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Abstract

We present a model that uses a single first-person im-
age to generate an egocentric basketball motion sequence
in the form of a 12D camera configuration trajectory, which
encodes a player’s 3D location and 3D head orientation
throughout the sequence. To do this, we first introduce a
future convolutional neural network (CNN) that predicts an
initial sequence of 12D camera configurations, aiming to
capture how real players move during a one-on-one basket-
ball game. We also introduce a goal verifier network, which
is trained to verify that a given camera configuration is con-
sistent with the final goals of real one-on-one basketball
players. Next, we propose an inverse synthesis procedure
to synthesize a refined sequence of 12D camera configura-
tions that (1) sufficiently matches the initial configurations
predicted by the future CNN, while (2) maximizing the out-
put of the goal verifier network. Finally, by following the
trajectory resulting from the refined camera configuration
sequence, we obtain the complete 12D motion sequence.

Our model generates realistic basketball motion se-
quences that capture the goals of real players, outperform-
ing standard deep learning approaches such as recurrent
neural networks (RNNs), long short-term memory networks
(LSTMs), and generative adversarial networks (GANs).

1. Introduction

Consider LeBron James, arguably the greatest basket-
ball player in the world today. People often speculate about
which of his traits contributes most to his success as a bas-
ketball player. Some may point to his extraordinary ath-
leticism, while others may credit his polished basketball
mechanics (i.e., his ability to accurately pass and shoot
the ball). While both of these characteristics are certainly
important, there seems to be a general consensus, among
sports pundits and casual fans alike, that what makes Le-
Bron truly exceptional is his ability to make the right deci-
sion at the right time in almost any basketball situation.

Now, imagine yourself inside the dynamic scene shown
in Figure 1, where, as a basketball player, you need to make
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Figure 1: Given a single first-person image from a one-on-
one basketball game, we aim to generate an egocentric bas-
ketball motion sequence in the form of a 12D first-person
camera configuration trajectory, which encodes a player’s
3D location and 3D head orientation. In this example, we
visualize our generated motion sequence within a sparse 3D
reconstruction of an indoor basketball court.

a series of moves to outmaneuver your defender and score a
basket. In doing so, you must evaluate your position on the
court, your defender’s stance, your defender’s court position
relative to the basket, and many other factors, if you want to
maximize your probability of scoring. For instance, if you
observe that your defender is positioned close to you and
leaning more heavily on his right leg, you might exploit this
situation by taking a swift left jab-step followed by a hard
right drive to the basket, throwing your defender off balance
and earning you an easy layup. However, if your defender
is standing farther away from you, you may decide to take
a few dribbles into an area where your defender cannot get
to you quickly, before stopping for a jump-shot. These are
all complex decisions that have to be made within a split
second — doing this consistently well is challenging.

5889



In this paper, we aim to build a model that mimics
this basketball decision-making process. Specifically, our
model maps a first-person visual signal to a plausible ego-
centric basketball motion sequence. This is a difficult prob-
lem because little is known about how skilled players make
subsecond-level decisions. What we do know is that players
make decisions based on what they see: a player may look
at how his or her defender is positioned (i.e., feet orienta-
tion, torso orientation, etc.) and then, based on that visual
information, choose to drive right or left. Leveraging this
insight, in this work, we learn our model from data recorded
using first-person cameras. First-person cameras allow us to
see various subtle details in the basketball game, just as the
players do. In contrast, a standard third-person camera typ-
ically records a low-resolution view from a suboptimal ori-
entation, making it difficult to observe such details. Because
these subtle details may be crucial for predicting where a
player will move next, first-person modeling is beneficial.

Our model takes a single first-person image as input and
generates an egocentric basketball motion sequence in the
form of a 12D first-person camera configurations, encod-
ing a player’s 3D location and 3D head orientation through-
out the sequence. To do this, we first introduce a future
convolutional neural network (CNN) that predicts an ini-
tial sequence of 12D camera configurations, aiming to cap-
ture how real players move during a one-on-one basketball
game. We also introduce a goal verifier network, which is
trained to verify that a given camera configuration is con-
sistent with the final goals of real players. Next, we use
our proposed inverse synthesis procedure to synthesize a re-
fined sequence of 12D camera configurations by optimizing
the following objectives: (1) minimize the difference be-
tween the refined configurations and initial configurations
predicted by future CNN while also (2) maximizing the goal
verifier network output. Finally, by following the trajectory
resulting from the refined camera configuration sequence,
we obtain the complete 12D motion sequence.

