
A Minimalist Approach to Type-Agnostic Detection of Quadrics in Point Clouds

Tolga Birdal1,2 Benjamin Busam1,3 Nassir Navab1,4 Slobodan Ilic1,2 Peter Sturm5

1 Technische Universität München, Germany 2 Siemens AG, Munich, Germany
3 Framos AG, Munich, Germany 4 Johns Hopkins University, US 5 INRIA, France

Abstract

This paper proposes a segmentation-free, automatic and

efficient procedure to detect general geometric quadric

forms in point clouds, where clutter and occlusions are in-

evitable. Our everyday world is dominated by man-made

objects which are designed using 3D primitives (such as

planes, cones, spheres, cylinders, etc.). These objects are

also omnipresent in industrial environments. This gives rise

to the possibility of abstracting 3D scenes through primi-

tives, thereby positions these geometric forms as an integral

part of perception and high level 3D scene understanding.

As opposed to state-of-the-art, where a tailored algo-

rithm treats each primitive type separately, we propose to

encapsulate all types in a single robust detection procedure.

At the center of our approach lies a closed form 3D quadric

fit, operating in both primal & dual spaces and requiring

as low as 4 oriented-points. Around this fit, we design a

novel, local null-space voting strategy to reduce the 4-point

case to 3. Voting is coupled with the famous RANSAC and

makes our algorithm orders of magnitude faster than its

conventional counterparts. This is the first method capa-

ble of performing a generic cross-type multi-object primi-

tive detection in difficult scenes. Results on synthetic and

real datasets support the validity of our method.

1. Introduction

Quadrics, or quadratic surfaces, are second order im-

plicit representations, including geometric primitives such

as planes, spheres, cylinders, ellipsoids, cones and more.

Due to their ability to cover a wide variety of shapes, many

industrial parts and man-made objects are manufactured us-

ing quadric solids after designed with specific CAD soft-

ware. As a result, our environment consists of these math-

ematical constructs. This prominent exposure made under-

standing and reverse engineering of quadrics, where a scene

is parsed into primitives, a primary concern in computer vi-

sion already in the 80s [36, 7]. While a large part of these

works address the problem of recovering quadrics from 2D

images [12], in the 3D domain, the research streams still
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Figure 1. Our algorithm quickly detects quadric shapes in point

clouds under occlusions, partial visibility and clutter. Note that,

the algorithm has no clue whether a sphere exists or not and is

able to detect the plausible primitive using only 3D geometry.

seem to be divided into two branches: Quadric Fitting and

Primitive Detection. The former, Quadric Fitting, con-

cerns the fitting of a general quadric to a clutter-free, poten-

tially noisy scene [51, 49, 9]. The latter, Primitive Detec-

tion, tackles a different problem: the reconstruction of type-

specific primitives from cluttered scenes [1, 2, 25]. Yet, to

this date, the task of automatic and generic quadric detec-

tion within clutter or occlusions without necessitating auxil-

iary preprocessing steps such as segmentation or manual in-

tervention [39], remain to be unexplored and unsolved. This

is partially because unlike rigid 6-DoF free-form detection

& pose estimation, quadrics have 9 degrees of freedom, and

can deform into various forms. Naturally, this problem is

a harder one. Although deep neural networks can learn to

segment scenes [37, 23], or show great potential in learn-

ing the fitting function and feature extraction [13], jointly

solving the detection and surface fitting, to the best of our

knowledge, is an open challenge. Moreover, for the prob-

lem at hand, data labeling is notoriously exhaustive.

One trivial way to attack our problem would be to use

an off-the-shelf quadric fitting method in a RANSAC [18]

pipeline. Yet, there is a caveat in doing this: RANSAC re-
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quires repeated trials of a minimal-case model fitting. Even

though degenerate or special quadrics such as cylinders,

planes or spheres can be described by three or two or single

oriented 3D point(s) [16], it is not the case for a more com-

plex quadric such as an ellipsoid, paraboloid or hyperboloid

and the state of the art requires 9 [51, 49, 9] to 12 [4] points

to perform a generic quadric fit. Such large DoF necessity

increases the complexity of RANSAC-like approaches sig-

nificantly. Hence, this seemingly old problem - discovering

equations of quadrics in arbitrary and general 3D scenes -

awaits an efficient and robust clutter treatment [42, 21].

