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Figure 1: Our predictive distribution upto t + 15 frames. The heat map encodes the probability of a certain pixel belonging to

the person. The variance of the distribution encodes the uncertainty. Row 1: Low uncertainty. Row 2: High uncertainty.

Abstract

Progress towards advanced systems for assisted and au-

tonomous driving is leveraging recent advances in recog-

nition and segmentation methods. Yet, we are still facing

challenges in bringing reliable driving to inner cities, as

those are composed of highly dynamic scenes observed from

a moving platform at considerable speeds. Anticipation be-

comes a key element in order to react timely and prevent

accidents. In this paper we argue that it is necessary to

predict at least 1 second and we thus propose a new model

that jointly predicts ego motion and people trajectories over

such large time horizons. We pay particular attention to

modeling the uncertainty of our estimates arising from the

non-deterministic nature of natural traffic scenes. Our ex-

perimental results show that it is indeed possible to predict

people trajectories at the desired time horizons and that our

uncertainty estimates are informative of the prediction error.

We also show that both sequence modeling of trajectories as

well as our novel method of long term odometry prediction

are essential for best performance.

1. Introduction

While methods for automatic scene understanding have

progressed rapidly over the past years, it is just one key

ingredient for assisted and autonomous driving. Human

capabilities go beyond inference of scene structure and en-

compass a broader type of scene understanding that also

lends itself to anticipating the future.

Anticipation is key in preventing collisions by predicting

future movements of dynamic agents e.g. people and cars in

inner cities. It is also the key to operating at practical safety

distances. Without anticipation, domain knowledge and ex-

perience, drivers would have to maintain an equally large

safety distance to all objects, which is clearly impractical in

dense and cluttered inner city traffic. Additionally, anticipa-

tion enables decision making, e.g. passing cars and pedes-

trians while respecting the safety of all participants. Even

at conservative and careful driving speeds of 25miles/hour

(∼ 40km/hour) in residential areas, the distance traveled

in 1 second corresponds roughly to the breaking distance.

Anticipation of traffic scenes on a time horizons of at least 1

second would therefore enable safe driving at such speeds.

We propose the first approach to predict people (pedestri-

ans including cyclists) trajectories from on-board cameras

over such long-time horizons with uncertainty estimates.

Due to the particular importance for safety, we are focusing

on the people class. While pedestrian trajectory prediction

has been approached in prior work, we propose the first ap-

proach for on-board prediction. As predictions are made

with respect to the moving vehicle, we formulate a novel

two stream model for long-term person bounding box predic-

tion and vehicle ego motion (odometry). In contrast to prior

work, we model both aleatoric (observation) uncertainty and

epistemic (model) uncertainty [4] in order to arrive at an

estimate of the overall uncertainty.
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Our contributions in detail are: 1. First approach to

long-term prediction of pedestrian bounding box sequences

from a mobile platform; 2. Novel sequence to sequence

model which provides a theoretically grounded approach

to quantify uncertainty associated with each prediction;

3. Detailed experimental evaluation of alternative architec-

tures illustrating the importance and effectiveness of using

a two-stream architecture; 4. Analysis of dependencies be-

tween uncertainty estimates and actual prediction error lead-

ing to an empirical error bound.

2. Related work

Human Trajectory Prediction. Recent works such as

[11, 23] focus on the task of pedestrian trajectory prediction

in 3D space. However, 3D world coordinates are difficult

to obtain in unconstrained scenarios. It requires expensive

stereo camera and/or LIDAR setups and obtained depth maps

are typically noisy especially in unknown environments. Our

method does not depend upon unreliable 3D coordinates and

it is widely applicable as it requires only one camera. Many

vehicles worldwide already have installed dash-cams. An-

other class of models such as [9, 29, 24, 1, 16] consider the

problem of (2D) pedestrian trajectory prediction in a social

context by modelling human-human interactions. The state

of the art model [1] proposes to estimate the trajectories of

each person in the scene by an instance of a “Social” LSTM.

