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Abstract

We propose a novel end-to-end trainable, deep, encoder-

decoder architecture for single-pass semantic segmenta-

tion. Our approach is based on a cascaded architec-

ture with feature-level long-range skip connections. The

encoder incorporates the structure of ResNeXt’s residual

building blocks and adopts the strategy of repeating a build-

ing block that aggregates a set of transformations with the

same topology. The decoder features a novel architecture,

consisting of blocks, that (i) capture context information,

(ii) generate semantic features, and (iii) enable fusion be-

tween different output resolutions. Crucially, we introduce

dense decoder shortcut connections to allow decoder blocks

to use semantic feature maps from all previous decoder lev-

els, i.e. from all higher-level feature maps. The dense

decoder connections allow for effective information prop-

agation from one decoder block to another, as well as for

multi-level feature fusion that significantly improves the ac-

curacy. Importantly, these connections allow our method to

obtain state-of-the-art performance on several challenging

datasets, without the need of time-consuming multi-scale

averaging of previous works.

1. Introduction

Semantic segmentation is the process of assigning a class

label to each pixel in an image, which is pertinent in a

number of applications including scene understanding for

robotic vision, autonomous driving, localization, as well as

navigation.

Recent works on semantic segmentation have shown sig-

nificant improvements in accuracy by incorporating state-

of-the-art deep Convolutional Neural Networks (CNN)

based image classifiers for semantic segmentation [5, 36].

One prominent approach involves Fully Convolutional Net-

works (FCN) [36], where the fully-connected layers are

converted into convolutional ones. We note that crucial in

this approach is the use of a skip architecture, which com-

bines semantic information from deep, coarse layers with

appearance information from shallow, fine layers.

Most recent techniques have incorporated image pyra-

mids for multi-scale inference and evaluation [5, 7, 9, 26,

31, 39, 54]. All such techniques take an input image and

scale it to multiple resolutions to build a set of cascad-

ing images, which are then piped, most often indepen-

dently, through a (neural network) processing pipeline. This

technique provides useful properties for many applications,

such as noise reduction or image manipulation. It is widely

used in semantic segmentation as an image representation

for extracting multi-scale semantic scores, which are then

averaged across all the scales to produce a final result.

However, running the inference step for many scales sepa-

rately significantly increases the processing time, thus mak-

ing such an approach impractical for many real-world ap-

plications. More importantly, the multi-scale pyramid sig-

nificantly increases memory requirements, making it virtu-

ally impossible to train a network end-to-end using a sin-

gle, modern GPU. This indicates that the multi-scale image

pyramid is used for the inference step only, often making

the whole approach heavily-engineered.

Motivated by the above, in this paper we design a

novel end-to-end trainable deep encoder-decoder architec-

ture, that aims to eliminate the need for multi-scale, multi-

pass semantic segmentation, and achieves comparable or

better results using a single scale. Our approach is based

on the cascaded architecture with feature-level long-range

skip connections. The encoder incorporates the structure

of ResNeXt’s residual building blocks and adopts the strat-

egy of repeating a building block that aggregates a set of

transformations with the same topology. The decoder fea-

tures a novel architecture consisting of blocks, that capture

context information, generate semantic features and enable

fusion between different resolution levels. Crucially, we

propose to use dense decoder shortcut connections to al-

low decoder’s blocks to use semantic feature maps from all

previous decoder’s blocks (i.e. from all higher-level fea-

ture maps) and correct any potential errors introduced by

the previous decoder’s blocks. The dense decoder short-

cut connections allow for effective information propagation

from one block of a decoder to another, and for multi-level

feature fusion that significantly improves the accuracy.
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We perform an extensive evaluation involving several

commonly used semantic segmentation datasets: Pas-

cal VOC 2012 [13], Pascal-Context [38], Pascal Person-

Part [8], NYUD [47] and CamVid [3]. Our experiments

show that the proposed approach achieves single-scale

state-of-the-art results, often outperforming even multi-

scale methods.