In this paper, we fill these gaps by showing first a mixed

primal/dual-space quadric fit, requiring as low as 4 oriented-

points (4 points and associated normals). We analyze this fit

and around it, devise a local Hough transform method to re-

duce the 4-point case to 3-points, establishing the minimal-

ist fit known so far. These developments pave the way to an

efficient RANSAC loop. We slightly modify the RANSAC

pipeline using a pre-clustering of feasible hypotheses. We

provide distance and score metrics on quadric spaces to per-

form this robust fit. In a nutshell, our contributions are:

1. A novel closed form quadric fitting capable of using as

low as 4 oriented points as supported theoretically,

2. An effective local voting strategy, reducing the 4-point

requirement to 3-points,

3. A fast & robust scheme to compute voting parameters,

4. A 3-point RANSAC algorithm with an efficient score

function to verify the hypotheses,

5. To the best of our knowledge, the first robust pipeline

to perform generic type-agnostic multi-object quadric

detection in the presence of clutter and occlusion.

Quantitative and qualitative experiments on synthetic

and real datasets demonstrate the robustness of our fitting

as well as the computational gains. We will make our im-

plementation openly available.

2. Prior Art

Quadrics Quadrics appear in various domains of vision,

graphics and robotics. They are found to be one of the best

local surface approximators in estimating differential prop-

erties [42]. Thus, point cloud normals and curvatures are of-

tentimes estimated via local quadrics [59, 15, 6, 14]. Other

use cases include mesh representation [27], mesh and point-

cloud segmentation [56, 33], projective geometry & recon-

struction [24, 12], minimal problem solving [31], grasp mo-

tion planning [41, 54] and feature extraction [58].

Primitive Detection Discovering primitives in point

clouds has kept the vision researchers busy for a long pe-

riod of time. This category treats the primitive shapes inde-

pendently [25], giving rise to plane, sphere, cone, cylinder

and etc. specific fitting algorithms. Planes, as the simplest

forms, are the primary targets of Hough-family [10]. Yet, to

find a larger variety of primitives, RANSAC comes in handy

as shown in the prosperous Globfit [32]: a relational local to

global RANSAC algorithm. Schnabel et. al. [47] and Tran

et. al. [52] also focus on reliable estimation via RANSAC.

Qui et.al. extract pipe runs using cylinder fitting [45], and

the local Hough transform of Drost and Ilic [16] efficiently

detects spheres, cylinders and planes from point clouds.

Lopez et. al. [34] devise a robust ellipsoid fitting based on

iterative non-linear optimization while Sveier et. al. [48]

suggest a conformal geometric algebra to spot planes, cylin-

ders and spheres. Andrews [3] deals with paraboloids and

hyperboloids in CAD models.

Methods and algorithms in this category are quite success-

ful in shape detection, yet they handle the primitives sep-

arately. This prevents automatic type detection, or gener-

alized modeling of surfaces such as paraboloids or hyper-

boloids along with cylinders and spheres.

Quadric Fitting Since the 90s, following the pioneering

work of Gabriel Taubin [51], quadric fitting is cast as a

constrained optimization problem, where the solution is ob-

tained from a Generalized Eigenvalue decomposition of a

scatter matrix. This work has then been enhanced by 3L

fitting [9], proposing a local, explicit ribbon surface com-

posed of three-level-sets of constant Euclidean distance to

the object boundary. This fit implicitly uses the local sur-

face information. Later on Tasdizen [49] improved the lo-

cal surface properties by incorporating the surface normals

to regularize the scatter matrix, which allows for a good and

stable fit. Recently, Beale et. al. [4] introduced the use of a

Bayesian prior for the fitting pipeline. All of these methods

use at least 9 points. Moreover, they only use surface nor-

mals as regularizers and not as additional constraints or are

unable to deal with outliers in data. There are a few other

studies [30, 1], which improve these standard methods, but

many of them either involve non-linear optimization [57] or

they share the common drawback of requiring 9 indepen-

dent constraints and no outlier treatment.

