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Abstract

Recently, there has been a paradigm shift in stereo match-

ing with learning-based methods achieving the best results

on all popular benchmarks. The success of these methods

is due to the availability of training data with ground truth;

training learning-based systems on these datasets has al-

lowed them to surpass the accuracy of conventional ap-

proaches based on heuristics and assumptions. Many of

these assumptions, however, had been validated extensively

and hold for the majority of possible inputs. In this paper,

we generate a matching volume leveraging both data with

ground truth and conventional wisdom. We accomplish this

by coalescing diverse evidence from a bidirectional matching

process via random forest classifiers. We show that the re-

sulting matching volume estimation method achieves similar

accuracy to purely data-driven alternatives on benchmarks

and that it generalizes to unseen data much better. In fact, the

results we submitted to the KITTI and ETH3D benchmarks

were generated using a classifier trained on the Middlebury

2014 dataset.

1. Introduction

The most important recent development in stereo match-

ing is the prevalent use of machine learning techniques that

have led to dramatic improvements in accuracy by taking

advantage of datasets with ground truth. Methods based on

learning are effective because they replace assumptions and

hand-crafted rules with data-driven, optimized decision rules

and predictions. Classifiers are used to contribute in various

stages of the disparity estimation process; several authors

have trained classifiers to predict whether two image patches

are likely to match [4, 20, 26, 39, 47, 49, 50, 51], while oth-

ers have used classifiers to replace hand-crafted rules in other

stages of the process [8, 27, 29, 30, 37, 38, 41, 42]. A quick

inspection of the most active binocular stereo benchmarks

[7, 23, 34] reveals that learning the matching function, in

particular the work of Žbontar and LeCun [51], has been

the primary enabling technology behind the majority of the

top-ranked algorithms.

In addition to the above approaches that propose learning-

based components integrated into the stereo matching

pipeline, there are a few deep learning architectures that

allow end-to-end training [14, 16, 21, 25]. While end-to-end

training has the advantage that it avoids suboptimal configu-

rations, which often occur when intermediate objectives are

optimized separately from final disparity map accuracy, its

downside is that these methods tend to over-specialize in the

training domain. As anecdotal evidence for this statement

we provide the observation that very few results from end-

to-end architectures have been submitted to the Middlebury

2014 benchmark [34], which contains images of various res-

olutions and disparity ranges. Specialization is a desirable

property in many applications, such as autonomous driving.

In this paper, we aim to create a general approach that can

be effective on a broad range of input imagery.

In contrast to end-to-end architectures, deep learning

methods that learn the matching likelihood of image patches

have shown better generalization properties, but they can-

not be trained in an end-to-end manner. For example, the

MC-CNN method of Žbontar and LeCun [50, 51] uses a

Siamese CNN to estimate the matching volume, that con-

tains the matching likelihood/cost for each allowable dispar-

ity of every pixel, and conventional steps to optimize the

volume and extract the final disparity map. Their pipeline

resembles the last three steps of the conventional pipeline

according to Scharstein and Szeliski [35]: cost aggregation,

disparity optimization and disparity refinement. MC-CNN

has been widely adopted as the cost function by a num-

ber of authors who have presented state-of-the-art results

Djembe CBMV disparity map

Figure 1. The left view of Djembe stereo dataset [34] along with

the disparity map computed by CBMV
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[2, 6, 8, 15, 18, 37, 38, 43].

Our goal is similar to MC-CNN, since we also aim to

estimate a matching volume that can be used as input to

various optimization algorithms enabling them to produce

highly accurate disparity maps. Instead of taking an ex-

tremely data-driven approach, in which the stereo matcher

is only provided with two image patches and a label speci-

fying whether they match, we design our matching volume

estimator with an emphasis on robustness and invariance.

To improve the generalizability of our approach, we de-

sign it to be invariant to common variations of the input

images. (It may be possible to achieve invariance by apply-

ing data augmentation techniques to the training set, but then

the designer would have to specify the variations manually.)