2. Related Work

Semantic Segmentation. Early works on semantic seg-

mentation have focused on designing a strong feature repre-

sentation, e.g. TextonBoost [46], TextonForest [44], as well

as Random Forest-based classifiers [45]. Recently, super-

vised deep learning architectures have observed widespread

success in many areas and have also become the standard

for successful approaches for semantic segmentation. In

particular, a number of methods, including DeepLab [5] and

Fully Convolutional Networks (FCN) [36], have shown sig-

nificant improvements in accuracy by adapting state-of-the-

art deep Convolutional Neural Networks (CNN) based im-

age classifiers to semantic segmentation. The DeepLab [5,

6] investigates atrous (i.e. dilated) convolutions, which al-

low to control the resolution at which feature responses

are computed, and effectively enlarge the field of view of

filters to incorporate larger context without increasing the

number of parameters or the amount of computation. The

DeepLab is based on the VGG-16 [48], where the fully-

connected layers have been converted into convolutional

ones. Moreover, the responses at the final CNN layer have

been combined with a fully connected Conditional Random

Fields (CRF), that has been applied at the post-processing

stage. The FCN approach [36], has also adapted the VGG-

16 architecture, but into an end-to-end trainable fully con-

volutional network. Moreover, FCN has defined a skip ar-

chitecture that combines semantic information from deep,

coarse layers with appearance information from shallow,

fine layers. This method has been the basis for many fur-

ther works [1, 35, 53, 55].

The aforementioned deep learning techniques are mainly

based on the VGG-16 architecture [48]. Recent re-

search works have shown that substantially deeper archi-

tectures, such as deep residual networks ResNets [18]

and ResNeXts [52] (ResNet-style layers, but with split-

transform-merge strategy), can gain accuracy from consid-

erably increasing the depth of the network. These residual

networks (i) are substantially deeper (e.g. with 50, 101,

or 152 layers) than those used in the past (e.g. ResNet

with 152 layers has 9.5 times more layers than the VGG-

16 [48]), (ii) have fewer parameters than the VGG nets,

(iii) are easier to optimize, and (iv) can gain accuracy from

considerably increased depth [52]. PSPNet [54] and Re-

fineNet [31] are a few of the recent methods that have

applied the ResNet architecture in semantic segmentation.

The former also adopts a region-based context aggregation

through a pyramid pooling module. The latter uses a cas-

caded architecture. In some respects, this is the closest work

to ours, but there are many important differences between

our methods: (i) RefineNet incorporates image pyramids

for multi-scale inference and evaluation, whereas we pro-

pose dense decoder shortcut connections for single-pass in-

ference and evaluation, (ii) both methods propose different

decoders, (iii) both methods aggregate context in different

ways, and (iv) both methods incorporate different building

blocks. Moreover, our approach significantly outperforms

the RefineNet, even up to 4.5% on the NYUD dataset.

CRF. The Conditional Random Fields (CRF) is a com-

monly used graphical model for image segmentation. It

incorporates smoothness terms that maximize label agree-

ment between similar pixels. Many recent works have ex-

plored joint learning of the FCN and CRF; on fully integrat-

ing the CRF modeling with CNN, leveraging on training of

the whole network end-to-end [55, 1]. In [55], the FCN was

used with the mean-field approximate inference formula-

tion for CRF with Gaussian pairwise potentials as Recurrent

Neural Networks. In [1], higher order potentials (object de-

tection and super-pixel based potentials) were incorporated

into an end-to-end trainable CRF model. Object Propos-

als. There are many other techniques that refine bounding

boxes of objects [16, 17] or segment-based region propos-

als [40, 41] into a segmentation. Although these methods

(i.e. CRF and object-based/region-based proposals) can be

incorporated in our network in order to further boost the ap-

proach accuracy, these methods are out of the scope of this

paper.

Dense Connections. The idea of dense connections

has been recently proposed for image classification in

DenseNet [20] and extended to semantic segmentation in

FC-DenseNet [24]. However, there are many important dif-

ferences in the use and purpose of dense connections be-

tween our methods. The above methods use multiple dense

blocks with transition layers between these blocks (there

are no dense connections between dense blocks), whereas

we use dense connections between decoder’s blocks, which

are on a different level of abstraction, see Fig. 1. More-

over, the above methods use dense connections to create

more efficient building blocks, whereas we use them to

strengthen feature propagation for multi-level semantic fea-

ture fusion. Furthermore, our approach significantly out-

performs the FC-DenseNet, even up to 4% on the CamVid

dataset.