Our egocentric basketball motion model learns to gener-
ate smooth and realistic sequences that capture the goals of
real basketball players. Additionally, our model is learned
in an unsupervised fashion; this is an important advantage,
since obtaining labeled behavior data is costly. Finally, in
our experimental section, we show that our method consis-
tently outperforms standard deep learning approaches such
as RNNs [16], LSTMs [14], and GANs [11].

2. Related Work

Using Vision for Behavior Modeling. Developing
models that characterize human behavior in everyday tasks,
such as walking or driving, has been a long-standing prob-
lem in computer science. The work in [32] uses a hid-
den Markov model (HMM) to learn human driving pat-
terns. Recent work in [23, 34] uses third-person videos of

humans performing simple tasks, like opening a door, to
teach robots how to do the same. By observing them from
a third-person view, the method in [41] learns to remind hu-
mans of actions they forgot to do. Recently, there also has
been a surge of methods designed to capture various aspects
of social human behavior. For instance, the work in [4]
uses a flow field model to track crowds. Also, the work
in [31] develops a tracking method that can predict walk-
ing trajectories for multiple agents simultaneously, while
more recent work in [25] predicts walking trajectories by
using a game theoretic approach. Furthermore, the methods
in [13, 28, 3, 2] develop social force or social affinity based
methods for predicting pedestrian behaviors. In addition,
the method in [20], uses Markov decision processes to pre-
dict the wide receiver trajectories in football, whereas the
work in [19] learns to predict the behavior of soccer play-
ers. Finally, the work in [43] uses large amounts of “top-
view” basketball tracking data [ 1] to train deep hierarchical
networks for basketball trajectory prediction.

In contrast to these prior methods, our data are obtained
via first-person cameras, which allows us to build a model
that connects first-person visual sensation to egocentric mo-
tion planning ability. Using such first-person data is our
main advantage compared to prior methods.

First-Person Vision. Most first-person methods have fo-
cused on first-person object detection [21, 8, 35, 10, 6, 7]
or activity recognition [18, 38, 37, 33, 22, 29, 9]. Several
methods have also employed first-person videos for video
summarization [21, 24]. Furthermore, recent work in [40]
introduced a first-person method for predicting the cam-
era wearer’s engagement, while [5] developed a model to
assess a basketball performance from a first-person video.
Additionally, [36] proposed applying inverse reinforce-
ment learning on first-person data to infer the goals of the
camera wearer during daily tasks. Furthermore, the meth-
ods in [30, 39] propose to generate plausible walking tra-
jectories from first-person images. However, the methods
in [39, 30] generate walking trajectories without really un-
derstanding what the camera-wearer’s actual goals are, of-
ten resulting in overly simplistic and unrealistic trajectories.

In contrast to these prior methods, we consider a com-
plex one-on-one basketball game scenario, for which we not
only infer the goals of the camera-wearer, but also gener-
ate an egocentric basketball motion sequence that is aligned
with these goals. We also point out that, unlike the meth-
ods in [39, 30] which require depth input or the positions of
other people in the scene, our method operates using only a
single first-person RGB input image.

3. Motivation and Challenges

Representing a State. Generating an egocentric basket-
ball motion sequence can be viewed as the problem of map-
ping a first-person image x to a sequence y;.5s, where each
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Figure 2: Our model takes a single first-person image as input and outputs an egocentric basketball motion sequence in
the form of a 12D camera configuration trajectory, encoding a player’s 3D location and 3D head orientation throughout the
sequence. First, we feed the first-person image through our proposed future CNN to predict an initial sequence of future 12D
camera configurations. Then, we use our proposed inverse synthesis procedure to synthesize a refined camera configuration
sequence that matches the configurations predicted by the future CNN, while also maximizing the output of the goal verifier
network. The goal verifier network is a fully-connected network trained to verify that a given 12D camera configuration

is consistent with the final goals of real players.

Finally, by following the trajectory resulting from the refined camera

configuration sequence, we obtain the complete 12D motion sequence.

entry y; is a vector representing a state in this sequence of
length M. In this paper, we use a notation where the en-
tire sequence is denoted as y (without subscript indices),
whereas an i state in the sequence y is denoted as ¥;.

