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Abstract

The Jaccard index, also referred to as the intersection-

over-union score, is commonly employed in the evaluation

of image segmentation results given its perceptual qualities,

scale invariance – which lends appropriate relevance to

small objects, and appropriate counting of false negatives,

in comparison to per-pixel losses. We present a method

for direct optimization of the mean intersection-over-union

loss in neural networks, in the context of semantic image

segmentation, based on the convex Lovász extension of sub-

modular losses. The loss is shown to perform better with

respect to the Jaccard index measure than the traditionally

used cross-entropy loss. We show quantitative and qualita-

tive differences between optimizing the Jaccard index per

image versus optimizing the Jaccard index taken over an

entire dataset. We evaluate the impact of our method in a

semantic segmentation pipeline and show substantially im-

proved intersection-over-union segmentation scores on the

Pascal VOC and Cityscapes datasets using state-of-the-art

deep learning segmentation architectures.

1. Introduction

We consider the task of semantic image segmentation,

where each pixel i of a given image has to be classified

into an object class c ∈ C. Most of the deep network based

segmentation methods rely on logistic regression, optimizing

the cross-entropy loss [10]

loss(f) = −
1

p

p
∑

i=1

log fi(y
∗
i ), (1)

with p the number of pixels in the image or minibatch con-

sidered, y∗i ∈ C the ground truth class of pixel i, fi(y
∗
i ) the

network probability estimate of the ground truth probability

of pixel i, and f a vector of all network outputs fi(c). This

supposes that the unnormalized scores Fi(c) of the network

have been mapped to probabilities through a softmax unit

fi(c) =
eFi(c)

∑

c′∈C
eFi(c′)

∀i ∈ [1, p], ∀c ∈ C. (2)

Loss (1) generalizes the logistic loss and leads to smooth op-

timization. During testing, the decision function commonly

used consists in picking the class of maximum score: the

predicted class for a given pixel i is ỹi = argmaxc∈C Fi(c).
The measure of the cross-entropy loss on a validation set

is often a poor indicator of the quality of the segmentation.

A better performance measure commonly used for evalu-

ating segmentation masks is the Jaccard index, also called

the intersection-over-union (IoU) score. Given a vector of

ground truth labels y∗ and a vector of predicted labels ỹ, the

Jaccard index of class c is defined as [14]

Jc(y
∗, ỹ) =

|{y∗ = c} ∩ {ỹ = c}|

|{y∗ = c} ∪ {ỹ = c}|
, (3)

which gives the ratio in [0, 1] of the intersection between the

ground truth mask and the evaluated mask over their union,

with the convention that 0/0 = 1. A corresponding loss

function to be employed in empirical risk minimization is

∆Jc
(y∗, ỹ) = 1− Jc(y

∗, ỹ). (4)

For multilabel datasets, the Jaccard index is commonly aver-

aged across classes, yielding the mean IoU (mIoU).

We develop here a method for optimizing the performance

of a discriminatively trained segmentation system with re-

spect to the Jaccard index. We show that a piecewise linear

convex surrogate to the Jaccard loss based on the Lovász

extension of submodular set functions yields a consistent

improvement of predicted segmentation masks as measured

by the Jaccard index.

Although the Jaccard index is often computed globally,

over every pixel of the evaluated segmentation dataset [8], it

can also be computed independently for each image. Using

the per-image Jaccard index is known to have better percep-

tual accuracy by reducing the bias towards large instances of
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the object classes in the dataset [6]. Due to these favorable

properties, and the empirical risk minimization principle of

optimizing the loss of interest at training time [25], optimiza-

tion of the Jaccard loss during training has been frequently

considered in the literature. However, in contrast to the

present work, existing methods all have significant short-

comings that do not allow plug-and-play application to a

wide range of learning architectures.