Most conventional matching functions provide some form

of invariance to specific transformations of the input. For

instance, normalized cross-correlation (NCC) is invariant to

affine intensity transformations, while the census transform

[48] is invariant to transformations that preserve the order-

ing of intensities in the matching window. These matching

functions are known to fail quite often, but their failures can

be predicted via the use of confidence measures [13, 33].

More importantly, these failures are mitigated by combining

a diverse set of matching functions.

In addition to using four matching functions in the current

implementation of our approach, we compute two measures

of confidence for each matching function and each matching

direction: left-to-right and right-to-left. The matching cost

between a pixel pL in the left image and a pixel pR in the

right image is the same regardless of the matching direction.

The ambiguity, and thus the confidence, of the correspon-

dence, however, may differ with respect to the matching

direction. A disparity assignment, that joins a pixel in the

left image with one in the right image, must compete with

other possible disparity assignments in both the left and the

right epipolar line. Unlike most previous work [10, 27, 42],

we measure the degree of competition (ambiguity) in both

directions. The resulting matching and confidence data are

coalesced by a random forest (RF) classifier [3] that esti-

mates the probability of correctness of each disparity. Hence,

we name our method Coalesced Bidirectional Matching Vol-

ume (CBMV). Figure 1 shows an example disparity map

estimated by our algorithm.

Throughout the paper, we compare our approach to MC-

CNN [51]. In order to make the comparison straightforward,

we apply their optimization and post-processing pipeline

on the CBMV volume. Our experiments show that CBMV

generalizes to data from domains that differ substantially

from the training domain. We believe that the reason for

this is that our approach learns to reason on relationships

in the matching volume without being affected by image

appearance, which it never observes directly.

The contributions of this paper are:

• A novel method for computing the matching volume for

stereo that benefits from the combination of multiple

matching functions and confidence estimates in both

matching directions.

• Competitive results with the fast MC-CNN architecture,

which is the most widely adopted deep architecture for

patch matching.

• An improved capability to generalize to inputs from

unseen domains much better than deep learning ap-

proaches, such as MC-CNN.

2. Related Work

For a general survey of binocular stereo methods we refer

readers to [35]. In this section, we review learning-based

methods in which learning is directly relevant to disparity es-

timation. We consider methods that learn hyper-parameters

of the stereo algorithm [24, 45, 46, 53] out of scope. We

classify the methods below according to the primary problem

they address: determining disparity correctness, using cor-

rectness predictions to improve disparity estimation, learning

the matching function, and end-to-end pipelines.

Early research in stereo using machine learning method-

ology addressed the problem of deciding whether a disparity

was correct or not [5, 17] but its short-term impact was lim-

ited. This changed recently with publications such as the

one by Haeusler et al. [10] who train a random forest to

predict the correctness of the output disparities of the SGM

algorithm [12] using features computed on the images, dis-

parity maps and matching cost volume. Gouveia et al. [9]

extend the confidence estimator of [40] to be applicable to a

superpixel-based stereo algorithm. The classifier is able to

remove errors from the disparity maps, which are filled in us-

ing conventional techniques. Poggi and Mattoccia [31] pose

confidence estimation as a regression problem and solve it

using a CNN trained on small patches of disparity maps

based on the observation that patterns in the disparity map

can indicate whether a certain disparity assignment is cor-

rect. The same authors [32] improved a number of previous

methods by training a CNN to refine confidence maps. The

classifier’s predictions in all cases [9, 10, 31, 32] are effec-

tive in sparsifying the disparity maps by removing potential

errors, but do not help in the generation of more accurate

disparity estimates.

This shortcoming was addressed by algorithms that inject

confidence into the optimization stage. Spyropoulos et al.