The instances of the Social LSTM can communicate with a

special pooling layer. This enables the modelling of interac-

tions and joint estimation of trajectories of all pedestrians in

the scene. In [27] the joint estimation of robot and human

trajectories are considered in a social context. However, in

case of on-board prediction vehicle ego-motion dominates

social aspects. Moreover, most methods are trained/tested

on static camera datasets which are hand annotated with

minimum observation noise. Apart from these, the class of

models such as [10, 13, 19, 32, 30] aim at discovering mo-

tion patterns of humans and vehicles. Such methods cannot

be used for trajectory prediction and do not consider vehicle

ego-motion.

Modeling Uncertainty in Deep Learning. Popular deep

learning architectures do not model uncertainty. They as-

sume uniform constant observation noise (aleatoric uncer-

tainty). Heteroscedastic regression methods [21, 15] es-

timate aleatoric uncertanity by predicting the parameters

of a assumed observation noise distribution (also in [1]).

Bayesian neural networks [18, 20] offer a probabilistic view

of deep learning and provide model (epistemic) uncertainty

estimates. However, inference of model posterior in such

networks is difficult. Variational Inference is a popular

method. Gal et. al. in [6] showed that dropout training

in deep neural networks approximates Bayesian inference

in deep Gaussian processes. Extending these results it was

shown in [5] that dropout training can be cast as approximate

Bernoulli variational inference in Bayesian neural networks.

These results were extended to RNNs in [7]. The developed

Bayesian RNNs showed superior performance to standard

RNNs with dropout in various tasks. More recently, [12]

presents a Bayesian deep learning framework jointly estimat-

ing aleatoric uncertainty together with epistemic uncertainty.

The resulting framework gives new state-of-the-art results

on segmentation and depth regression benchmarks.

Assisted and Autonomous driving. One of the earliest

works on vehicle ego-motion (odometry) prediction or pop-

ularly, autonomous driving, was ALVINN by [22]. This

work showed the possibility of directly predicting steering

angles from visual input. This system used a simple fully-

connected network. More recently, [2] uses a convolutional

neural network for this task and achieves a autonomy of 90%

using a relatively small training set. However, the focus is on

highway driving. [28] proposes a FCN-LSTM that predicts

the next vehicle odometry based on the visual input captured

by an on-board camera and previous odometry of the vehicle.

Here, a diverse crowed sourced dataset is used. However,

these methods predict vehicle odometry (e.g. steering an-

gle) only for the next time-step. In contrast, we focus on

inner-city driving and predict multiple time-steps into the

future. [25] proposes a driving simulator that predicts the

future in form of frames but suffers from blurriness problems

in the long-term important details get lost. In [17] future

segmentation masks are predicted, but only mid-term (upto

0.5sec) future is predicted and there is no pedestrian spe-

cific evaluation. We predict the future in terms of bounding

box coordinates which remain well defined by design in the

long-term.

3. On-board Pedestrian Prediction under Un-

certainty

In order to anticipate motion of people in real-world

traffic scenes from on-board cameras, we propose a novel

approach that conditions the prediction of motion (subsec-

tion 3.1) of people on predicted odometry (subsection 3.4).

Moreover, our approach models both aleatoric and epis-

temic uncertainty. Our model (see Figure 2) consists of two

specialized streams for prediction of pedestrian motion and

odometry. The odometry specialist stream predicts the most

likely future vehicle odometry sequence. The bounding box

specialist stream consists of a novel Bayesian RNN encoder-

decoder architecture to predict odomerty conditioned distri-

butions over pedestrian trajectories and to capture epistemic

and aleatoric uncertainty. Bayesian probability theory pro-

vides us with a theoretically grounded approach to dealing

with both types of uncertainties (subsection 3.2).

We start by describing the bounding box prediction

stream of our model and introduce our novel Bayesian RNN

encoder-decoder which provides theoretically grounded un-

certainty estimates.
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Figure 2: Two stream architecture for prediction of future pedestrian bounding boxes.