[20] provides a Bayesian framework for optimization of

the Jaccard index. The author proposes an approximate

algorithm using parametric linear programming to optimize

a statistical approximation to the objective. [1] optimize IoU

by selecting among a few candidate segmentations, instead

of directly optimizing the model with respect to the loss. [3]

optimize the Jaccard loss in a structured output SVM, but

are only able to do so with a branch-and-bound optimization

over bounding boxes and not full segmentations.

Alternative approaches train binary classifiers, but on data

that are sampled to capture high Jaccard index. [4, 12] use

IoU and related overlap measures to define training sets for

binary classifiers in a complex multi-stage training. Such

sampling-based approaches clearly induce suboptimality in

the empirical risk approximation and do not lend themselves

to convenient modular application in a deep learning setting.

Still other recent high-impact research has highlighted

the need for optimization of the Jaccard index, but resort to

binary training as a proxy, presumably for lack of a conve-

nient and flexible method of directly optimizing the loss of

interest. [18] train with logistic loss and test with the Jaccard

index. The paper introducing the highly influential OverFeat

network specifically addresses the shortcoming in the discus-

sion section [23]: “We are using ℓ2 loss, rather than directly

optimizing the intersection-over-union (IoU) criterion on

which performance is measured. Swapping the loss to this

should be possible....” However, this is left to future work. In

this paper, we develop the necessary plug-and-play loss layer

to enable flexible direct minimization of the Jaccard loss in

a deep learning setting, while demonstrating its applicability

for training state-of-the-art image segmentation networks.

Our approach is based on the recent development of gen-

eral strategies for generating convex surrogates to submodu-

lar loss functions, including the Lovász hinge [26]. Based

on the result that the Jaccard loss is submodular, this strategy

is directly applicable. We moreover generalize this approach

to a multiclass setting by considering a regression-based

variant, using a softmax activation layer to naturally map

network probability estimates to the Lovász extension of the

Jaccard loss. In this work, we (i) apply the Lovász hinge with

Jaccard loss to the problem of binary image segmentation

(Sec. 2.1), (ii) propose a surrogate for the multi-class setting,

the Lovász-Softmax loss (Sec. 2.2), (iii) design a batch-based

IoU surrogate that acts as an efficient proxy to the dataset

IoU measure (Sec. 3.1), (iv) analyze and compare the proper-

ties of different IoU-based measures, and (v) demonstrate a

substantial and consistent improvement in performance mea-

sured by the Jaccard index in state-of-the-art deep learning

based segmentation systems.

2. Optimization surrogates for submodular

loss functions

In order to optimize the Jaccard index in a continuous

optimization framework, we consider smooth extensions of

this discrete loss. The extensions are based on submodu-

lar analysis of set functions, where the set function maps

from a set of mispredictions to the set of real numbers [26,

Equation (6)].

For a segmentation output ỹ and ground truth y∗, we

define the set of mispredicted pixels for class c as

Mc(y
∗, ỹ) = {y∗ = c, ỹ 6= c} ∪ {y∗ 6= c, ỹ = c}. (5)

For a fixed ground truth y∗, the Jaccard loss in Eq. (4) can

be rewritten as a function of the set of mispredictions

∆Jc
: Mc ∈ {0, 1}

p 7→
|Mc|

|{y∗ = c} ∪Mc|
. (6)

Note that for ease of notation, we naturally identify subsets

of pixels with their indicator vector in the discrete hyper-

cube {0, 1}p.

In a continuous optimization setting, we want to assign a

loss to any vector of errors m ∈ R
p
+, and not only to discrete

vectors of mispredictions in {0, 1}p. A natural candidate for

this loss is the convex closure of function (6) in R
p. In

general, computing the convex closure of set functions is

NP-hard. However, the Jaccard set function (6) has been

shown to be submodular [27, Proposition 11].

Definition 1 [9]. A set function ∆ : {0, 1}p → R is sub-

modular if for all A,B ∈ {0, 1}p

∆(A) + ∆(B) ≥ ∆(A ∪B) + ∆(A ∩B). (7)

The convex closure of submodular set functions is tight

and computable in polynomial time [19]; it corresponds to

its Lovász extension.