[40, 42] train a random forest on the cost volume to detect

ground control points, the disparities of which are favored

during MRF-based disparity optimization. Park and Yoon

[27] use the predictions of a random forest to modulate the

data term of each pixel in SGM-based optimization. Poggi

and Mattoccia [30] present a confidence measure that takes

into account multi-scale features and is used to weigh cost

aggregation in SGM in order to reduce artifacts. Seki and
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Pollefeys [37, 38] present two algorithms for adjusting the

regularization parameters of SGM using CNNs trained on

stereo pairs.

Matching cost estimation was addressed by Li and Hut-

tenlocher [19] who use a structured support vector machine

to learn linear discriminant functions that compute the data

and smoothness terms of a Conditional Random Field (CRF)

based on discretized values of the matching cost, image gra-

dients and disparity differences among neighboring pixels.

Later, Alahari et al. [1] applied convex optimization, using

the same node and edge features as [19], to obtain the solu-

tion more efficiently. Peris et al. [28] use synthetic data to

train a classifier for matching cost aggregation and disparity

optimization. Multi-class LDA is applied to learn a mapping

from a feature vector that contains neighborhood matching

costs at all disparities for a pixel to the disparity that should

be assigned to the pixel.

The approach that ignited the recent wave of deep learn-

ing based stereo methods was the one of Žbontar and LeCun

[50, 51]. MC-CNN comes in two versions depending on the

steps that follow a Siamese network that learns a representa-

tion of image patches: in the fast architecture, MC-CNN-fst,

the representations of the two patches are compared using

the cosine similarity measure, while in the accurate architec-

ture, MC-CNN-acrt, patch similarity is the output of several

fully connected layers that operate on the concatenated rep-

resentations. Similarly to our approach, the networks are

trained on matching and mismatching pairs of image patches.

Žbontar and LeCun also augment the training data by distort-

ing and photometrically modifying the images. MC-CNN

generates a matching cost volume that undergoes a number

of processing steps, including SGM optimization, to gener-

ate disparity maps. Similar Siamese networks followed by

the fast or accurate similarity estimation subnetworks have

also been proposed by [4, 11, 20, 49], while more recently,

other authors have increased the effective receptive field of

the networks without loss of resolution [26, 39, 47]. Many

of the other top ranked methods have either been inspired

by MC-CNN or directly use it to compute the matching cost

[2, 6, 8, 15, 18, 37, 38, 43].

Shaked and Wolf [39] rely on deep learning in two stages

of the pipeline: cost computation and final disparity map

inference from the matching cost volume. Along with GC-

Net [14], their global disparity network is the only deep

learning approach that operates in the cost volume. The

network also estimates confidence using a novel reflective

loss function.

Disparity refinement is typically addressed by applying

various filters and interpolation techniques on the disparity

map [22]. Recent disparity refinement methods [8, 47] have

been able to learn to correct mistakes without relying on

hand-crafted rules.

The first end-to-end stereo matching system was intro-

duced by Mayer et al. [21]. The proposed architectures,

DispNet and DispNetC, go beyond learning how to match

small square patches and learn how to estimate disparity

maps given a pair of rectified images. Knöbelreiter et al. [16]

present a hybrid CNN-CRF model based on a formulation

that allows end-to-end training of a 4-connected CRF, which

is more effective on stereo matching than fully-connected

CRFs. Very recently, Kendall et al. [14] presented an end-

to-end pipeline (GC-Net) based on a high-capacity, deep

architecture that resembles the conventional pipeline. It in-

cluded 3D convolutional layers that regress disparity from a

cost volume generated by residual blocks that extract patch

representations from the images. Compared to DispNetC,

the availability of a cost volume allows GC-Net to exploit

context and achieve state-of-the-art results. Pang et al. [25]

proposed a cascade of two networks that can be trained end-

to-end. The first network is similar to DispNetC while the

second refines the disparity map.

3. Overview of the approach

Before presenting a step-by-step break down of our

method, we provide a brief high-level description of the

building blocks and the intuition behind each step involved.

Figure 2 shows a flowchart of our method. Our objective is

to compute a “good” matching volume that captures the sup-

port and competition among competing disparity hypotheses

and is amenable to global optimization. (See [51] for an

analysis of what a good matching volume is.)