We propose to encode each state y; in the sequence as a
12D camera configuration, which captures 3D location and
3D orientation of the camera on a player’s head. In contrast
to prior models [30, 39] that just use a 2D (x,y) location
representation, our selected camera configuration represen-
tation allows us to represent more complex basketball mo-
tion patterns, while still being compact and interpretable.
Such representation also enables us to learn our model with-
out using manually labeled behavioral data.

Generating Motion Sequences. Generating motion se-
quences that are realistic and smooth is a challenging prob-
lem because the actions taken by the camera wearer are
noisy. As a result, it is difficult to accurately learn the tran-
sitions between two adjacent states from a limited amount
of data. Furthermore, due to the recurrent nature of such
predictions (i.e., the predicted state ¢; 11 depends on ;),
the error starts accumulating and exploding, which makes it
difficult to generate longer sequences accurately. This issue
is especially prevalent with the standard RNN and LSTM
approaches, which try to learn such transitions sequentially.

In this work, we propose a model that first predicts a
set of intermediate states that are consistent with how real
basketball players move. Afterwards, we use our proposed
inverse synthesis procedure to generate a full motion se-
quence. In the experimental section, we verify the effective-

ness of our approach and show that it outperforms methods
such as RNNs, LSTMs, and GANSs.

4. Egocentric Basketball Motion Model

In Figure 2, we present a detailed illustration of our ego-
centric basketball motion model. First, we use our proposed
future CNN to predict an initial sequence of 12D camera
configurations, which aim to capture how real players move
during a one-on-one basketball game. After that, we use
our proposed inverse synthesis procedure to generate a re-
fined camera configuration sequence that (1) matches the
initial camera configuration sequence predicted by the fu-
ture CNN and (2) maximizes the output of the goal verifier
network, which is trained to verify whether a given 12D
camera configuration aligns with realistic one-on-one bas-
ketball goals. Finally, by following the trajectory resulting
from the refined camera configuration sequence, we obtain
the complete 12D motion sequence. We now discuss each
component of our model in more detail.

4.1. Egocentric Camera (EgoCam) CNN

An egocentric camera (EgoCam) CNN is used to map a
given first-person image z; into a 12D camera configuration
; € RY*12 that encodes the 3D location and 3D orientation
of the camera on a player’s head. We implement our Ego-
Cam CNN using a popular ResNet-101 [12] architecture.
The network is optimized using the following L2 loss:
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Figure 3: An illustration of the camera configurations generated by our future CNN, which we visualize in a sparsely re-
constructed 3D space (best viewed in color). The red camera depicts the initial camera configuration state, while the blue,
magenta, green, and cyan cameras correspond to the outputs from the 19, 2"d, 37 and 4% branches of our future CNN,
respectively. We note that our future CNN is able to produce a diverse set of intermediate configurations, which allows us to
generate a wide array of different sequences at a later step in our model.

Leam = l[gi(w:) — K (w:)|[3 M

where §j; € R1*12 is the predicted camera configuration
for an image z;, and K (z;) € R'*!2 is a vector that en-
codes a true player’s 3D location and 3D head orientation.
K (x;) is obtained by flattening the egocentric 3 x 4 cam-
era matrix, which is produced by an unsupervised structure
from motion (SfM) algorithm. However, due to the jittery
nature of first-person images, SfM works only on a small
portion of the input images (i.e.~ 20% of all images). This
motivates the need for an EgoCam CNN, which allows us
to generate 12D configurations for any first-person image.

Our EgoCam CNN produces similar outputs to the actual
SfM algorithm. We also report that we tried retrieving miss-
ing 12D configurations using a nearest neighbor algorithm,
but observed that our EgoCam CNN produced better results
(2.54 vs. 1.97 L2 error in the normalized 12D space).

4.2. Future CNN

Given a first person image x; from the beginning of a
sequence, the future CNN encodes it into multiple configu-
rations ¢(x;) € R**12, which represent intermediate states
that capture how real players move during a one-on-one
game. Here, k is a parameter that controls how many in-
termediate configurations we want to generate. Our future
CNN is implemented using a multi-path ResNet-101 ar-
chitecture, meaning that after the final convolutional pool5
layer, the network splits itself into &k branches, each denoted
as ¢;(x;) for j = 1... k. Each branch in the future CNN is
responsible for generating its own intermediate state.