Quadric Detection Recovering general quadratic forms

from cluttered and occluded scenes is a rather unexplored

area. A promising direction was to represent quadrics with

spline surfaces [39], but such approaches have to tackle

the increased number of control points, i.e. 8 for spheres,

12 for general quadrics [43, 44]. Segmentation is one way

to overcome such difficulties [35, 39], but introduces un-

desired errors especially under occlusions. Other works ex-

ploit genetic algorithms [26] but have the obvious drawback

of inefficiency. QDEGSAC [22] proposed a 6-point hierar-

chical RANSAC, but the paper misses out an evaluation or

method description for a quadric fit. Petitjean [42] stressed

out the necessity of outlier aware quadric fitting however

only ends up suggesting M-estimators for future research.
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3. Preliminaries

Definition 1

A quadric in 3D Euclidean space is a hypersurface defined

by the zero set of a polynomial of degree two:

f(x, y, z) = Ax2 +By2 + Cz2 + 2Dxy + 2Exz (1)

+ 2Fyz + 2Gx+ 2Hy + 2Iz + J = 0.

or similarly in the vector notation vTq = 0 with:

q =
[

A B C D E F G H I J
]T

(2)

v =
[

x2 y2 z2 2xy 2xz 2yz 2x 2y 2z 1
]T

Using homogeneous coordinates, quadrics can be ana-

lyzed uniformly. The point x = (x, y, z) ∈ R
3 lies on

the quadric, if the projective algebraic equation over RP3

with dq(x) := [xT 1]Q[xT 1]T holds true, where the matrix

Q ∈ R
4×4 is defined by re-arranging the coefficients:

Q =









A D E G
D B F H
E F C I
G H I J









, ∇Q = 2





A D E G
D B F H
E F C I



. (3)

dq(x) can be viewed as an algebraic distance function. Sim-

ilar to the quadric equation, the gradient at a given point

can be written as ∇Q(x) := ∇Q[xT 1]T . Quadrics are

general implicit surfaces capable of representing cylinders,

ellipsoids, cones, planes, hyperboloids, paraboloids and po-

tentially the shapes interpolating any two of those. All to-

gether there are 17 sub-types [55]. Once Q is given, this

type can be determined from an eigenvalue analysis of Q

and its subspaces. Note that quadrics have constant second

order derivatives and are practically smooth.

Definition 2

A dual quadric Q∗ ∼ Q−1 is the locus of all planes {Πi}
satisfying ΠT

i Q
−1Πi = 0 and is formed by the Legendre

transform, sending points to tangent planes as covectors.

Knowing a point lies on the surface gives 1 constraint, and

if, in addition, one knows the tangent plane at that point,

then one gets 2 more constraints. Such view will lead to a

mixed-space fitting, reducing the minimal point necessity.

Definition 3

A basis b is a subset composed of a fixed number (b) of

scene points and hypothesized to lie on the sought surface.

4. Quadric Detection in Point Clouds

Our algorithm operates by repeatedly selecting bases.

Once a basis b is fixed, an under-determined quadric fit pa-

rameterizes the solution and a local accumulator space, tied

to b, is formed. All other points in the scene are then com-

bined with this basis to vote for the potential generic prim-

itive. To discover the optimal basis, we perform RANSAC,

iteratively hypothesizing solution candidates. Subsequent

to such joint RANSAC and voting, a hypotheses custering

and ranking takes place, allowing for multiple quadric de-

tection without re-executions of the whole algorithm.

A new perspective to quadric fitting Direct solutions for

quadric fitting rely either solely on point sets [51], or use

normals as regularizers [49]. This is due to vector-vector

alignment being a non-linear constraint caused by the nor-

malization ∇Q(x)/‖∇Q(x)‖, i.e. it is hard to know the

norm in advance. Similar to ∇1-fitting [50, 49], our idea

is to align the gradient vector of the quadric ∇Q(xi) with

surface normal ni ∈ R
3, this time using a linear gradient

constraint to increase the DoFs rather than regularizing the

solution. To do so, we introduce per normal homogeneous

scale αi among the unknowns and write: ∇vT
i q = αini.