3.1. Prediction of Pedestrian Trajectories

A bounding box corresponding to the ith pedestrian ob-

served on-board a vehicle at time step t can be described

by the top-left and bottom-right pixel coordinates: bti =
{(xtl, ytl), (xbr, ybr)}. We want to predict the distribution

of future bounding box sequences Bf (where |Bp| = m) of

the pedestrian. We condition our predictions on the past

bounding box sequence Bp, the past odometry sequence Op

and the corresponding future odometry sequence Of of the

vehicle. The future odometry sequence Of is predicted condi-

tioned on the past odometry sequence Op and on-board visual

observation. Odometry sequences consists of the speed st

and steering angle dt of the vehicle, that is, ot = (st, dt).

p(Bf = [bt+1

i , ..., bt+n
i ]|Bp,Op,Of)

Bp = [bt−m
i , ..., bti],

Op = [ot−m, ..., ot],

Of = [ot+1, ..., ot+n]

The variance of the predictive distribution

p(Bf|Bp,Op,Of) provides a measure of the associated

uncertainty.

We will describe a basic sequence to sequence RNN first

and then extend it to predict distributions and provide uncer-

tainty estimates. Our sequence to sequence RNN (Figure 2)

consists of two embedding layers, an encoder RNN and a

decoder RNN. The input sequence consists of the concate-

nated past bounding box and odometry sequences Bp,Op.

The input embedding layer embeds the inputs sequence xt

into the representation x̂t. This embedded sequence is read

by the encoder RNN (RNNenc) which produces a summary

vector vbbox. This summary vector is concatenated with pre-

dicted odometry Of and this summary sequence is embedded

using the second embedding layer. This embedded summary

sequence v̂ (containing information about past pedestrian

motion, past and future vehicle odometry) is used by the

decoder RNN (RNNdec) for prediction.

In the following, we extend this model to predict distribu-

tions and estimate uncertainty.

3.2. Bayesian Modelling of Uncertainty

We phrase our novel RNN encoder-decoder model in a

Bayesian framework [12]. We capture epistemic (model)

uncertainty by learning a distribution of models p(f |X,Y )
likely to have generated our data {X,Y }. Here, models f
are RNN encoder-decoders with varying parameters. We

infer the posterior distribution of RNN encoder-decoders

p(f |X,Y ) , given the prior belief of the distribution of RNN

encoder-decoders p(f). The predictive probability over the

future sequence Bf given the past sequence Bp is obtained

by marginalizing over the posterior distribution of RNN

encoder-decoders,

p(Bf|Bp,Op,Of,X, Y ) =
∫

p(Bf|Bf, ,Op,Of, f)p(f |X,Y )df.
(1)

However, the integral in (1) is intractable. But, we can

approximate it in two steps [5, 7, 12]. First, we assume that

our RNN encoder-decoder models can be described by a fi-

nite set of variables ω. Thus, we constrain the set of possible

RNN encoder-decoders to ones that can be described with ω.

Now, (1) can be equivalently written as,

p(Bf|Bp,Op,Of,X, Y ) =
∫

p(Bf|Bp,Op,Of, ω)p(ω|X,Y )dω
(2)

Second, we assume an approximating variational distri-
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bution q(ω) which allows efficient sampling,

p(Bf|Bp,Op,Of) =

∫

p(Bf|Bp,Op,Of, ω)q(ω)dω (3)

We choose the set of weight matrices {W1, ..,WL} ∈ W
of our RNN enocder-decoder as the set of variables ω. Then

we define an approximating Bernoulli variational distribution

q(ω) over the columns wc
k of the weight matrices Wk ∈ W ,

q(Wk) = Mk · diag([zi,j ]
Ck

j=1
)

zi,j = Bernoulli(pi), i = 1, ..., L, j = 1, ...,Ki−1.
(4)

where, Mk are the variational parameters. This distribution

allows for efficient sampling during training and testing

which we discuss in the following subsection.