3. Proposed Method

Structure. Our semantic segmentation network consists

of 2 main parts: an encoder and a decoder, see Fig. 1. The

encoder consists of 4 blocks, named: enc1, enc2, enc3 and

enc4. The encoder extracts appearance information on var-
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Figure 1: Overview of our architecture for single-pass semantic segmentation: cascaded architecture with our context-

aggregating decoder, feature-level long-range skip connections, and dense decoder shortcut connections for multi-level fea-

ture fusion.

ious layers, from shallow, fine layers (enc1) to deep, coarse

layers (enc4). The decoder consists of 4 main blocks, which

we call: dec4, dec3, dec2 and dec1. It provides seman-

tic segmentation results on various hierarchical levels, from

coarse (dec4) to fine (dec1) segmentations.

Our network is built upon a cascaded architecture. The

output of the block encx, where x = 1, . . . , 3, is connected

to the input of the block encx+1, the output of the block enc4
is connected to the input of the block dec4, and each output

of the block decx, where x = 2, . . . , 4, is connected to the

input of the block decx−1. Moreover, each decoder’s blocks

decx, where x = 1, . . . , 3, uses a feature map from the cor-

responding encoder’s block encx to refine a low resolution

feature map from the previous decoder’s block decx+1.

Encoder. We base the architecture of our encoder on

residual building blocks of the ResNeXt, but we remove

the global average pooling, fully connected layer and soft-

max from the network. The architecture of our encoder, i.e.

blocks encx, where x = 1, . . . , 4, based on the ResNeXt-

101 are presented in Tab. 1.

Decoder. We propose a new architecture of a semantic

segmentation decoder. The core of the decoder consists of

4 blocks, i.e. decx, where x = 1, . . . , 4. An overview of

the decoder’s blocks is presented in Fig. 1. Each one of

the blocks consists of an encoder adaptation stage and a se-

mantic feature generation stage. Moreover, the blocks dec1,

dec2, and dec3 have a fusion stage in between them. We call

these 3 blocks the fusion blocks, as they fuse the output of

the previous decoder with the output from the encoder adap-

tation. The block dec4 has only one input and therefore, it

does not perform any fusion. Note that all of the convo-

lution and pooling operations in the decoder, explained be-

low, do not change the dimensionality of the features, unless

stated otherwise.

The encoder adaptation is the first stage of every de-

coder’s block decx, where x = 1, . . . , 4, see Fig. 1. Its

stage template

enc1

7× 7, 64, stride 2

3× 3 max pool, stride 2
[[[

1× 1, 128
3× 3, 128, C=32

1× 1, 256

]]]

×3

enc2

[[[

1× 1, 256
3× 3, 256, C=32

1× 1, 512

]]]

×4

enc3

[[[

1× 1, 512
3× 3, 512, C=32

1× 1, 1024

]]]

×23

enc4

[[[

1× 1, 1024
3× 3, 1024, C=32

1× 1, 2048

]]]

×3

EA

3× 3, D
[[[

1× 1, D/2
3× 3, D/2, C=32

1× 1, D

]]]

×3

3× 3, D

Table 1: Architecture of our encoder’s blocks encx, where

x=1, . . . , 4, and our encoder adaptation (EA) stage. The

shape of the residual building blocks are shown in brackets,

with the number of blocks stacked for each of the stages.

A layer is denoted as (filter size, # output channels). “C=32”

refers to grouped convolutions with 32 groups.

purpose is to prepare features from an encoder encx for the

fusion stage (for x = 1, . . . , 3) or semantic feature gener-

ation stage (for x = 4). Firstly, we apply a 3× 3 convo-

lution to reduce the number of channels of features encx,

as these features are typically of high dimension (e.g. 2048

for the enc4). Then, we apply three stacked residual build-

ing blocks to adapt features for the consecutive stages, see
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Figure 2: Decoder’s semantic feature generation stage.

Tab. 1. Finally, if a decoder’s block performs a fusion (i.e.

dec1, dec2 and dec3), we also apply a 3×3 convolution (see

the explanation below).