Definition 2 [2, Def. 3.1]. The Lovász extension of a set

function ∆: {0, 1}p → R such that ∆(0) = 0 is defined by

∆: m ∈ R
p 7→

p
∑

i=1

mi gi(m) (8)

with gi(m) = ∆({π1, . . . , πi})−∆({π1, . . . , πi−1}),
(9)

π being a permutation ordering the components of m in

decreasing order, i.e. xπ1
≥ xπ2

. . . ≥ xπp
.
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Let ∆ be a set function encoding a submodular loss such

as the Jaccard loss defined in Equation (6). By submodularity

∆ is the tight convex closure of ∆ [19]. ∆ is piecewise

linear and interpolates the values of ∆ in R
p \ {0, 1}p, while

having the same values as ∆ on {0, 1}p, i.e. on any set of

mispredictions (Equation (5)). Intuitively, if m is a vector

of all pixel errors, ∆(m) is a sum weighting these errors

according to the interpolated discrete loss. By its convexity

and continuity, ∆ is a natural surrogate for the minimization

of ∆ with first-order continuous optimization, such as in

neural networks. The elementary operations involved to

compute ∆ (sort, dot product, . . . ) are differentiable and

implemented on GPU in current deep learning frameworks.

The vector g(m) of which the components are defined in

Equation (9) directly corresponds to the derivative of ∆ with

respect to m.

In the following, we consider two different settings in

which we construct surrogate losses by using the Lovász

extension and specifying the vector of errors m that we use:

1. The foreground-background segmentation problem,

which leads to the Lovász hinge, as described in [27];

2. The multiclass segmentation problem, which leads to

the Lovász-Softmax loss, incorporating the softmax

operation in the Lovász extension.

2.1. Foregroundbackground segmentation

(a) GT = [−1,−1] (b) GT = [−1, 1]

(c) GT = [1,−1] (d) GT = [1, 1]

Figure 1: Lovász hinge in the case of two pixel predictions

for the four possible ground truths GT, as a function of the

relative margins ri = 1 − Fi(x) y
∗
i for i = 1, 2. The red

dots indicate the values of the discrete Jaccard index.

In the binary case, we consider the optimization of the

Jaccard index for the foreground class ∆J1
. We use a max-

margin classifier: for an image x, we define

• y∗i ∈ {−1, 1} the ground truth label of pixel i,

• Fi(x) the i-th element of the output scores F of the

model, such that the predicted label ỹi = sign(Fi(x)),

• mi = max(1− Fi(x) y
∗
i , 0) the hinge loss associated

with the prediction of pixel i.

In this setting, the vector of hinge losses m ∈ R
+ is the

vectors of errors discussed before. With ∆J1
the Lovász

extension to ∆J1
, the resulting loss surrogate

loss(F ) = ∆J1
(m(F )) (10)

is the Lovász hinge applied to the Jaccard loss, as described

in [26]. It is piecewise linear in the output scores F as a

composition of piecewise linear functions. Moreover, by

choice of the hinge loss for the vector m, the Lovász hinge

reduces to the standard hinge loss [24] in the case of a single

prediction, or when using the Hamming distance instead of

the Jaccard loss as a basis for the construction. Figure 1

illustrates the extension of the Jaccard loss in the case of the

prediction of two pixels, illustrating the convexity and the

tightness of the surrogate.

2.2. Multiclass semantic segmentation

(a) GT = [−1,−1] (b) GT = [−1, 1]

(c) GT = [1,−1] (d) GT = [1, 1]

Figure 2: Lovász-Softmax for the foreground class, with

two classes {−1, 1} and two pixels, for each ground truth

labeling GT. The loss is plotted against the difference of

unnormalized scores di = Fi(y
∗
i )−Fi(1− y∗i ) for i = 1, 2.