For an accurate approximation, we minimize the KL di-

vergence between q(ω) and the true posterior p(ω|X,Y ) as

the training step. It can be shown that,

KL(q(ω) || p(ω|X,Y )) ∝ KL(q(ω) || p(ω))

−
∑

t

∫

q(ω) log p(bt+n
t |bt+n−1

t ,Bp,Op,Of, ω)dω.
(5)

The first part corresponds to the distance to the prior model

distribution and the second to the data fit. During training

and prediction, we use Monte-Carlo integration to approxi-

mate the integrals (3) and (5) (more details about (5) in the

Supplementary and the exact objective in subsection 3.5).

Aleatoric uncertainty can be captured along with epis-

temic uncertainty, by assuming a distribution of obser-

vation noise and estimating the sufficient statistics of

the distribution. Here, we assume it to be a 4-d Gaus-

sian at each time-step, N (bt+n
i ,Σt+n

i ), where, Σt+n
i =

diag
(

(σt+n
x )i, (σ

t+n
y )i, (σ

t+n
x )i, (σ

t+n
y )i

)

in x and y direc-

tions in pixel space at time-step t+ n. The predictive distri-

bution of models parametrized by ω, p(Bf|Bp, ,Op,Of, ω) is

Gaussian at every time-step.

Uncertainty is the variance of our predictive distribution

(3) and can be obtained through moment matching [6, 12].

If we have T samples of future pedestrian bounding box

sequences B̂f, the total uncertainty at time-step t is,

1

T

(

T
∑

i=1

(b̂ti)
⊺b̂ti −

1

T

(

T
∑

i=1

(b̂ti)
⊺
)(

T
∑

i=1

b̂ti
)

)

+
1

T

(

T
∑

i=1

(σ̂t
i)x +

T
∑

i=1

(σ̂t
i)y

)

.

(6)

The first part of the sum correspond to the epistemic uncer-

tainty ue
i and the second part corresponds to the aleatoric

uncertainty ua
i . We average the uncertainty across time-steps

to arrive at the complete uncertainty estimate. Next, we

describe how we sample from the Bernoulli distribution of

RNN encoder-decoder weight matrices and the final sam-

pling from the predictive distribution p(Bf|Bp,Op,Of).

3.3. Bayesian RNN Encoder­Decoder

The RNN encoder-decoder model of subsection 3.1 con-

tains four weight matrices. In detail, the two embedding lay-

ers contains two weight matrices Wemi,Wems. The other two

weight matrices belong to the encoder and decoder RNNs.

We use an LSTM formulation as RNNs. Following [8] the

weight matrices of an LSTM can be concatenated into a

matrix W and the LSTM can be formulated as in,








i
f
o
ĉ









=









sigm

sigm

sigm

tanh









((

x̂t

ht−1

)

·W

)

ct = f ⊙ ct−1 + i⊙ ĉ , ht = o⊙ tanh(ct)

(7)

where i is the input gate, f is the forget gate, o is the

output gate, ct is the cell state, ĉ is the candidate cell state

and ht is the hidden state.

We define the Bernoulli variational distribution q(ω) (as

in (4)) over the union of all the weight matrices of our model,

ω = {Wemi,Wems,Wenc,Wdec} . (8)

where, Wenc,Wdec are the weight matrices of our RNN en-

coder and decoder.

Sampling from q(Wemi), q(Wems) can be done efficiently

by sampling random Bernoulli masks zemi, zems and apply-

ing these masks after the linear transformations. In case of

the input embedding,

x̂t = (xt ·Wemi)⊙ zemi (9)

Similarly, it was shown in [7] sampling weight matrices of a

LSTM (here, q(Wenc), q(Wdec)) can be efficiently performed

by sampling random Bernoulli masks zx, zh and applying

them at each time-step, while the LSTM encoder and decoder

are unrolled,








i
f
o
ĉ









=









sigm

sigm

sigm

tanh









((

xt ⊙ zx
ht−1 ⊙ zh

)

·W

)

(10)

Sampling from our predictive distribution

p(Bf|Bp,Of,Op) is done by first sampling weights

matrices of our Bayesian RNN encoder-decoder. Then the

parameters of the Gaussian observation noise distribution

at each time-step is predicted. For this, we use the hidden

state sequence ht
dec of the RNNdec and an additional linear

transformation,

ht+n
dec = RNNdec(h

t+n−1

dec , vbbox; zx, zh)

b̂t+n
i , (σ̂i

t+n)x, (σ̂
t+n
i )y = Wbbox ∗ ht+n

dec + biasbbox.