The fusion is the second stage of the blocks dec1, dec2
and dec3. The purpose of this stage is to fuse features

from the encoder adaptation with features from the previous

decoders. In particular, in decoder decx, we use features

encx, that passed through the encoder adaptation stage, to

refine low resolution features from the previous decoders

decx+1,..,4. However, we must first ensure that the features

we want to fuse have the same dimensionality, i.e. they

have the same spatial resolution and number of channels.

To ensure the same number of channels, the last operation

of the encoder adaptation and the last operation of the pre-

vious decoder undergo a 3 × 3 convolution. Therefore, we

simply set the number of output channels of both convolu-

tions to the same value, i.e. the smallest value among the

number of input channels of these convolutions. Then, to

ensure the same spatial resolution of the features, we apply

a bilinear interpolation to up-scale low-resolution features

to the largest spatial resolution of the features that we want

to fuse. Finally, we can fuse the features by element-wise

summation operation, as the features have the same dimen-

sionality, see Fig. 3.

The last section of each block in the decoder is respon-

sible for capturing context information and then using it to

generate semantic features. To capture context informa-

tion, we apply a sequence of 4 convolution-pooling blocks,

each with a 3 × 3 convolution followed by a 5 × 5 max

pooling layer. Each pooling block captures context infor-

mation from a large area in the image for every spatial po-

sition of the feature map. We fuse the input of this stage

with all outputs of the pooling operations by concatenation

of the feature maps. We also apply 3×3 convolutions to re-

duce (i) the dimension of the feature maps from the pooling

layers, and (ii) the dimension of the concatenated features.

· · · · · ·

3×3, D UPSCALE

3×3, D +

•

•

• •

decoder

A-d in

decoder

B-d in

encoder

C-d in

D-d out

Figure 3: Decoder’s fusion stage.

This is shown in Fig 2. We then generate semantic features

for further processing (in blocks dec4, dec3 and dec2) or fi-

nal prediction (in the block dec1) by applying four stacked

residual building blocks. If we generate semantic features

for further processing, we then apply a 3 × 3 convolution,

as explained in the fusion stage. If we generate semantic

features for final prediction, we apply a dropout to reduce

overfitting followed by a 3 × 3 convolution to adjust the

number of output channels of a feature map to the number

of classes. Moreover, we apply per-pixel softmax function

to generate a semantic segmentation map, and we also ap-

ply the bilinear interpolation to up-scale a low-resolution

feature map to the original size of an image.

Image Pyramid. The image pyramid has been widely

used in semantic segmentation as a multi-scale image rep-

resentation for extracting multi-scale image features. Usu-

ally, after an image pyramid is created, semantic segmen-

tation is run on each scale separately, and the results are

averaged across the different scales [5, 7, 9, 26, 31, 39, 54].

However, running inference step separately for each scale

significantly increases the processing time, making such

an approach impractical for many real world applications.

Moreover, using an image pyramid significantly increases

the memory requirements, making it impossible to train the

entire network end-to-end with a single GPU. Therefore, the
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image pyramid is only used for the inference step, making

such approaches heavily-engineered.

Dense Decoder Shortcut Connections. Instead of using

the image pyramid directly, we introduce the dense decoder

shortcut connections, see Fig 1. We treat the decoder’s

blocks as a hierarchy of semantic features, as if it was cre-

ated by the image pyramid. Our cascaded architecture ef-

fectively enables the creation of multi-scale feature pyramid

from just a single-pass image inference. Our dense decoder

shortcut connections use the concept of a feature pyramid,

and connect every output of a decoder’s block decx with ev-

ery input of a decoder’s block decy , where x > y. This is

to allow the decoder’s blocks to use semantic feature maps

from all previous (higher-level) decoder’s blocks to correct

any potential errors previously introduced in the decoder.

Our dense decoder shortcut connections effectively fuse the

semantic feature maps from different scales, and allow for

effective information propagation from one block of to an-

other. This significantly reduces the memory requirements

and allows us to train the entire network end-to-end on a

single GPU with 12 GB of memory, whilst using the multi-

scale feature pyramid. Moreover, the image pyramid for

multi-scale inference and evaluation can still be used, if

needed, resulting in pyramid of multi-scale feature pyra-

mids.