In a segmentation setting with more than two classes,

we propose a surrogate based on a logistic output instead

of using a max-margin setting. Specifically we map the

output scores of the model to probability distributions using

a softmax unit as is done traditionally in the case of the

cross-entropy loss.

We use the class probabilities fi(c) ∈ [0, 1] defined in

Equation (2) to construct a vector of pixel errors m(c) for

class c ∈ C defined by

mi(c) =

{

1− fi(c) if c = y∗i ,

fi(c) otherwise.
(11)

We use the vector of errors m(c) ∈ [0, 1]p to construct the

loss surrogate to ∆Jc
, the Jaccard index for class c:

loss(f(c)) = ∆Jc
(m(c)) (12)
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When considering the class-averaged mIoU metric, com-

mon in semantic segmentation, we average the class-specific

surrogates; hence we define the Lovász-Softmax loss as

loss(f) =
1

|C|

∑

c∈C

∆Jc
(m(c)) (13)

which is piecewise linear in f , the normalized network out-

puts. Figure 2 show this loss as a function of the unnor-

malized vector outputs F for a prediction of two pixels. In

the limit of large scores (confident outputs), the probability

vectors at each pixel (fi(c))c∈C are close to an indicator vec-

tor, and we recover the values of the discrete Jaccard index

for the corresponding discrete labeling with respect to the

ground truth, as seen on the figure.

3. Optimization of intersection over union

Naı̈ve computation of the Lovász extension (Equation (8))

applied to ∆Jc
can be achieved by sorting the elements of

m in O(p log p) time and doing O(p) calls to ∆Jc
. How-

ever, if we compute ∆Jc
by Equation (3), each call will cost

O(n). As π is known in advance, we may simply keep track

of the cumulative number of false positives and negatives

in {π1, . . . , πi} for increasing i yielding an amortized O(1)
cost per evaluation of ∆Jc

(cf. [27, Equation (43)]). This

computation also yields the gradient g(m) at the same com-

putational cost. This is a powerful result implying that a tight

surrogate function for the Jaccard loss is available and com-

putable in time O(p log p). The algorithm for computing the

gradient of the loss surface resulting from this procedure is

summarized in Algorithm 1.

Algorithm 1 Gradient of the Jaccard loss extension ∆Jc

Inputs: vector of errors m(c) ∈ R
p
+

class foreground pixels δ = {y∗ = c} ∈ {0, 1}p

Output: g(m) gradient of ∆Jc
(Equation (9))

1: π ← decreasing sort permutation for m

2: δπ ← (δπi
)i∈[1,p]

3: intersection← sum(δ)− cumulative sum(δπ)
4: union← sum(δ) + cumulative sum(1− δπ)
5: g ← 1− intersection/union

6: if p > 1 then

7: g[2 : p]← g[2 : p]− g[1 : p− 1]
8: end if

9: return g
π

−1

3.1. Image–mIoU vs. dataset–mIoU

The official metric of the semantic segmentation task in

Pascal VOC [7] and numerous other popular competitions is

the dataset–mIoU,

dataset–mIoU =
1

|C|

∑

c∈C

Jc(y
∗, ỹ), (14)

where y∗ and ỹ contain the ground truth and predicted labels

of all pixels in the testing dataset.

The Lovász-Softmax loss considers an ensemble of pixel

predictions for the computation of the surrogate to the Jac-

card loss. In a stochastic gradient descent setting, only a

small numbers of pixel predictions are taken into account in

one optimization step. Therefore, the Lovász-Softmax loss

cannot directly optimize the dataset–mIoU. We can compute

this loss over individual images, optimizing for the expected

image–mIoU, or over each minibatch, optimizing for the

expected batch–mIoU. However, it is not true in general that

E

(

intersection

union

)

≈
E(intersection)

E(union)
, (15)

and we found in our experiments that optimizing the image–

mIoU or batch–mIoU generally degrades the dataset–mIoU

compared with optimizing the standard cross-entropy loss.