We then draw a sample from the predicted Gaussian distribu-

tion.

Next, we describe the second stream of our two-stream

model – our model for long-term odometry prediction.
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3.4. Prediction of Odometry

The odomtery prediction stream predicts a mean estimate

of the future vehicle ego-motion. We use a similar RNN

encoder-decoder architecture used for bounding box predic-

tion, but without the embedding layers. We condition the

predicted sequence Of on the past odometry sequence Op

and last visual observation on-board the vehicle. The past

odometry Op is input to an encoder RNN which produces a

summary vector vodo. The past odometry of the vehicle Op

gives a strong cue about the future velocity especially in the

short term (∼100ms). We use the same LSTM formulation

described previously as the RNN encoder; with the final hid-

den state ht as the summary. The last visual observation can

help in the longer term prediction of odometry; e.g. visual

cues about bends in the road, obstacles etc. Similar to [28, 2]

we employ a convolutional neural network (CNN-encoder)

to embed the visual information provided by the currently

observed frame; a visual summary vector vvis. Next we

describe our CNN-encoder architecture.

CNN-encoder. Our CNN-encoder should extract visual fea-

tures to improve longer-term (multi-step versus single-step

in [28, 2]) prediction. Therefore, we use a more complex

CNN compared to [2] and during training we learn the pa-

rameters from scratch, unlike [28] which uses a pre-trained

VGG network. Our CNN-encoder has 10 convolutional lay-

ers with ReLU non-linearities. We use a fixed, small filter

size of 3x3 pixels. We use max-pooling after every two

layers. After max-pooling we double the number of convo-

lutional filters; we use {32,64,128,256,512} convolutional

filters. The convolutional layers are followed by three fully

connected layers with 1024, 256 and 128 neurons and ReLU

non-linearities. The output of the last fully connected layer

is the visual summary vvis.

The odometry and visual summary vectors are concate-

nated v = {vodo, vvis} and read by the RNN decoder

(RNNdec). We use the same LSTM formulation described

previously as the RNN-decoder. As before, the hidden state

of the LSTM decoder is used for predicting the future odom-

etry sequence through a linear transformation.

ht+n
dec = RNNdec(h

t+n−1

dec , {vodo, vvis})

ot+n
i = Wodo ∗ h

t+n
dec + biasodo.

We next describe our training and inference processes.

3.5. Training and Inference

Training. The two streams are trained separately. As the

odometry prediction stream predicts point estimates, it is

trained first by minimizing the MSE over the training set.

The Bayesian bounding-box prediction stream is trained

by estimating (Monte-Carlo) and minimizing the KL diver-

gence of its approximate weight distribution q(ω) (5). More

specifically, 1. We sample a mini-batch of size T of exam-

ples from the training set. 2. For each example, weights

{Wemi,Wems,Wenc,Wdec} are sampled from q(ω) (8), by

sampling Bernoulli masks as in (9) and (10). 3. For each

example, the predicted means B̂f and variances σ̂ of the het-

eroscedastic models parameterized by ω are inferred. 4. The

KL divergence (5) can be equivalently minimized by (similar

to [6, 12]) the following loss,

1

4N

N
∑

i=1

n
∑

j=1

‖b̂t+j
i − bt+j

i ‖22(Σ̂
t+j
i )−2 + λ

∑

W

‖Wk‖2 + log σ̂2
i

where, |Bf| = n and N pedestrians. The left part is the

equivalent of the negative log likelihood term in (5). The

middle part is weight regularization parameterized by λ,

equivalent to the KL term in (5). The right part is additional

regularization as in [12], to ensure finite predicted variance.