Furthermore, we have 2 other types of shortcut connec-

tions in our network: short-range and long-range. The

short-range skip connections are the identity mappings of

residual building blocks, see Fig. 2, which allow the forward

and backward signals to be directly propagated from one

block to any other block [19]. The feature-level long-range

skip connections combine semantic information from deep,

coarse layers with appearance information from shallow,

fine layers. We extend the idea of using 2 long-range skip

connections from the FCN-8 [36] to 3 long-range shortcut

connections, but with such difference, that the FCN’s skip

connections are applied to fuse predictions, whereas ours

are applied to fuse semantic features. Our long-range skip

connections occur between blocks encx and decx, where

x ∈ {1, 2, 3}, and are shown in Fig. 1.

4. Experiments

We comprehensively evaluate our method on several

commonly used semantic segmentation datasets: Pas-

cal VOC 2012 [13], Pascal-Context [38], Pascal Person-

Part [8], NYUD [47] and CamVid [3]. In the following sub-

sections, we present experimental setup, results and com-

parison with the state-of-the-art.

Experimental Setup. We train the entire network end-

to-end with the usual back-propagation algorithm using

only a single NVIDIA GeForce GTX TITAN X with 12

GB of memory. We train our network with common and

simple data augmentation strategies such as random scaling

(from 0.7 to 1.3), horizontal flipping and random cropping.

For the encoder, we use the architecture of the ResNeXt-

101; however, any of the ResNet and ResNeXt architec-

tures could be used. We initialize the layer weights of our

encoder using those from the ResNeXt model, which was

pre-trained on ImageNet [43], and then we fine-tune in turn

the finer strides on the training/validation data. The batch

normalization [22, 52] is applied in the encoder only, and

we fix it after the network is pre-trained, because the batch

size is too small to build up meaningful batch statistics. For

the decoder, we use the ReLU activation function right af-

ter each convolution and element-wise summation opera-

tion, except for the output of the block, where ReLU is per-

formed after adding to the shortcut, following the concepts

of [18, 52]. Moreover, we do not use the ReLU right af-

ter the last convolution of the encoder adaptation stage and

semantic feature generation stage, where features are being

adopted for the fusion stage or final prediction, and before

the pooling layer in the semantic feature generation stage.

For fine-tuning, we set the learning rate to 1e-4, the weight

decay to 5e-4, and the momentum to 0.9. Moreover, we set

the decoder’s parameters as follows: D=1024 for dec4 and

D=#input channels of encoder’s features for the remain-

ing blocks, and D′=D/4. We have also experimented with

various lengths of convolution-pooling blocks and various

max pooling windows. The selected parameters have been

empirically shown to give a good trade-off between con-

vergence time and results. To up-scale features, we have

considered both a bilinear interpolation and a transposed

convolution with learnable weights; however, both meth-

ods have shown to achieve similar accuracy, and thus we

have selected a simpler bilinear interpolation as it requires

fewer parameters to learn. We report the mean IoU as the

commonly used semantic segmentation metric [13, 36].

The NYUD (NYU Depth v2) dataset [47] consists of

1449 RGB and depth images (381 training, 414 validation

and 654 testing). We train our approach on RGB images

only, without using the depth information, and we follow

the commonly used 40 classes task [14, 36]. Our results are

presented in Tab. 2. Sample predictions of our approach are

shown in Fig. 5. Our approach using a single-scale eval-

uation achieves a new state-of-the-art accuracy 48.1 mean

IoU, significantly outperforming the state-of-the-art meth-

ods using a multi-scale evaluation.

Then, we use the NYUD dataset for various experiments

due to the small number of images. Firstly, we show that

our dense decoder shortcut connections (DDSC) improve

the accuracy of our approach by 1.8, see Tab. 3. More-

over, we show that the DDSC can be also applied to other

semantic segmentation methods. The DDSC improve the

accuracy of the RefineNet-101 [31] by 1.9 mean IoU. The

RefineNet-101 with our DDSC achieves 45.5 mean IoU,

which is almost 2% better than the RefineNet-101 with
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Approach mean IoU

FCN-32s HHA [36] 24.2

Gupta et al. [14] RGBD 27.4

Gupta et al. [15] RGBD 28.6

FCN-32s RGB [36] 29.2

FCN-32s RGBD [36] 30.5

FCN-32s RGB-HHA [36] 32.8

FCN-16s RGB-HHA [36] 34.0

Eigen [12] 34.1

Contextual Pairwise [32] 40.6

RefineNet-101 [31] 43.6

Ours (single scale) 48.1

Table 2: Comparison of our approach (using a single-scale

evaluation) with the state-of-the-art (using a multi-scale

evaluation) on the NYUD dataset.