The main difference between the dataset and image–

mIoU measures resides in the absent classes. When the

network wrongly predicts a single pixel belonging to a class

that is absent from an image, the image intersection over

union loss corresponding to that class changes from 0 to 1.

By contrast, a single pixel misprediction does not substan-

tially affect the dataset–mIoU metric.

Given this insight, we propose as an heuristic for optimiz-

ing the dataset–mIoU to compute the batch Lovász-Softmax

surrogate by taking the average in Equation (13) only over

the classes present in the batch’s ground truth. As a result,

the loss is more stable to single predictions in absent classes,

mimicking the dataset–mIoU. As outlined in our experi-

ments, the optimization of the Lovász-Softmax restricted to

classes present in each batch, effectively translates into gains

for the dataset–mIoU metric.

We propose an additional trick for the optimization of the

dataset–mIoU. Since the mIoU gives equal importance to

each class, and to make the expectation of the batch–mIoU

closer to the dataset–mIoU, it seems important to ensure that

we feed the network with samples from all classes during

training. In order to enforce this requirement, we sample the

patches from the training by cycling over every classes, such

that each class is visited at least once every |C| patches. This

method is referred to as equibatch in our experiments.

4. Experiments

4.1. Synthetic experiment

We demonstrate the relevance of using the Jaccard loss for

binary segmentation with a synthetic binary image segmenta-

tion experiment. We generate N = 10 binary images of size

50 × 50 representing circles of various radius, and extract

for each pixel i a single feature using a unit variance Gaus-

sian perturbation of the ground truth, fi ∼ N (ǫ, 1) where
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(a) Sample label & features (b) Relative losses for varying bias b

Figure 3: Synthetic model studied in 4.1 and loss objectives.

ǫ = 1/2 for the foreground and −1/2 for the background,

as illustrated in Figure 3a.

We consider a model classifying pixels in the foreground

class for fp > −b, and we learn the bias term b. An exhaus-

tive search, illustrated in Figure 3b, shows that among the

losses considered, only the Lovász hinge efficiently captures

the absolute minimum of the Jaccard loss.

4.2. Binary segmentation on Pascal VOC

We base our Pascal VOC experiments on the DeeplabV2-

single-scale semantic segmentation network [16]. The net-

work uses a Resnet-101 [13] based architecture, re-purposed

for image segmentation, notably using dilated (or atrous)

convolutions. We use the initialization weights provided

by the authors. These weights were pre-trained on MS-

COCO [17] using cross-entropy loss and weight decay. We

further fine-tune these weights on a segmentation dataset

consisting of Pascal VOC 2012 training images [8] and the

extra images provided by [11], as is common in recent se-

mantic image segmentation applications.

For our binary segmentation experiments, we perform an

initial fine-tuning of the weights using cross-entropy loss

alone jointly on the 21 classes of Pascal VOC (including the

background class); this constitutes our basis network. We

then turn to binary segmentation by selecting one particular

class and finetune the output of the network for the selected

class. In order to consider a realistic binary segmentation

setting, for each class, we sample the validation set such

that half of the images contain at least one foreground pixel.

The training is done on random crops of size 321 × 321
extracted from the training set, with random scale and hori-

zontal flipping. Training batches are randomly sampled from

the training set such that half of the selected images contain

the foreground class on average.

Our experiments revolve around the choice of the training

loss during fine-tuning to binary segmentation. We do a

fine-tuning of 2 epoch iterations, with an initial learning rate

of 5 · 10−4, reduced to 1 · 10−4 after 1 epoch.

Performance of the surrogate Table 1 shows the average

of the losses considered after a training with different loss

objectives. Evidently, training with a particular loss leads

generally to a better objective value of this loss on the vali-

dation set. Moreover, we see that the Lovász hinge acts as a

Table 1: Average of mean validation binary losses over the

20 Pascal VOC categories, after a training with cross-entropy,

hinge, and Lovász hinge loss. The image–mIoU of the basis

network, trained for all categories, is equal to 78.29.