To train the future CNN, for every real basketball se-
quence, we first assign to each camera configuration y; of
the sequence a value s € [0, 1], indicating its order in the
sequence. Let ; be the i*" configuration in a sequence of
length M. Then, we can compute s as s(i) = ¢/M. The
4" branch in the future CNN is then optimized to predict
camera configurations, with s values falling in the interval

[Z21, 2], where k is the number of branches in the future
CNN. For instance, if k& = 4, then the second branch in the
network will be optimized to predict camera configurations
with values s € [0.25,0.5]. This constraint ensures that
each branch generates an intermediate state associated with
a specific time-point in a sequence, thus generating con-
figurations covering the entire sequence (albeit with wider
gaps). We also point out that all input images x; that are
used to train the future CNN have values s € [0,0.1] to
make sure that the future CNN generates accurate interme-
diate configurations from a first-person image at the begin-
ning of a sequence. The future CNN is then trained using
the following loss function:

k
Lyut = lé(xi) — s (wir)|13 2)

j=1

where ¢; denotes the output from branch j of a future
CNN, and g, is the output of an EgoCam CNN for an input
image z;-. The constraints on z; and z;» that we discussed
above are expressed as: s(i) € [0,0.1] and s(i') € [%, %]

We note that our training setup requires basketball se-
quences that are trimmed. In this work, we trim the se-
quences manually: the sequence starts when a player begins
his offensive position and ends when a shot or a turnover
occurs. We believe that we could also trim sequences au-
tomatically by using a player’s head location and pose to

assess whether a player is attacking or defending.

4.3. Goal Verifier Network

The goal verifier network aims to verify whether a given
configuration aligns with the final goals of real players. The
goal verifier takes a 12D camera configuration §; € R1*12
as input, then outputs a real value 1(7;) € R'*! in the inter-
val [0, 1], indicating how well a given camera configuration
captures the final goals of real players.

The key question is: how do we infer the final goals of
real basketball players without asking them directly? To
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Figure 4: A figure illustrating some of our qualitative results. In the first column, we depict an egocentric input image. In the
second and third columns, we visualize the activations of a Future CNN from the res4a and res5c layers. Finally, in the last
column, we present our generated 2D motion trajectories. Based on the activations of the Future CNN, we conclude that our
CNN recognizes visual cues in an egocentric image, which may be helpful for deciding how to effectively navigate the court
and reach the basket, or how to get away from a defender. Furthermore, our generated motion trajectories seem realistic, as
they avoid colliding with the defender and typically end near the basket, which reflects how most real players would move.

do this, we assume that the last few images in a given se-
quence represent the final goals of that player. Of course,
such reasoning may not always be correct because, in some
sequences, players may fail to accomplish their goals. How-
ever, we conjecture that when looking at many sequences
of real players, the pattern of goals should be quite distinc-
tive. In other words, if we use the right learning strategy,
the network should be able to learn configurations that are
typically associated with the final goals of real players.

We propose to employ discriminative training of the goal
verifier, which allows us to effectively address the issues
of noisy labels in our setting. To create these noisy la-
bels, we assign a value g(g;) = 1 to all configurations
with s(#) > 0.92 (configurations that appear at the end of
sequences) and a value of zero to all other configurations.
Such a scheme allows us to highlight the configurations at
the end of sequences, which are more likely to represent the
goals of the players. Subsequently, the goal verifier, which
is a two-layer network, takes a 12D camera configuration as
its input and is trained using a cross-entropy loss:

Ly = —[g(5:) log ¥(§:) + (1 — g(§:)) log (1 — ()]
(3)

where 7; € R'*12 is the 12D camera configuration out-
put from an EgoCam CNN (associated with an image x;),
and ¥ (g;) € R*! is the output of a goal verifier network

that indicates whether a given 12D camera configuration ac-
curately represents the final goals of real players.

4.4. Motion Planning using Inverse Synthesis

We can now put all the pieces of our model together and
show how to generate an egocentric basketball motion se-
quence that captures the goals of real players. Our approach
is partially inspired by the idea of synthesizing the preferred
stimuli in a CNN [42, 26, 27], which has been mostly used
to visualize activations in the CNNs [42, 26, 27]. In this
work, we propose the concept of inverse synthesis for gen-
erating a realistic basketball motion sequence.