The cost computation step combines the matching vol-

umes computed by four basic matchers with confidence vol-

umes extracted from the matching volumes. A Random

Forest classifier [3] is trained to coalesce all the input evi-

dence and generate the CBMV. The motivation behind this

step is to combine the strengths and mitigate the weaknesses

of these basic stereo matchers to generate a robust matching

volume for the subsequent optimization steps. Our optimiza-

tion and post-processing pipeline adopts the steps proposed

by Žbontar and LeCun with slight modifications to generate

the final disparity maps, allowing a direct comparison of our

results with those of MC-CNN.

4. Matching Volume Computation

The unit on which our algorithm operates is the matching

hypothesis, (xL, xR, y), that represents a potential correspon-

dence between pixel pL(xL, y) in the left image and a pixel

pR(xL − d, y) in the right image. Disparity d is always de-

fined as d = xL − xR and the matching hypothesis can be

written equivalently as (xL, d, y). In the remainder, we drop

y for simplicity since the images are rectified. The range of

possible disparities dmax is also an input.

To determine whether a matching hypothesis is likely or

not, we combine matching volumes generated by four basic
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Figure 2. Flowchart of our approach. The matching costs of the four matchers are coalesced with bidirectional confidence features to create

the CBMV denoted by the yellow cube. The smaller cubes show processes that operate on the CBMV, while squares show processes that

operate on the disparity map after optimization.

block matching algorithms, NCC, CENSUS, zero-mean SAD

on intensities (ZSAD) and SAD on the responses of the hor-

izontal Sobel filter (SOBEL), with two confidence volumes

for each matching function and each matching direction.

Matching Volume Representation. The matching vol-

ume for a given matching algorithm stores a value for each

possible correspondence between a pixel in the left image

to a pixel in the right image within a given disparity range.

We use the disparity-based representation for the matching

volume and write Ccen(xL, d) for the one computed using

CENSUS for example. Given xL and d (a matching hypothe-

sis), xR can be retrieved by xR = xL − d. Typically, the left

image is treated as reference and the right image as matching

target. Switching the roles of the images, and negating the

disparity range, leads to a new matching volume that can

also be obtained by re-ordering the values of the left-right

volume without re-computation (see Fig. 3).

We also compute confidence volumes that capture the

ambiguity of disparity hypotheses. These are computed bidi-

rectionally since the competitors of a potential correspon-

dence in the left image are not the same as its competitors in

the right image. We introduce the following notation: cLmin

denotes the minimum observed cost of a matching algorithm

for the left pixel of a matching hypothesis and dLmin the cor-

responding disparity. cRmin and dRmin are their counterparts

for the right pixel. cLmin can be obtained by traversing the

yellow lines (constant xL) in Fig. 3 and cRmin by traversing

the red lines (constant xR).

The confidence measures are adapted from [13] so that

they can be used to compute the confidence of all disparity

values of a pixel and not only the one with the minimum

cost. For each disparity under consideration and each basic

matcher, we extract a feature vector which consists of the

following five elements: matching cost C, left and right

ratio RL and RR, and left and right likelihood LL and LR.

We use CENSUS as an example below, but the process is

repeated for all matchers.

Matching Cost. This is the raw cost or score of the basic

stereo matching algorithm for each disparity under consider-

ation.

Ccen(xL, d) = CENSUS(xL, d) (1)

Ratio. The ratio of the minimum cost ccen,min over the

cost of the candidate disparity Ccen(xL, d) assigns high con-

fidence to disparities with close to minimum cost.

RL
cen(xL, d) =

cLcen,min

Ccen(xL, d)
(2)

This is computed by finding the minimum cost over xL along

the yellow lines in Fig. 3.

Figure 3. Top: The left and right matching volumes. The dashed

red lines correspond to the matching costs for a given pixel of

the right image. A volume can be generated from its counterpart

by shifting its equal-disparity slices by d. Bottom: For a given

element of the matching volume, the ratio and likelihood features

are computed along the yellow and red lines corresponding to the

right and left epipolar lines respectively. Black dots denote a few

intersections of left and right epipolar lines on the matching volume.