Approach DDSC Msc Eva mIoU

RefineNet-101 [31] 43.6

RefineNet-101 [31] ✓ 44.7

* RefineNet-101 ✓ 45.5

RefineNet-152 [31] ✓ 46.5

* Ours-101 (without CA) ✓ 46.4

* Ours-101 ✓ 48.1

* Ours-101 46.3

Table 3: Experiments on the NYUD dataset. The * indicates

our experiments. 101 and 152 indicate number of layers

of an encoder. DDSC indicates our dense decoder shortcut

connections. CA indicates our context aggregation. Msc

Eva indicates multi-scale evaluation, as in [31].

a single-scale evaluation and almost 1% better than the

RefineNet-101 with a time-consuming multi-scale evalua-

tion. Furthermore, we show that our context aggregation

step (convolution-pooling blocks) of the semantic feature

generation stage contributes 1.7% to the accuracy. We also

show that our ResNeXt-style modules increase accuracy by

almost 2.6% w.r.t. the RefineNet-101. Finally, we report

that the inference takes 0.3 second per image (640 × 480

pixels spatial resolution).

The CamVid [3] is a road scene understanding dataset

with 11 semantic classes and 701 images (367 training, 101

validation and 233 testing). We resize images to 480× 360

pixels for both training and testing, as in [2]. The results are

presented in Tab. 4 and Fig. 5. Our approach using a single-

scale evaluation achieves a new state-of-the-art result 70.9

mean IoU, outperforming by 2.9 the second best method,

which is using multi-scale evaluation. Note that some of

the methods in Tab. 4 use high resolution images, which

expectedly would further improve our results.

Approach mean IoU

DeconvNet [39] 48.9

SegNet [2] 50.2

FCN-8 [36] 52.0

DeepLab-LargeFOV-DenseCRF [5] 54.7

Bayesian SegNet [25] 63.1

Dilation [53] 65.3

Dilation + FSO [27] 66.1

FC-DenseNet103 [24], single scale 66.9

G-FRNet [23] 68.0

Ours (single scale) 70.9

Table 4: Comparison of our approach (using single-scale

evaluation) with the state-of-the-art (most using multi-scale

evaluation) on the CamVid dataset.

Approach mean IoU

FCN [36] 62.2

Zoom-out [37] 69.6

DeepLab [5] 71.6

CRF-RNN [55] 72.0

DeconvNet [39] 72.5

G-CRF [4] 73.2

DPN [35] 74.1

Piecewise [32] 75.3

PSPNet [54] 82.6

Ours (single scale) 81.2

Table 5: Comparison of our approach (using single-scale

evaluation) with the state-of-the-art (using multi-scale eval-

uation) on the Pascal VOC 2012 dataset. Methods are

trained with Pascal VOC 2012 and SDB [16] data only.

The Pascal VOC 2012 dataset [13] is the most popu-

lar semantic segmentation dataset, with 20 object categories

and a background class. It contains 1464 training, 1449

validation and 1456 testing images. Following common

practice [55, 5, 54], we use the training set which also in-

cludes additionally annotated training and validation VOC

images [16]. As annotations of the test set are not pub-

licly available, the final accuracy is obtained by submitting

the predicted segmentations to the Pascal VOC challenge

evaluation server [13]. Our results are presented in Tab. 5.

Sample predictions of our approach are shown in Fig. 5.