Consider the two problems that we were solving pre-
viously: (1) encoding an egocentric basketball motion se-
quence via a set of intermediate 12D configurations and (2)
verifying that a given 12D camera configuration aligns with
the final goals of real players. In the previous sections, we
solved these two problems using the future CNN and the
goal verifier network, respectively. However, we now want
to invert these two problems: given (1) a set of intermediate
states predicted by the future CNN and (2) a trained goal
verifier network, our goal is to generate a smooth basketball
motion sequence in the form of 12D camera configurations.

To do this, we frame the inverse synthesis problem as a
search problem in the 12D camera space, where our goal is
to find a 12D configuration h that (1) matches intermediate
states generated by the future CNN ¢;(z;) and (2) maxi-
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Figure 5: A figure illustrating the 3D locations of every
camera configuration from our dataset mapped on a 2D
court (best viewed in color). The blue points indicate the
configurations from the beginning of sequences, whereas
the yellow points depict configurations from the end of se-
quences. The diversity of real sequences in our dataset al-
lows us to build a powerful basketball motion model.

mizes the output of a goal verifier network ¥ (h). We for-
mulate this problem as a minimization problem in the 12D
camera configuration space:

h* = argmin [||g;(x:) = bll; —log (¥(h)] (@)

Here, h is a 12D camera configuration vector that we
initialize to ; (x;), which is the camera configuration of the
very first image in the sequence (i.e., s(i) = 0, or, equiva-
lently, ¢ = 0). The first term in the equation encourages h to
reach configurations predicted by the future CNN, whereas
the second term encourages h to take values that would
maximize the output of the goal verifier network. We min-
imize this function by computing the appropriate gradients
and then running gradient descent in the 12D camera con-
figuration space for [V iterations. To select the branch from
a future CNN whose output ¢; we are trying to match, we
compute j = floor(c/(N/k)), where j is the index of a se-
lected branch, c is the iteration counter, and & is the number
of branches in the future CNN.

During the inverse synthesis procedure, we fix the pa-
rameters of all three networks and only adjust h. Since the
inverse synthesis is performed in the 12D camera config-
uration space, at every step we are generating a new 12D
camera configuration. Thus, at the end, we can generate a fi-
nal camera configuration sequence by simply following the
12D camera trajectory traversed during the optimization.

4.5. Implementation Details

For all of our experiments, we used the Caffe li-
brary [17]. Both the future and EgoCam CNNs were based
on the ResNet-101 [12] architecture and were trained for
10, 000 iterations, with a learning rate of 10~%, 0.9 momen-
tum, a weight decay of 5 - 10~%, and 20 samples per batch.

Evaluation Tasks
PEM || CG1
GAN [11] 62.31 | 0.329
LSTM [14] 5.66 0.678
RNN [16] 5.82 0.612

NN 5.36 -

Ours w/o GV | 491 0.671
Ours w/ GV | 493 0.776

Table 1: We assess each method on two tasks: predicting
a player’s future motion (PFM), and capturing the goals of
real players (CG). The 1 and | symbols next to a task in-
dicate whether a higher or lower number is better, respec-
tively. Our method outperforms the baselines for both tasks,
suggesting that we can generate sequences that (1) are more
similar to a true player’s motion and (2) capture the goals of
real players more accurately. We also note that removing a
goal verifier (“Ours w/o GV") leads to a sharp decrease in
performance, according to the CG evaluation metric.

We designed our future CNN to have 4 distinct branches,
which we experimentally discovered to work well. Each
branch consists of a single fully-connected layer that maps
pool5 features to a 12D camera configuration feature. Next,
we designed the goal verifier network as a two layer fully
connected network with 100 neurons in the first-hidden
layer and a single output neuron at the end. To generate final
basketball motion sequences, we ran our inverse synthesis
procedure for 6, 000 iterations with a step size of 0.001.

5. Egocentric One-on-One Basketball Dataset

We present a first-person basketball dataset consisting
of 988 sequences from one-on-one basketball games be-
tween nine college-level players. The videos are recorded in
1280960 resolution at 100 fps using GoPro Hero Session
cameras, which are mounted on the players’ heads. We ex-
tract the videos at 5 frames per second. We then randomly
split all the sequences into training and testing sets, consist-
ing of 815 and 173 sequences, respectively. Each sequence
is about 25 frames long.