Training loss→ Cross-entropy Hinge Lovász hinge

Cross-entropy 6.84 6.96 7.91

Hinge 7.81 6.95 7.11

Lovász hinge 8.37 7.45 5.44

Image–IoU 77.14 75.8 80.5

Figure 4: Binary bicycle masks predicted on a validation

image after training the network under various losses.

good surrogate of the discrete image–IoU, leading to a better

validation accuracy for this measure.

Figure 4 shows example binary segmentation mask out-

puts. We notice that the Jaccard loss tends to fill gaps in

segmentation, recover small objects, and lead to a more

sensible segmentation globally, than other losses considered.

Comparison to prior work [22] propose separately ap-

proximating I ≃
∑p

i=1 Fi [y
∗
i = 1] and U ≃

∑n

i=1(pi +
[y∗i = 1]) − I for optimization of binary IoU ≃ I/U . In

our experiments, we were not able to observe a consistent

improvement of the IoU using this surrogate, contrary to the

Lovász hinge. Details on this comparison are included in the

Supplementary Material, Section A.

4.3. Multiclass segmentation on Pascal VOC

We again use Deeplab-resnet-v2. This time, we exactly

replicate the training procedure of the authors and following

the same learning rate schedule, simply swapping out the

loss for our multiclass surrogate, the Lovász-Softmax loss as

described in Equation (13), with the mean being restricted

to the classes present in a given batch.

As in the reference implementation, we use a stochastic

gradient descent optimizer with momentum 0.9 and weight

decay 5 · 10−4; the learning rate at training iteration k is

lr
(k) = lrbase

(

1−
k

max iter

)power

(16)

where power = 0.9 and lrbase = 2.5 ·10−4. We experiment

either with 20K iterations of batches of size 10 as in the

reference paper, or with 30K iterations. We train the network

with patches of size 321 × 321, with random flipping and

rescaling. The 1449 validation images of Pascal VOC are
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(a) Input images (b) Ground truth masks (c) Lovász-Softmax + CRF (d) Cross-entropy + CRF

Figure 5: Multiclass segmentations after training with the Lovász-Softmax or the cross-entropy loss, and post-processed with

Gaussian CRF. The color scheme follows the standard convention of the Pascal VOC dataset [8].

Table 2: Performance of Deeplab-v2 single-scale trained with cross-entropy (x-loss) vs. Lovász-Softmax loss, for different

network evaluations: raw single-scale network output, multi-scale, and Gaussian CRF post-processing.

validation mIoU (%) test mIoU (%)

single-scale multi-scale multi-scale + CRF multi-scale + CRF

x-loss 74.64 76.23 76.53 76.44

x-loss + equibatch 75.53 76.70 77.31 78.05

x-loss + equibatch – 30K iterations 74.97 76.24 76.73

Lovász 76.56 77.24 77.99

Lovász + equibatch 76.53 77.28 78.49

Lovász + equibatch – 30K iterations 77.41 78.22 79.12 79.00

included in the training only for experiments evaluated on

the official test evaluation server.

We train Deeplab-resnet at a single input scale, which

fits the memory constraints of a single GPU. We optionally

evaluate the learned weights in a multiscale setting by tak-

ing the mean of the probabilities given by the network at

scales 1, 0.75, and 0.5, and also include the Gaussian CRF

post-processing step used by Deeplab-v2. In this evalua-

tion setting, we found that the baseline performance of the

network trained with cross-entropy reaches 76.44% dataset–

mIoU on the test set of Pascal VOC.

Tables 2 and 3 present the scores obtained after training

the network with cross-entropy or Lovász-Softmax loss, with

and without equibatch, under various evaluation regimes.

For a given training and evaluation setting, our loss achieves

higher mIoU. Figure 5 shows some example outputs.