Our approach using a single-scale evaluation achieves the

second best score against methods using multi-scale evalu-

ations. Our algorithm is only outperformed by PSPNet [54]

which, we believe, is due to multi-scale evaluation, but also

due to the larger batch size used (1 image for us, 16 for

PSPNet). Recent works [42, 11] showed that the batch nor-

malization layer introduces additional non-linearity to the
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Approach mean IoU

CFM [10] 34.4

FCN-8s [36] 37.8

CRF-RNN [55] 39.3

ParseNet [34] 40.4

BoxSup [9] 40.5

Higher Order CRF [1] 41.3

Contextual Pairwise [32] 43.3

VeryDeep [50] 44.5

DeepLab [6] 45.7

Global Context Embedding [21] 46.5

RefineNet-101 [31] 47.1

RefineNet-152 [31] 47.3

Ours (single scale) 47.8

Table 6: Comparison of our approach (using single-scale

evaluation) with the state-of-the-art (using multi-scale eval-

uation) on the Pascal-Context dataset.

Approach mean IoU

Attention [7] 57.4

HAZN [51] 57.5

LG-LSTM [30] 58.0

Grap-LSTM [29] 60.2

DeepLab [5] 62.8

DeepLab-v2 (ResNet-101) [6] 64.9

Holistic [28], single scale 66.3

RefineNet-101 [31] 68.6

Ours (single scale) 68.6

Table 7: Comparison of our approach (using single-scale

evaluation) with the state-of-the-art (most using multi-scale

evaluation) on the Pascal Person-Part dataset.

network, so a larger batch size and a training strategy de-

sign taking advantage of this are likely to increase overall

accuracy. Larger batch sizes are however not tractable in

our single GPU scenario. Also connected to this point, the

PSPNet encoder uses a modified ResNet backbone, which

maintains feature maps of higher resolutions than the origi-

nal ResNet (this may be another source of the improvement

of the PSPNet, not tractable in our single-GPU scenario).

Note that methods using additional data (e.g. IDW [49] and

MS-COCO [33]) are excluded in this comparison to assure

that all the methods are using the same data for training.

The Pascal-Context dataset [38] provides pixel-wise la-

bels for the PASCAL VOC 2010 images. It contains 4998

training and 5105 testing images, and annotations for 60

categories (59 object categories and a background class).

Our results are presented in Tab. 6. Sample predictions of

our approach are shown in Fig. 5. Our approach using a

single-scale evaluation achieves a new state-of-the-art re-

sult 47.8 mean IoU, outperforming many methods that are

using multi-scale evaluation.

The Pascal Person-Part [8] is an object parsing dataset,

which provides pixel-level labels for six person parts (head,

torso, upper arms, lower arms, upper legs, and lower legs)

and a background. There are 1717 training/validation and

1818 testing images. Our results are presented in Tab. 7.

Sample predictions of our approach are shown in Fig. 4.

Our approach using a single-scale evaluation achieves the

state-of-the-art accuracy, the same as the RefineNet-101 us-

ing time-consuming multi-scale evaluation.

5. Conclusion

We have proposed a novel end-to-end trainable, deep,

encoder-decoder architecture for single-pass semantic seg-

mentation. Our approach is based on a cascaded architec-

ture with feature-level long-range skip connections. We

have incorporated the structure of ResNeXt’s residual build-

ing blocks and adopted the strategy of repeating a build-

ing block that aggregates a set of transformations with the

same topology. Moreover, we have proposed a novel de-

coder’s architecture, consisting of blocks, each capturing

context information, generating semantic features, and en-

abling fusion between different output resolutions. Cru-

cially, we have introduced dense decoder shortcut connec-

tions to allow decoder blocks to use semantic feature maps

from all previous decoder levels, i.e. from all higher-level

feature maps. The dense decoder shortcut connections al-

low for effective information propagation from one decoder

block to another, and for multi-level feature fusion that sig-

nificantly improves the accuracy. We have performed an

extensive evaluation of our approach on various semantic

segmentation datasets, obtaining the state-of-the-art perfor-

mance on several challenging datasets, without the need of

time-consuming multi-scale averaging of previous works.

Furthermore, our dense decoder shortcut connections have

shown that they are likely to apply to other architectures as

well.
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Figure 4: Person-Part: sample input image (left), ground

truth (middle) and prediction of our approach (right).
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Figure 5: Sample predictions of our approach on Pascal VOC 2012 (1st-3rd rows), Pascal-Context (4th-6th rows), NYUD

(7th and 8th rows) and CamVid datasets (9th and 10th rows). From left to right: input image, ground truth and our prediction.
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