To obtain better insight about the distribution of our data,
we map the 3D locations of all camera configurations from
real sequences onto the 2D court and visualize the results
in Figure 5. The blue points indicate the configurations at
the beginning of sequences, whereas the yellow points rep-
resent configurations at the end of sequences. Based on this
figure, we note that our dataset contains a wide array of dif-
ferent beginning and ending configurations, enabling us to
learn a diverse basketball motion model.

We chose a one-on-one setting because it is more data-
efficient for studying the decision-making process of bas-
ketball players (compared to the five-on-five setting). For
example, first-person videos of five-on-five games capture
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Figure 6: A visual illustration of our generated basketball sequences, in the form of first-person images retrieved using nearest
neighbor search. We observe that our generated sequence is similar to a real sequence, suggesting that our model could be

used for applications such as future behavior prediction.

numerous instances when players do not have the ball and
are idly waiting for their teammate with the ball to perform
some action. On the contrary, in our one-on-one dataset,
players continuously make decisions and take actions to
reach their goals, as there are no teammates to rely on.

6. Experimental Results

To the best of our knowledge, we are the first to generate
egocentric basketball motion sequences in the 12D camera
configuration space from a single first-person image. As a
result, there are no prior established baselines for this task.
To validate our method’s effectiveness, we compare it with
other popular deep learning techniques such as RNNs [16],
LSTMs [14], and GANSs [11]. We construct these baselines
using the ResNet-101 [12] architecture. Each baseline takes
a single first-person image as input and is then trained to
generate 10 future configurations. The RNN and LSTM
baselines are optimized with an L2 loss in the 12D cam-
era configuration space, whereas the GAN baseline has the
same architecture as RNN, but is trained to fool the dis-
criminator by producing realistic 12D future camera con-
figurations. To maximize the amount of available training
data, the training data are constructed by using every feasi-
ble training image as a starting point. During testing, each
baseline predicts camera configurations recurrently until we
observe no significant change in the prediction or until the
predicted sequence length exceeds the length of a real se-
quence. We also include a nearest neighbor baseline, which
operates in the 12D camera configuration space.

The goal of our evaluations is to verify that the generated
sequences (1) are realistic and (2) that they capture the goals
of real players. To do this, we propose several evaluation
schemes, which we describe in the next few subsections.

6.1. Quantitative Results

Predicting Future Motion. To verify that our generated
sequences are realistic, we examine whether our method can

predict a player’s future motion. In the context of such eval-
uation, the sequences that we want to compare typically
have different lengths, which renders standard Euclidean
and L1 distance metrics unusable. Thus, we use the Haus-
dorff distance [15], which is commonly used for sequential
data comparisons. To implement this idea, we first use our
EgoCam CNN to extract camera configurations from every
frame in every real sequence in the testing dataset. Then, as
our evaluation metric, we compute a distance d = D(y, 3),
where g is generated using the first image from a real se-
quence y, and D is a Hausdorff distance operator.

In Column 2 of Table 1, we record the average d over
all testing sequences for every method (i.e., the lower the
distance the better). We observe that our method outper-
forms all the other baselines, suggesting that we can use it
for future behavior prediction.

Capturing the Goals of Real Players. Earlier, we as-
sumed that the last few frames in real sequences approx-
imate the goals of the players. To examine how well our
method captures these goals, we first select the last gener-
ated configuration ¢, in the sequence of length M. Then,
we use nearest neighbor search to retrieve a real configu-
ration ¥y, that is most similar to ¢,. Finally, we look up
where in the real sequence ¥,,,, appears. For instance, if y,,,,
was the 7" configuration in a real sequence of length N,
then we assign our current prediction a value of v = i/N.
Intuitively, if the last generated configuration is similar to
the last real configuration, we conclude that our method was
able to capture the goals of real players.

In Column 3 of Table 1, we record the average v values
over all testing sequences for every method (i.e., the higher
the better). These results suggest that, out of all baselines,
our method is the most accurate at capturing the goals of
real players. Also, note that, if we remove the goal veri-
fier, these results drop significantly, indicating the goal ver-
ifier’s importance to our system. We conjecture that this
happens because the future CNN is trained using a non-
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discriminative L2 loss, while the goal verifier network is
trained to discriminate which configurations represent the
final goals of the players. Thus, similar to GANs [11], due
to the discriminative training, the goal verifier may be more
useful for generating the configurations that capture the fi-
nal goals of the players. We also note that the future CNN
is still essential, as using a goal verifier network alone pro-
duces short and unrealistic sequences.