The ADAM optimizer [14] is used during training. For

training sequences longer than |Bp|+ |Bf| (|Op +Of| respec-

tively) we use a sliding window to convert to multiple se-

quences. Moreover, as the sequences in the training set are of

varying lengths, we use a curriculum learning (CL) approach.

We fix the length of the conditioning sequence |Bp|, |Op| and

train for increasing longer time horizons |Bf|, |Of| (initializ-

ing the model parameters with those for shorter horizons).

This allows us to train on a larger part of the Cityscapes

training set (also on sequences shorter than |Bp|+ |Bf| of the

final model) and leads to faster convergence.

Inference. Given Bp and Op (and the visual observation),

the odometry prediction stream is first used to predict Of. We

sample from the predictive distribution (3) by, 1. Sampling

T samples of the weight matrices {Wemi,Wems,Wenc,Wdec}
of the Bayesian bounding box prediction stream from

the (learned) approximate distribution q(ω), by sampling

Bernoulli masks as in (9) and (10), 2. The RNNdec is un-

rolled to obtain a sample
{

B̂f, σ̂x, σ̂y

}

from each of the T

predicted Gaussian distributions. The associated uncertainty

is obtained using the T samples (6).

4. Experiments

We evaluate our model on real-world on-board street

scene data and show predictions over a 1 second time horizon

along with the associated uncertainty.

Dataset and Evaluation Metric. We evaluate on the

Cityscapes dataset [3] which contains 2975 training, 500 val-

idation and 1525 test video sequences of length 1.8 seconds

(30 frames). The video resolution is 2048×1024 pixels. The

sequences were recorded on-board a vehicle in inner cities.

Each sequence has associated odometry information. Pedes-

trian tracks were automatically extracted using the tracking

by detection method of [26]. Detections were obtained using

the Faster R-CNN based method of [31] (statistics in the Sup-

plementary). This mimics real world autonomous/assisted
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MSE L

|Bp| |Bp|
Method Odometry 4 6 8 4 6 8

Kalman Filter None 1938 1289 1098 x x x

LSTM None 692 663 650 8.11 7.99 7.77

LSTM-Aleatoric None 772 758 750 5.92 5.81 5.54

LSTM-Bayesian None 647 624 618 4.31 4.26 4.13

LSTM-Bayesian Ground-truth 374 358 343 3.94 3.93 3.88

Table 1: Bounding box prediction error with varying |Bp|.

Method MSE L

Social LSTM [1] 1514 5.63

LSTM-Bayesian 695 3.97

LSTM-Bayesian (centers) 648 x

Table 2: Bounding box center prediction

error.

driving systems where detections/tracks are obtained with

a state-of-the-art detector/tracker and we have to deal with

noise introduced by the detector and on rare occasions detec-

tor false positives and tracker failures. We use as evaluation

metric MSE in pixels (of the mean of the predictive distri-

bution) and the negative log-likelihood L. The L metric

measures the probability assigned to the true sequence by

our predictive distribution. We report these metrics aver-

aged across all time-steps and plots per time-step. We use a

dropout rate of 0.35, λ = 10−4 (tuned on validation set) and

use 50 Monte-Carlo samples across all Bayesian models.

Evaluation of Bounding Box Prediction. We indepen-

dently evaluate the first Bayesian LSTM stream of our two

stream model, without conditioning it on predicted odometry.

We predict 15 time-steps into the future and report the results

in Table 1. We compare its performance with, 1. A linear

Kalman filter baseline. 2. A LSTM encoder-decoder model

which does not model uncertainty (LSTM). 3. A LSTM

encoder-decoder which models only aleatoric uncertainty

(LSTM-Aleatoric). Finally, as an Oracle case, we compare

against a Bayesian version in which the LSTM encoder can

see the past odometry and the LSTM decoder can see the

true future odometry at every time-step. We also vary the

length of the conditioning sequence |Bp| (training/test sets

constant across varying |Bp|). In Table 1, we see that the

homoscedastic LSTM model (2nd row) outperforms the lin-

ear Kalman filter (1st row). This shows that many bounding

box sequences have a complex motion and therefore cannot

be modelled by a Kalman filter. We see that the LSTM-

Aleatoric (3rd row) outperforms the basic LSTM (2nd row)

with respect to the L metric. This means that the LSTM-

Aleatoric learns to capture uncertainty and assigns higher

probability to the true bounding box sequence. However, as

epistemic uncertainty is not modelled, aleatoric uncertainty

tries to compensate (as in [12]) and this leads to poorer MSE.