Each intersection is a matching hypothesis linking a pixel in the

left image with a pixel in the right image.
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Similarly, for the right-to-left matching direction:

RR
cen(xL, d) =

cRcen,min

Ccen(xL, d)
(3)

This is computed by finding the minimum cost over xR along

the red lines in Fig. 3.

Likelihood. Similar to AML in [13], we convert the cost

curve for a given pixel to a probability density function to

generate a confidence measure for a given disparity hypothe-

sis.

LL
cen(xL, d) =

e−
(Ccen(xL,d)−cL

cen,min
)2

2σ2

∑
i e

−

(Ccen(xL,di)−cL
cen,min

)2

2σ2

(4)

where σ is a hyper-parameter that depends on the matching

algorithm. To obtain LR
cen(xL, d) the summation in the de-

nominator must be over Ccen(xL + di, di) so that all terms

match to the same pixel in the right image.

Training. We train a Random Forest (RF) classifier to pre-

dict the matching likelihood of two image patches. The

classifier learns whether disparity candidates for each pixel

are likely to be correct based on the costs, agreements and

disagreements of the matchers and the degree of ambigu-

ity along the left and right epipolar lines captured by the

confidence measures.

Each disparity hypothesis is represented by 20 cost and

confidence values (5 per matching function). Since at most

only one hypothesis is correct per pixel, our dataset is imbal-

anced. To counter this, during training we keep all correct

correspondences and sample twice as many incorrect cor-

respondences, while Žbontar and LeCun [51] keep a 1 : 1
ratio. We keep all exact correspondences as positive sam-

ples, while they also consider correspondences that are off

by one disparity level as correct. Then we randomly pick two

disparity values, one in the lower range [0 . . . dgt − 1) and

one in the upper range (dgt + 1 . . . dmax], where dgt is the

ground truth disparity, and label them as negative samples.

The RF learns to make predictions on the correctness of each

disparity assignment that links a pair of pixels.

During testing, the RF is applied on the entire matching

and confidence volumes to produce the Coalesced Bidirec-

tional Matching Volume, which is the input to the optimiza-

tion steps described below.

Note that the right CBMV can then be obtained by shift-

ing the left CBMV. The shift is valid under a mild assump-

tion that the left and right confidence values are generated

from the same distributions. If this is the case, swapping

the left and right confidence features should not affect the

classifier’s prediction. That is, [C LL RL LR RR] and

[C LR RR LL RL] should be equivalent as feature vectors,

yielding equal predictions from the classifier.

5. Optimization and Post-processing

The next step of our algorithm is optimization and post-

processing to generate the final disparity map from the coa-

lesced volume. Since we need both the left and right dispar-

ity maps to apply consistency constraints, we generate the

right CBVM by shifting the left one as shown at the top of

Fig. 3. The following steps are applied to the two volumes

separately to produce the two disparity maps.

We use the pipeline of Mei et al. [22], which was also

adopted by MC-CNN [51]. Its steps can be seen on the

right side of Fig. 2. We only provide a high level descrip-

tion of the components since they are not novel. There are

steps that operate in volumes, namely cross based cost ag-

gregation (CBCA)[52]and Semi-Global Matching (SGM)

[12], and further steps that are applied on 2D disparity maps,

namely sub-pixel refinement via parabolic fitting, left-right

consistency test and interpolation to fill in invalidated pix-

els, followed by median and bilateral filtering. Following

MC-CNN we apply CBCA before and after SGM. While

we keep the structure of the pipeline, we tuned the values of

its parameters via cross-validation per dataset to obtain high

accuracy. More details are included in the supplement.

6. Experimental Results

We evaluate our algorithm on the 2014 version of the

Middlebury Stereo Evaluation dataset [34], the 2012 and

2015 versions of the KITTI stereo benchmark [7, 23] and

the ETH3D stereo benchmark [36].