Stacking it up for all N points xi and normals ni leads to:

A′

[

q

α

]

=







[

· · · vi · · ·
]T [

0
]

[

· · · ∇vi · · ·
]T [

diag(−n′)
]













q

α






= 0

(4)

where A′ is 4N × (N + 10), α are the unknown homoge-

neous scales and n′ = [· · ·nT
i · · · ]

T . The solution defines a

unique fit in the null space of A′, which gets to full rank for

≥ 4 oriented points, the minimalist case known up to now.

Theorem 1

Although 3 oriented points provide 9 constraints, quadric

fitting, as formulated, possesses a trivial solution in addi-

tion to the true one.

Proof. Let us call data-plane, the plane spanned by the co-

ordinates of 3 data points. Any rank-1 quadric consists of a

single plane Π and can be written as Q = Π ΠT . Hence,

for any point u on the data plane and thus on the quadric,

we have Qu = 0 and ∇vT
i q = 0. This amounts to the

choice α = 0. Thus the trivial solution is identified as the

rank-1 quadric consisting of the data-plane and zero scale

factors. Hence, the estimation problem admits at least a

one-dimensional linear family of solutions, spanned by the

true quadric and the rank-1 quadric of the data-plane.

Indeed, for a non-degenerate surface, following relations

hold: N = 1 ⇒ rk(A′) = 4, N = 2 ⇒ rk(A′) = 7,

N = 3 ⇒ rk(A′) = 9 and N > 3 ⇒ rk(A′) = 10. Show-

ing this and that adding further point constraints give di-

minishing returns is also relatively easy to see by Gaussian

Elimination on the matrix, as equations are inter-dependent.

Despite sparsity, the unknowns in this system scale lin-

early with N , leading to a large system to solve. In practice,

we approximate them with a single common scale ᾱ, similar

to adding a soft-regularizer that tries to force αi ← ᾱ [49].

Doing so rescues us from solving the sensitive homoge-

neous system [58], and lets us re-write the system in a com-
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pact form Aq = n:

A =





































x2
1 y21 z21 2x1y1 2x1z1 2y1z1 2x1 2y1 2z1 1

x2
2 y22 z22 2x2y2 2x2z2 2y2z2 2x2 2y2 2z2 1

...

2x1 0 0 2y1 2z1 0 2 0 0 0
0 2y1 0 2x1 0 2z1 0 2 0 0
0 0 2z1 0 2x1 2y1 0 0 2 0

2x2 0 0 2y2 2z2 0 2 0 0 0
0 2y2 0 2x2 0 2z2 0 2 0 0
0 0 2z2 0 2x2 2y2 0 0 2 0

...





































n =
[

0 0 . . . n1
x n1

y n1
z n2

x n2
y n2

z . . .
]T

q =
[

A B C D E F G H I J
]T

(5)

The matrix A is only 4N×10 having identical rank proper-

ties as Eq. 4. To balance the contribution of normal induced

constraints we, introduce a scalar weight w. Note that true

quadric fitting is intrinsically of non-linear nature and hence

formulating such a linear form is only possible with alge-

braic metrics, always being subject to certain bias [20]. We

pose it a future work to study the bias introduced by our fit.

Fig. 2(a) shows the minimum number of constraints re-

quired for a full-rank fit in primal and dual spaces. Besides,

to obtain a type-specific fit, a minor redesign of A is suf-

ficient. Fig. 2(b) depicts the minimal cases for exemplary

shapes and the voting space dimension as we describe here-

after. In the following, we elaborate on a more efficient way

to calculate a solution to Eq. 5 rather than using a naive

RANSAC on 4 tuples by analyzing its solution space. The

rest of this section can be thought of as a generic method

applicable to any problem formulated as a linear system.

System 5 describes an outlier-free closed form fit. To

factor in clutter, a direct RANSAC on 9DoF quadric ap-

pears to be trivial. Yet, it has two drawbacks: 1) Evaluat-

ing the residuals many times is challenging, as it involves a

scene-to-quadric overlap calculation in a geometric mean-

ingful way. 2) Even with the proposed fitting, selecting ran-

dom 4-tuples from the scene might be slow in practice. An

alternative to that is Hough voting. However, q has 9 DoFs

and is not discretization friendly. The complexity and size

of this parameter space makes it hard to construct a voting

space directly on q. Instead, we now devise a scheme en-

tailing a smaller basis cardinality, with local search.