Figure 6a shows the evolution of the validation mIoU over

the course of the training. We notice that the performance

gain manifests itself especially in the last epochs of the

optimization. Therefore, we also experiment with the same

training setting with 30K iterations, to further benefit from

the effects of the loss at these smaller learning rates. In

agreement with our intuition, we see in Table 2 that training

with our surrogate benefits from a larger number of iterations,

in contrast to the original training with cross-entropy.

The CRF post-processing step of Deeplab appears to

bring complementary improvements to the use of our mIoU

surrogate. While using equibatch (batches with cyclic sam-

pling from each class) does significantly help the cross-

entropy loss with respect to the dataset–mIoU, its effect

on the performance with Lovász-softmax seems marginal.

This may be linked with the fact that our loss ignores classes

absent from the minibatch ground truth, and therefore relies

less on the order of appearance of the classes across batches.
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Table 3: Per-class test IoU (%) corresponding to the best-performing variants in Table 2.

airplane cycle bird boat bottle bus car cat chair cow d. table dog horse mbike person plant sheep sofa train tv

x-loss 92.95 41.06 87.06 61.23 77.6 91.99 88.11 92.45 32.84 82.48 59.6 90.13 89.83 86.77 85.79 58.06 85.31 52.00 84.47 71.26

x-loss–equi. 93.32 40.29 91.47 63.74 77.03 93.10 86.70 93.37 34.79 87.92 69.74 89.53 90.61 84.70 85.13 59.23 87.71 64.46 82.89 68.57

Lovász–equi 30K 92.63 41.55 87.87 68.41 77.75 94.71 86.71 90.37 38.59 86.24 74.50 89.02 91.69 87.28 86.37 65.92 87.13 65.21 83.69 68.64

(a) Dataset mIoU on the validation set over

the course of the Lovász-Softmax or cross-

entropy optimization.

0 5000 10000 15000 20000
65

70

75

80
dataset mIoU

40

45

50

55

mIoU-batch-present

training iteration

(b) Validation dataset–mIoU vs. batch–mIoU

restricted to present classes during training

with Lovász-Softmax.

18000 18500 19000 19500 20000
73.8

74.0

74.2

74.4

95.40

95.55

95.70

training iteration

dataset mIoU

image mIoU

(c) Validation dataset–mIoU and image–

mIoU during training with Lovász-Softmax

optimizing for image–mIoU.

Figure 6: Evolution of some validation measures over the course of the training.

We found however that using equibatch facilitates the con-

vergence of the training, as it helps the network to consider

all classes during the course of the optimization. This is

especially important in the early stages of the optimization,

where a class absent for too long can end up being dropped

by the classifier in favor of the other classes.

Figure 7: Details of predicted masks after training with

Lovász-Softmax per-batch vs. Lovász-Softmax per-image.

Figure 6b shows the joint evolution of the dataset–mIoU,

and the batch–mIoU computed over present classes, during

training. The correlation between these two measures justi-

fies our choice of restricting the Lovász-Softmax to present

classes as a proxy for optimizing the dataset–mIoU. As high-

lighted by Figure 6c, the image–mIoU is a poor surrogate for

the dataset–mIoU, as discussed in Section 3.1: optimizing

one measure is generally detrimental to the other.

Figure 7 illustrates some qualitative differences between

segmentations predicted by the network optimized for batch–

mIoU and the network optimized for image–mIoU. The

biggest difference between batch–mIoU and image–mIoU is

the penalty associated with predicting a class that is absent

from the ground truth. Accordingly, we notice that optimiz-

ing for image–mIoU tends to produce more sparse outputs,

and output less extraneous classes, sometimes at the price of

not including classes that are harder to detect.

