8] S. Hinz and A. Baumgartner. Automatic extraction of urban

road networks from multi-view aerial imagery. ISPRS Jour-

nal of Photogrammetry and Remote Sensing, 58(1):83–98,

2003. 2

[9] J. Hu, A. Razdan, J. C. Femiani, M. Cui, and P. Wonka. Road

network extraction and intersection detection from aerial im-

ages by tracking road footprints. IEEE Transactions on Geo-

science and Remote Sensing, 45(12):4144–4157, 2007. 2

[10] G. Máttyus, W. Luo, and R. Urtasun. DeepRoadMapper:

Extracting road topology from aerial images. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3438–3446, 2017. 1, 2, 6

[11] G. Miller. The Huge, Unseen Operation Behind the Ac-

curacy of Google Maps. https://www.wired.com/

2014/12/google-maps-ground-truth/, Dec.

2014. 1

[12] V. Mnih and G. E. Hinton. Learning to detect roads in high-

resolution aerial images. In European Conference on Com-

puter Vision, pages 210–223. Springer, 2010. 2

[13] Z. Shan, H. Wu, W. Sun, and B. Zheng. COBWEB: A robust

map update system using GPS trajectories. In Proceedings of

the 2015 ACM International Joint Conference on Pervasive

and Ubiquitous Computing, pages 927–937. ACM, 2015. 2

[14] R. Stanojevic, S. Abbar, S. Thirumuruganathan, S. Chawla,

F. Filali, and A. Aleimat. Kharita: Robust map inference us-

ing graph spanners. arXiv preprint arXiv:1702.06025, 2017.

2, 6

[15] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden,

H. Balakrishnan, S. Toledo, and J. Eriksson. VTrack: Ac-

curate, energy-aware road traffic delay estimation using mo-

bile phones. In Proceedings of the 7th ACM Conference on

Embedded Networked Sensor Systems, pages 85–98. ACM,

2009. 5

[16] J. D. Wegner, J. A. Montoya-Zegarra, and K. Schindler. A

higher-order CRF model for road network extraction. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1698–1705, 2013. 6

[17] J. D. Wegner, J. A. Montoya-Zegarra, and K. Schindler. Road

networks as collections of minimum cost paths. ISPRS Jour-

nal of Photogrammetry and Remote Sensing, 108:128–137,

2015. 2, 6

[18] T. Zhang and C. Y. Suen. A fast parallel algorithm for

thinning digital patterns. Communications of the ACM,

27(3):236–239, 1984. 3

4728

https://www.wired.com/2014/12/google-maps-ground-truth/
https://www.wired.com/2014/12/google-maps-ground-truth/