Finally, our Bayesian LSTM (4th row) outperforms all other

methods. This can be attributed to two factors, 1. The richer

Gaussian mixture model fitted by the Bayesian LSTM can

both capture aleatoric and epistemic uncertainty and fits the

data distribution better (evidenced by L metric). 2. Addi-

Method Visual Speed (m/sec) Angle (degrees)

Constant None 1.62 26.85

Kalman Filter None 0.053 2.44

LSTM None 0.056 0.94

LSTM RGB 0.048 0.88

Table 3: Odometry prediction error (MSE), |Op| = {8}.

tional introduced regularization. Furthermore, we see that

increasing the length of the conditioning sequence improves

model performance. However, the performance gain satu-

rates at |Bp| = 8. Henceforth, we will report results using

|Bp| = {4, 8} in the following. Finally, the odometry oracle

case outperforms our Bayesian LSTM by a large margin.

This shows that knowledge of vehicle odometry is crucial

for good performance.

Comparison with Social LSTM [1]. We compare our

Bayesian LSTM model with the vanilla LSTM 1 model of [1]

(with 128 neurons) that predicts trajectories independently

in Table 2. Both models are trained to predict sequences of

bounding box centers (length 15, given 8). Our Bayesian

LSTM model performs better as it is more robust to mistakes

during recursive prediction. The model of [1] observes true

past pedestrian coordinates during training. However, during

prediction it observes its own predictions causing errors to be

propagated though multiple steps of prediction. Furthermore,

we compare both methods to the centers obtained from the

predictions of our Bayesian LSTM (second row of Table 1).

The results show that we can improve upon bounding box

center prediction by predicting bounding boxes.

Evaluation of Odometry Prediction. We train our odom-

etry prediction LSTM encoder-decoder on the visual and

odometry data of the Cityscapes training set. As many se-

quences have close to zero steering angle, we augment the

training set to improve prediction performance. We reflect

the steering angle and flip last observed image left to right

of sequences with non-zero average steering angle. This

1The version with social pooling did not converge on our dataset.
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MSE L

|Bp| |Bp|
Method Streams Visual 4 8 4 8

Kalman Filter x None 1938 1098 x x

LSTM-Bayesian One None 572 546 4.03 3.97

LSTM-Bayesian Two RGB 532 505 3.99 3.92

Table 4: Evaluation of our Bayesian two stream model (Figure 2).

Table 5: MSE per time-step of models in

Table 1 row 1, 4, 5 and Table 4 row 3.

Figure 3: Quality of our uncertainty metric: plots 1 and 2 - uncertainty versus squared error, plots 3 and 4 - uncertainty versus

maximum observed squared error.

increases the training data with non-zero steering angles by

a factor of two. We use MSE between the predicted future

vehicle velocity and steering angles as evaluation metric.

The velocity is in meters per second and angle in degrees.

We include as baselines: 1. A constant steering predictor

that predicts the last observed odometry. 2. A linear Kalman

filter. 3. Our LSTM encoder-decoder without visual ob-

servation (v = {vodo}). The third baseline is an ablation

study. We observe no significant performance difference

between |Op| = {4} and |Op| = {8}. We evaluate 15 time-

steps into the future and report the results in Table 3. We

observe that the constant angle predictor performs signifi-

cantly worse compared to the other baselines. This shows

that the Cityscapes test set includes a significant number of

non-trivial sequences with complex vehicle trajectories. We

observe that the Kalman filter is able to quite accurately pre-

dict the vehicle speed. This is because in most vehicles are

travelling with constant speed or accelerating/decelerating

smoothly. However, the performance of the linear Kalman

filter is worse compared to the LSTM models with respect

to steering angle. This means that many sequences have

non-linear vehicle trajectories. The superior performance of

our model compared to the RNN baseline without visual ob-

servations, especially in the long-term shows that our CNN

encoder extracts information useful for long-term prediction.