The Middlebury dataset consists of a training set of 15

stereo pairs, 13 additional stereo pairs, all with publicly avail-

able ground truth, and a test set of 15 stereo pairs, the ground

truth for which has not been released. Compared to previous

versions of the benchmark, this version is more challenging

because most stereo pairs have imperfect rectification, except

those with a suffix ’P’ in their filename, while several others

contain images taken under different exposure or lighting,

denoted by ’E’ and ’L’ respectively [34]. The image resolu-

tion varies between 1.5 and 5.9 megapixels with an average

of 5.2 megapixels and the disparity range varies between 256

and 800. As most authors, we use half-resolution images.

The ranking in the new tables is determined by weighted

averages of the selected metric.

The KITTI datasets consist of approximately 200 training

and 200 testing stereo pairs each. The ground truth is semi-

dense covering roughly 30% of all pixels and is concentrated

in the lower part of the images. The ground truth of the test

sets has been withheld. An important difference between the

two versions of the benchmark is that cars have been man-

ually annotated in the 2015 version and have dense ground

truth, including their windshields. The latter are explicitly

deleted from the ground truth of the 2012 benchmark.

The ETH3D stereo dataset consists of 27 training and 20
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Out-Noc Out-all

Method bad .5 bad 1.0 bad 2.0 rms bad .5 bad 1.0 bad 2.0 rms

CBMV 13.69% 5.35% 1.56% 0.71 14.52% 5.97% 1.97% 0.86

SGM ROB 19.52% 10.08% 4.07% 1.89 20.33% 10.77% 4.67% 2.11

MeshStereo 22.27% 11.52% 5.78% 1.21 22.95% 11.94% 6.09% 1.29

SPS-STEREO 55.62% 15.04% 3.08% 1.07 56.02% 15.83% 3.67% 1.22

SGM-STEREO 54.67% 15.62% 4.39% 1.83 55.54% 17.25% 6.27% 2.67

ELAS 33.66% 16.72% 8.05% 1.89 34.78% 17.99% 9.07% 1.52

Table 1. Results of our method (CBMV) on ETH3D two-view benchmark. Our method outperforms all other methods by a large margin. All

our submissions, including on ETH3D, use the same model, trained on the Middlebury 2014 dataset. The methods are sorted based on the

main validation metric: bad 1.0 out-noc.

testing stereo pairs. The ground truth is dense and generated

by a Faro Focus X 330 laser scanner. The ground truth for

the training set is publicly available,while for the test set, it

has not been released.

Experimental Setup. To compute the initial matching vol-

umes on the Middlebury data using the four block matching

algorithms, we set the width of the matching windows to:

3× 3 for NCC, 5× 5 for ZSAD, 11× 11 for CENSUS and

5 × 5 for SOBEL. The σ parameter in Eq. (4) was set to

0.02 for NCC, 100 for ZSAD and SOBEL and 8 for CENSUS.

Parameters for the KITTI data are similar and are included

as supplementary material.

On the Middlebury 2014 dataset, we use three-fold cross-

validation to train our RF classifier. We split the training set

into three sets of five images. Two of these sets of five and

the set of 13 additional images, which are available with the

dataset but are not evaluated, are used for training during

each fold of the cross-validation process, while the remaining

five images are used for testing. Before the final testing phase

on the Middlebury test set, we train our classifier on all 28

training stereo pairs. Due to the availability of more data,

we use two-fold cross validation on the KITTI datasets. We

did not train on the ETH3D dataset.