6.2. Qualitative Results

Future CNN Visualization. To better understand how
the future CNN works, we visualize its outputs in Figure 3.
To do this, we take the 12D camera configurations gener-
ated by the future CNN, transform them into 3D space, and
then visualize them in a sparsely reconstructed 3D scene.
Note that the future CNN produces a wide array of different
configurations, allowing us to generate diverse sequences.

Furthermore, in Columns 2 and 3 of Figure 4, we visual-
ize the activations of a future CNN from the res4a and res5c
layers, respectively. We observe that, in the res4a layer, the
CNN focuses on different parts of a defender’s body, which
makes intuitive sense, as basketball players often use such
information to decide their next action. Furthermore, we
also observe that, in the res5c layer, the future CNN learns
to recognize open spaces in the court that could be used by
a player to navigate the court and get away from a defender.

Visualizing Generated Motion Trajectories. In the last
column of Figure 4, we also visualize sequences gener-
ated by our inverse synthesis procedure (by projecting them
onto a 2D court). Even though it is difficult to validate
whether our generated motion sequences represent optimal
motion pattern, they do seem reasonable. In all visualized
instances, our model produces motion sequences that avoid
colliding with the defender. Furthermore, most of our gen-
erated sequences end around the basket, which reflects what
a real player would likely try to do.

Retrieved Image Sequences. To show what our gener-
ated sequences look like in the form of first-person images,
we use nearest neighbor search in the 12D camera space to
retrieve the most similar first-person images from the train-
ing data. We then sample 5 first-person images from the
sequence and visualize them in Figure 6, along with a real
sequence. The similarity between our generated sequences
and the real sequences suggests that our model accurately
captures how real players move during a basketball game.

Additionally, to qualitatively validate the need for a goal
verifier, in Figure 7, we visualize the very last images in our
generated sequences, when the goal verifier is not used (w/o
Goal Verifier) and when it is used (w/ Goal Verifier). Note
that when we remove the goal verifier from our system, the
very last images in our generated sequences look less real-
istic. That is, they focus on the walls or floor of the basket-
ball court, which is probably not something that real players

w/o Goal Verifier w/ Goal Verifier

w/ Goal Verifier w/o Goal Verifier

Figure 7: A figure comparing the final images of our gener-
ated sequences in two settings: without and with using the
goal verifier network. We retrieve these images via nearest
neighbor search. Note that the images produced with a goal
verifier “focus” on the basket, just as real players would,
thus capturing the goals of real players more accurately.

would do. In contrast, adding a goal verifier to our system
makes these images focus on the basket, which makes much
more sense, since most players finish their sequences when
they are looking directly at the basket. Thus, the goal veri-
fier allows us to generate more realistic sequences.

Video Results. Due to space constraints, we cannot in-
clude all of our qualitative results in an image format. Fur-
thermore, because images are static, they cannot capture
the full content of our generated sequences. Thus, we in-
clude more video results in the following link: https:
//www.youtube.com/watch?v=wRRR14QsUQg.

7. Conclusions

In this work, we introduced a model that uses a single
first-person image to generate an egocentric basketball mo-
tion sequence in the form of a 12D camera configuration
trajectory. We showed that our model generates realistic
sequences that capture the goals of real players. Further-
more, we demonstrated that our model can be learned di-
rectly from the first-person video data, which is beneficial
as obtaining labeled behavioral data is costly.

Our model could be used for a wide array of behavioral
applications, such as future behavior prediction or player
development, for which we could build models using the
data of expert players and then transfer their behavioral pat-
terns to less-skilled players. Furthermore, even though we
apply our model on a basketball activity, we do not inject
any basketball-specific domain knowledge into the model.
Thus, we believe that our model is general enough to also
be applied to other activities, which we will explore in our
future work. In the future, we would also like to experiment
with more complex configurations that would allow us to
represent even more complicated behavioral patterns. Fi-
nally, we believe that the concept behind our model could
be used for various robotic applications, where our model
could provide behavioral guidelines for robots.
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