Comparison to prior work Instead of changing the learn-

ing, Nowozin [20] designs a test-time decision function for

mIoU based on the assumption of independent classifiers

with calibrated probabilities. We applied this method on the

Softmax output probabilities of the best model trained with

cross-entropy loss (cross-entropy + equibatch), and compare

with the outputs from Lovász-Softmax (Lovász + equibatch

30K). Since [20] performs a local optimization (batches),

we randomly select 20 batches of 21 images with every class

represented, optimize the decision function, and compare the

optimized mIoU of the batch with the mIoU of the selected

batch in our output. The baseline has an average mIoU of

68.7±1.2, our method significantly improves it to 72.5±1.2,

while [20] significantly degrades it to 65.1±1.4. We believe

this comes from the miscalibration of the neural network’s

probabilities, which adversely affects the assumptions of the

decision function, as discussed in [20, Sec. 5].

4.4. Cityscapes segmentation with ENet

We experiment with ENet, a segmentation architecture

optimized for speed [21], on the Cityscapes dataset [5]. We

fine-tune the weights provided by the authors, obtained af-

ter convergence of weighted cross-entropy loss, a loss that

biases the cross-entropy loss to account for class inbalance

in the training set. We do not need such a reweighing as our

method inherently captures the class balancing of the mIoU.

We finetune ENet using an Adam optimizer [15] with

the same learning rate and schedule as in Equation (16).
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(a) Initial ENet outputs [21] (b) Ground truth masks (c) ENet + Lovász-Softmax fine-tuning

Figure 8: ENet: parts of output masks before and after fine-tuning with Lovász-Softmax (using the Cityscapes color palette).

Figure 9: Convergence of ENet on the validation set under

fine-tuning with Lovász-Softmax, with various batch sizes.

Consistent with [21], we use images of size 512×1024 with

no data augmentation. We snapshot every 1K iterations and

report the test performance of snapshot 9K with batches of

size 10, which corresponds to the highest validation score.

Fig. 9 shows that our fine-tuning leads to a higher val-

idation mIoU, while further training with weighted cross-

entropy barely affects the performance – as expected. Higher

batch sizes generally lead to more improvement thanks to a

better approximation of the dataset IoU. Equibatch training

did not make a difference in our experiments, which can

be explained by the fact that the dataset is more uniform

than Pascal VOC in terms of class representation. Note

that we optimize for the mIoU measure, named Class IoU

in Cityscapes. Accordingly, we observe a substantial gain

in performance in Cityscapes IoU metrics, with the Class

IoU increasing from 58.29% to 63.06%. Reweighting the

different classes in the average of the Lovász-Softmax loss

(Equation (13)) could allow us to target IoU-based measures

which are weighted differently, such as CityScapes’ iIoU

metrics. Figure 8 presents some example output masks; we

find that our fine-tuning generally reduces false positives and

leads to finer details. Of course, our improved segmentation

accuracy does not impact the high inference speed for which

ENet is designed.

Table 4: Cityscapes results with Lovász-Softmax finetuning

Class IoU Class iIoU Cat. IoU Cat. iIoU

ENet [21] 58.29 34.36 80.40 63.99

Finetuned 63.06 34.06 83.58 61.05

5. Discussion and Conclusions

In this work, we have demonstrated a versatile approach

for optimizing the Jaccard loss for image segmentation. Our

proposed method can be flexibly applied to a large number

of function classes for segmentation, and we have demon-

strated their effectiveness on state-of-the-art deep network

architectures, substantially improving accuracies on seman-

tic segmentation datasets simply by optimizing the correct

loss during training. Qualitatively, we see greatly improved

segmentation quality, in particular on small objects, while

large objects tend to have consistent but smaller improve-

ment in accuracy.

This work shows that submodular measures such as the

Jaccard index can be readily optimized in a continuous op-

timization setting. Further work includes the application of

the approach to different tasks and losses exhibiting submod-

ularity, and a derivation of specialized optimization routines

given the piecewise-linear nature of the Lovász extension.

The code associated with this publication, with replica-

tion of the experiments and implementations of the Lovász-

Softmax loss, is released on https://github.com/

bermanmaxim/LovaszSoftmax.
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