We also show visual examples in the Supplementary.

Evaluation of our Two-Stream model. We perform an

ablation study of our two-stream model (Figure 2) and com-

pare with a single-stream Bayesian LSTM encoder-decoder

model where the encoder observes the concatenated past

bounding box and velocity sequence {Bp,Op} and the de-

coder predicts the future bounding box sequence Bf. This

model does not see predicted future odometry. We evaluate

the models and report the results in Table 4 and plot the

MSE per time-step Table 5. The results show that jointly

predicting odometry with pedestrian bounding boxes (3rd

row) significantly improves performance (2nd row). The

predicted odometry helps our two-stream model recover a

significant fraction of the performance of the Oracle case in

Table 1 row 5. The limiting factor here is that the odometry

is sometimes highly uncertain e.g. at T-intersections, which

leads to higher mean error. Apart from cases with uncertain

odometry, the residual error of our two-stream (and the Ora-

cle case) on a large part is due to the noise of the pedestrian

detector and tracker failures. We show qualitative examples

in Figure 4. Row 1 shows point estimates under linear vehi-

cle ego-motion and Rows 2, 3 non-linear vehicle ego-motion.

Our two-stream model (mean of predictive distribution) out-

performs other methods in the second case. Rows 4-5 shows

the predictive distributions of the two-stream model under

linear vehicle and pedestrian motion. The distribution is

symmetric and has high aleatoric uncertainty which cap-

tures detection noise and possible pedestrian motion. Row 6

shows a case of a skewed distribution with high epistemic

uncertainty which captures uncertainty in vehicle motion.

Quality of our Uncertainty Metric. We evaluate our un-

certainty metric in Figure 3. The first two plots show the

aleatoric and epistemic uncertainty to the squared error of

the mean of the predictive distribution of our two-stream

model. We use log-log plots for better visualization as most
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Last Observation: t Prediction: t + 5 Prediction: t + 10 Prediction: t + 15

Figure 4: Rows 1-3: Point estimates. Blue: Ground-truth, Red: Kalman Filter (Table 1 row 1), Yellow: One-stream model

(Table 1 row 4), Green: Two-stream model (mean of predictive distribution, Table 4 row 3). Rows 4-6: Predictive distributions

of our two-stream model as heat maps. (Link to video results in the Appendix).

sequences have low error (note, log(530) ≈ 6.22 the MSE

of our two stream model, Table 4). We see that the epis-

temic and aleatoric uncertainties are correlates well with

the squared error. This means that for sequences where the

mean of our predictive distribution is far from the true fu-

ture sequence, our predictive distribution has a high variance

(and vice versa). Therefore, for sequences with multiple

likely futures, where the mean estimate would have high

error, our model learns to predict diverse futures. In the

third plot of Figure 3, we plot the maximum log squared

error (of the mean of the predictive distribution) observed at

a certain predicted uncertainty level (sum of aleatoric and

epistemic) in the test test. In the fourth plot, we plot the

uncertainty with the maximum observed squared error at

time-steps t + {5, 10, 15}. In both cases, uncertainty and

observed maximum error is well correlated. This shows

that, the predicted uncertainty upper bounds the error of the

mean of the predictive distribution. Therefore, the predicted

uncertainty helps us express trust in predictions and has the

potential to serve as a basis for better decision making.

5. Conclusion

We highlight the importance of anticipation for practi-

cal and safe driving in inner cities. We contribute to this

important research direction the first model for long term

prediction of pedestrians from on-board observations. We

show predictions over a time horizon of 1 second. Predic-

tions of our model are enriched by theoretically grounded

uncertainty estimates. Key to our success is a Bayesian ap-

proach and long term prediction of odometry. We evaluate

and compare several different architecture choices and arrive

at a novel two-stream Bayesian LSTM encoder-decoder.
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