Parameterizing the solution space Let q be a solution to

Eq. 5. Then, q can be expressed by a linear combination of

particular solution p and homogeneous solutions µi as:

q = p+
D
∑

i

λiµi (6)

= p+
[

µ1 µ2 · · ·
] [

λ1 λ2 · · ·
]T

= p+NAλ.

# Pri. # Dual

PD-0 9 0

PD-1 7 1

PD-2 5 2

PD-3 4 3

(a)

# Pri. # Dual |b| VS

Plane 1 1 1 0

2-Planes 2 2 2 0

Sphere 2 1 1 1

Spheroid 2 2 2 3

(b)

Figure 2. (a) Number of constraints for a minimal fit in Primal(P)

or Dual(D) spaces. PD-i refers to ith combination. (b) Number of

minimal constraints and voting space size for various quadrics.

The dimensionality of the null space NA (D) depends on

the rank of A, which is directly influenced by the number of

points used: D = 10− rk(A). The exact solution could al-

ways be computed by including more points from the scene

and validating them, i.e., by a local search. For that reason,

the fitting can be split up into distinct parts: First a para-

metric solution as in Eq. 6 is computed using a subset of

points (basis) b = {x1, ...,xm} lying on a quadric. Next,

the coefficients λ, and thus the solution, can be obtained by

searching for other point(s) (xm+1, ...,xm+k) which lie on

the same surface as b.

Theorem 2

If two point sets b = (x1, ...,xm) and X =
(xm+1, ...,xm+k) lie on the same quadric with parameters

q, then the coefficients λ =
[

λ1 λ2 · · ·
]T

of the solution

space (6) are given by the solution of the system:

(AkNA)λ = nk −Akp (7)

where Ak, nk are the linear constraints of the latter set X

in form of (5), p is a particular solution and NA is a 10×D
stacked null-space basis as in (6), obtained from b.

Proof. Let q be a quadric solution for the point set

(x1, ...,xm) and let (Ak,nk) represent the 4k quadric con-

straints for the k points X = (xm+1, ...,xm+k) in form of

(5) with the same parameters q. As xi ∈ X by definition

lies on the same quadric q, it also satisfies Akq = nk. In-

serting Eq. (6) into this, we get:

Ak(p+NAλ) = nk (8)

(AkNA)λ = nk −Akp. (9)

Solving Eq. (9) for λ requires a multiplication of a 4k×
10 matrix with a 10×m one and ultimately solving a system

of 4k equations in m unknowns. This is much more efficient

for k < m than re-solving the system (5) and resembles

updating the solution online for a stream of points.

Local voting for quadric detection Given a fixed basis

composed of b points (b > 0) as in Fig. 3, a paramet-

ric solution can be described. The actual solution can then

be found quickly as explained above by incorporating new
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Figure 3. Once a basis is randomly hypothesized, we look for the

points on the same surface by casting votes on the null-space. The

sought pilates ball (likely quadric) is marked on the image and

below that lies the corresponding filled accumulator by KDE [46].

points lying on the same quadric. Thus, the problem of

quadric detection is de-coupled into 1) finding a proper ba-

sis and 2) searching for compatible scene points. In this

part, we assume the basis is correctly found and explain the

search by voting. For a fixed basis bi on a quadric, we form

the null-space decomposition of the under-determined sys-

tem Aiq = ni. We then sample further points from the

scene and compute the required coefficients λ. Thanks to

Thm. 2, this can be done efficiently. Sample points lying

on the same quadric as the basis (inliers) generate the same

λ whereas outliers will produce different values. Therefore

we propose to construct a voting space on λ and cast votes

to maximize the local consensus (Fig. 3). The size of the

voting space is a design choice and depends on the size of

bi vs. the DoFs desired to be recovered (see Fig. 2(b)). We

find from Fig. 2(a) that using a 3-point basis is advantageous

for a generic quadric fit due to 1D search space.