We tune the optimization parameters (see Section 5) sep-

arately for each dataset, as in [51]. A complete hyper-

parameter configuration is provided in the supplement.

bad-2.0

nonocc

bad-2.0

all

avgerror

all

rms-error

all

Middlebury 2014 test set

MC-CNN-acrt 8.08% 19.1% 17.9 55.0

CBMV(ours) 11.1% 20.5% 14.4 46.9

MC-CNN-fst 9.47% 20.6% 19.3 55.7

Middlebury 2014 training set

MC-CNN-acrt 10.1% 19.7% 11.8 36.6

CBMV(ours) 11.7% 20.3% 11.5 34.9

MC-CNN-fst 11.7% 21.5% 12.8 37.5

Table 2. Results of our method (CBMV) on the Middlebury 2014

test and training sets, compared with the results of MC-CNN-acrt

and MC-CNN-fst using four different metrics.

Results. On the Middlebury data, the final disparity maps

computed by CBMV have an average error rate of 11.1% and

11.7% out of non-occluded pixels on the testing and training

set, respectively, with the error tolerance set to 2.0 disparity

levels. These results show that our method can produce com-

petitive results with the MC-CNN-fst architecture. However,

our method outperforms MC-CNN-fst on both training and

testing sets when we consider all pixels and shows competi-

tive results to the MC-CNN-acrt architecture. Moreover our

method ranks higher than both MC-CNN-fst and MC-CNN-

acrt with respect to average and RMS error. Table 2 shows

a comparison of our method with MC-CNN-acrt and MC-

CNN-fst. Figure 5 shows disparity maps generated by our

method with corresponding error maps on the Middlebury

2014, KITTI 2012 and KITTI 2015 datasets.

Generalization. Being able to evaluate a method on the

available benchmarks is very important since a it allows fair,

comprehensive comparisons with other methods. However,

benchmarks cannot capture all the difficulties involved when

deploying a method on the field. To evaluate the transfer-

ability of our method, we use our trained RFs on the three

different datasets, Middlebury 2014, KITTI 2012 and KITTI

2015, and test on the corresponding unseen training sets. As

an example, we use the RFs from KITTI 2012 and KITTI

2015 to test on the Middlebury 2014 training set. The same

approach is used for the downloaded MC-CNN-fst mod-

els, which serve as baselines. Since the optimization and

post-processing stage is an integral part of both methods,

for fairness and to avoid inconclusive results due to hyper-

parameter tuning, we keep the hyper parameter values that

worked best when the method is applied to the same dataset.

More precisely when we use the RF trained on KITTI 2012

to test on the Middlebury 2014 training set, we use the Mid-

dlebury 2014 best hyper-parameters during testing. We were

unable to run MC-CNN-acrt KITTI models on the Middle-

bury dataset due to the limited amount of global memory

on the GPU, but we include results based on the numbers

reported in [51]. It is worth noting that MC-CNN-acrt is

significantly worse that MC-CNN-fst in this particular ex-

periment, which shows that MC-CNN-acrt specializes even

more to the particular training dataset to achieve higher ac-

62065



Middlebury model KITTI 2012 model KITTI 2015 model

Error 13.3% Error 15.86% Error 15.92%

Figure 4. Generalization examples of CBMV on the Playtable data from Middlebury. Our method is robust when tested in different domains,

especially compared to MC-CNN. The corresponding error rates at a 2-disparity level tolerance for MC-CNN-fst are 18.0% , 41.43% and

38.67% respectively.

Test set

KITTI 2012 (Out-Noc) KITTI 2015 (Out-All) Middlebury (bad 2.0)

MC-ac MC-fst CBMV MC-ac MC-fst CBMV MC-ac MC-fst CBMV

Training set

KITTI 2012 0% 0% 0% 23.07% 13.28% -0.41% 40.20% 33.58% 7.00%

KITTI 2015 63.98% 17.54% 3.02% 0% 0% 0% 79.39% 41.62% 7.69%

Middlebury 17.62% 10.51% -4.62% 38.15% 18.79% -2.09% 0% 0% 0%

Table 3. Quantitative generalization results for CBMV, MC-CNN-fst and MC-CNN-acrt. This table shows relative increases in error rate

when the training set is different than the test set. For example, the rightmost column means that the CBMV error rate increases by 7% when

trained on KITTI 2012 and tested on Middlebury, compared to training and testing on Middlebury. For MC-CNN-acrt we use data from

Table 10 of [51].

curacy.