Efficient computation of voting parameters For a 3-

point basis, adding a fourth sample point x4 completes

rk(A) = 10 and a unique solution can be computed. Yet,

as we will select multiple x4 candidates per basis, hypoth-

esized in a RANSAC loop, an efficient scheme is required,

i.e. it is undesirable to re-solve Eq. 5 for each incoming x4

tied to the basis. It turns out that once again, the solution

can be obtained directly from Eq. (6):

Theorem 3

If the null-space is one dimensional (with only 1 unknown) it

holds NAλ = λ1µ1 and the computation in Thm. 2 reduces

to the explicit form:

λ1 = (A1NA)
T /‖A1NA‖

2 · (n1 −A1p) (10)

Proof. Let us re-write Eq. 9 in terms of the null space

vectors: λ1(A1µ1) = n1 − A1p. A solution λ1 can be

obtained via Moore-Penrose pseudoinverse [38] as λ1 =
(A1µ1)

+(n1 − A1p). Because for 1-dimensional null

spaces A1µ1 is a vector, + operator is defined as: v+ =
vT /(vTv). Substituting this in Eq. 7 gives Eq. 10.

Thm. 3 enables a very quick computation of the param-

eter hypothesis in case of 1 point. A MATLAB implemen-

tation takes ca. 30µs per λ. Besides, for a 3-point method,

inclusion of only a single equation is sufficient, letting the

normal of the 4th point remain unused and amenable for

verification of fit. We only accept to vote a candidate if

the gradient of the fit quadric agrees with the normal at 4th

point: (∇Q(x4)/‖∇Q(x4)‖) · n(x4) > τn.

Quantizing λ To vote on λ, we need a linear, bounded

and discrete space. Yet, λ is not quantization-friendly, as

it is unbounded and has a non-linear effect on the quadric

shape (see Fig. 4(a)). Thus, we seek to find a geometrically

meaningful transformation to a bounded and well behaving

space so that quantization would lead to little bias and ar-

tifacts. From a geometric perspective, each column of NA

in Eq. 6 is subject to the same coefficient λ, representing

the slope of a high dimensional line in the solution space.

Thus, it could as well be viewed as a rotation. For 1D null-

space, we set: θ = atan2
(

(y2 − y1) , (x2 − x1)
)

, where

[x1, y1, · · · ]
T = p and [x2, y2 · · · ]

T is obtained by moving

in the direction NA from the particular solution p by an off-

set λ.1 This new angle θ is bounded and thus easy to vote

for. As the null-space dimension grows, λ starts to represent

hyperplanes, still preserving the geometric meaning, i.e. for

d > 1, different θ = {θi} can be found.

Hypotheses Aggregation Up to this point, we have de-

scribed how to find plausible quadrics given local triplet

bases. As mentioned, to discover the basis lying on the sur-

face, we employ RANSAC [18], where each triplet might

generate a hypothesis to be verified. Many of those will

be similar as well as dissimilar. Thus, the final stage of

the algorithm aggregates the potential hypotheses to reduce

the number of candidate surfaces and to increase the per

quadric confidence. Not to sacrifice further speed, we run

an agglomerative clustering similar to [6] in a coarse to fine

manner: First an algebraic but fast distance measure helps

to cluster the obvious hypotheses:

dclose(Q1,Q2) := ✶(‖q1 − q2‖1 < τ) · ‖Q1Q
+

2 − I‖F
(11)

where I ∈ R
4×4 is the identity matrix and ✶ : R → {0, 1}

the indicator function. Second, a pseudo-geometric one is

executed only on a subset of the surviving quadrics:

dfar(Q1,Q2) := (12)

1−
1

K

K
∑

i=1

✶
(

|xT
i Q1xi| < τ

)

· ✶
(

|xT
i Q2xi| < τ

)

·

✶ (1− ni · ∇Q1(xi) < τn) · ✶ (1− ni · ∇Q2(xi) < τn)

1Simple tan−1(λ) could work but would be more limited in the range.
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3-point basis

min max

= - 75.00 = - 27.50 = - 10.00

= 12.50= 0.00 = 27.50 = 75.00

(a) Effect of λ on the surface geometry.
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(b) Distributions related to λ.