Table 3 shows that our method adapts much better to new

unseen environments. Figure 4 shows results on a particular

example where MC-CNN-fst has a dramatic drop in accuracy.

In Table 3 we can see that our Middlebury RF outperforms

the RFs trained on KITTI 2012 and 2015. We believe that

this behavior can be attributed to that fact that Middlebury

2014 dataset contains much more diverse scenes, thus the

classifier can generalize better.

We submitted results to the KITTI 2012, KITTI 2015 and

ETH3D test sets using the RF trained on the Middlebury

2014 dataset and optimization and post-processing param-

eters tuned on each target dataset. The error rates of our

disparity maps are 3.56% and 4.73%, on non-occluded and

on all pixels on KITTI 2012, and 4.58% and 5.06% on non-

occluded and on all pixels on KITTI 2015. Table 1 shows a

comparison of our method with other methods on the ETH3D

benchmark. Our method outperforms every other method by

a large margin. We are not aware of any other submission

that was not trained on data from KITTI or ETH3D itself.

Please visit the KITTI and ETH3D websites for comparisons

with other methods.

Runtime. At first glance our method seems very expen-

sive both in computation and space requirements. This is

partially true. Computing the four initial cost volumes is

very efficient and can be done in parallel. In our imple-

mentation the total time spend computing the four initial

costs is approximately 2.5 seconds for a KITTI stereo pair.

The feature extraction process takes about 7 seconds. To

lower the space requirements, features can be extracted in

batches of image rows. The bottleneck of our method is the

random forest classifier which takes approximately 162 sec-

onds. A better implementation of the random forest where

training is done on the CPU and inference is performed

on the GPU is feasible but out of the scope of the current

paper. Moreover, due to the robustness of our model, an

ASIC RF implementation is possible and would enable very

high frame rates. Most optimization and post-processing

steps have to be executed for both the left and right disparity

map, but they only take a few seconds. The total runtime

of our method on KITTI is 250 seconds. Our complete im-

plementation including the trained RF model is available at

https://github.com/kbatsos/CBMV.

7. Conclusions

We have proposed a novel approach for estimating a bidi-

rectional matching volume by coalescing matching and con-

fidence data generated by applying conventional matching

functions on rectified stereo pairs. We have evaluated the

accuracy and the generalizability of this approach quantita-

tively and qualitatively.

Comparing the results of CBMV with those of MC-CNN

on the 2014 Middlebury benchmark, we observe that CBMV

is superior with respect to average and RMS disparity errors

when all pixels are considered. Considering other error

metrics on both non-occluded and all pixels, the ordering

of the two MC-CNN architectures and CBMV fluctuates. It

would be fair to say that MC-CNN-acrt is the most accurate

overall, with the other two methods being essentially tied.

The advantage of our method lies in its generalizability.

According to Tonioni et al. [44], end-to-end deep archi-

tectures [21] tend to specialize on their training domain.

MC-CNN is better suited for previously unseen domains,

but as we have shown in Table 3, our method generalizes
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Middlebury 2014

KITTI 2012

KITTI 2015

Input Image CBMV Error map

Figure 5. Results of our method (CBMV) on the three datasets: Middlebury 2014, KITTI 2012 and KITTI 2015. Note that the KITTI

disparity maps were generated using an RF trained on Middlebury 2014.

much better. Training on the Middlebury data resulted in

even higher accuracy on the KITTI benchmark than training

on the target dataset itself. Transferring RFs in the other

direction led to a small loss of accuracy. The strength of

our approach is that, due to its design that avoids learning

directly from image appearance, trained classifiers can be

applied in domains without ground truth data. This is a

critical feature for being able to apply a method on images

taken in the field (not necessarily in real time).

In our future work we plan to investigate ways of com-

bining the generalization properties of our approach with the

advantages of end-to-end deep learning architectures.
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