Figure 4. Characteristics of λ. (a) We compute null-space decomposition for a fixed basis and vary λ from -75 to 75 to generate different

solutions q along the line in the solution space. The plot presents the transition of the surface controlled by λ. (b) Statistical distribution of

the solution-space coefficient and our quantization function: PDF (red curve) and inverse CDF (dashed blue-curve) of λ over collected data,

and tan
−1 function (green-line). Note that our quantization function also well aligns with practice. Smaller |λ| results in finer binning.

where the scene is composed of K points {xi}. Each

quadric is associated a score proportional to the number of

points with compatible normals, found to lie on it. This

score is used to re-rank the detections.

5. Experimental Evaluation and Discussions

Implementation details Planes are singular cases and oc-

cupy large spaces of 3D scenes. A preprocessing removes

them using our type specific plane fit. Normalizing the

points to a unit ball is also necessary to increase the nu-

merical stability [28]. Next, we downsample the scene us-

ing a spatial voxel-grid [8] enforcing a minimum distance of

τs ·diam(X) between the samples (0.025 ≤ τs ≤ 0.05) and

compute the normals [29] on this subset. What follows is an

iterative selection of triplets from this reduced set. At each

iteration, once x1 is fixed, we query the points which are

likely to be combined with x1 to form the 3-point basis b.

The rest of the points are then randomly selected from this

subset. Triplets which are found to be collinear or which do

not result in a rank-9 system are directly removed. We also

hash the triplets such that any basis is seen only once.

Synthetic tests of fitting To asses the accuracy of the pro-

posed fitting, we generate a synthetic test set of multitudes

of random quadrics and compare our method with the fitting

procedures of Taubin [51], Tasdizen [49], Andrews [3], and

Beale [4] as well as our full, least squares fit. Gaussian noise

with σ = [0% − 5%] relative to the size s of the quadric is

added to the vertices before the methods are run. At each

noise level, 10 random quadrics are tested. We report the

average point-to-mesh distance and the angle deviation as

well as the runtime performances in Fig. 5. For the con-

strained fitting method [3] we pre-specified the type, which

might not be possible in a real application. We perform not

single but 20 fits per set. Although, our fit is designed to use

a minimal number of points, it also proves to be robust when

more points are added and is among the top fitters for the

distance & angle errors. This also demonstrates that gradi-

ent alignment cannot be surpassed by simply inserting more

primal points. Fig. 5D shows that norms of the gradient of

our quadrics also align well with the ground truth, favoring

the validity of our approximation. Our full method performs

the best on low noise levels but quickly destabilizes. This

is because the system is biased to compute correct norms

and it has increased parameters. We believe the reason for

our compact fit to work well is the soft constraint of com-

mon scale factor acting as a weighted regularizer towards

special quadrics. When this constraint cannot be satisfied,

the solution settles for an acceptable shape. We also found

that for a visually appealing fit, the normal alignment is cru-

cial which is why the closest shapes arise from our method

and [4]. The latter suffers from a higher point error due to

the use of the strong ellipsoid prior.

Is atan2 a valid transformation for λ? To assess the

practical validity of the quantization, we collect a set of 2.5

million oriented point triplets from several scenes and use

them as bases to form the underdetermined system A. We

then sample the 4th point from those scenes and compute

λ. Next, we establish the probability distribution p(λ) for

the whole collection to calculate the quantiles, mapping λ
to bins as the inverse CDF. A similar procedure has been

applied to cross ratios in [5]. We plot the findings together

with the atan2 function in Fig. 4(b) and show that empiri-

cal distribution and atan2 follow a similar trend, justifying

that our quantizer is well suited to the data behavior.

Quadric detection on a real dataset There is no well-

established dataset of real scenes for quadric detection.
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Figure 5. Synthetic evaluations. (A,C) Mean geometric point(A) and angle(C) errors for different quadric fitting methods. The per point

error is measured as the average point-to-mesh distance from every gnd. truth vertex to the fitted quadric. The angular error (dashed) is

computed as the negated dot product between quadric gradient and the gnd. truth normal. (B) gives exemplary fitting results while (D)

shows the average error of the gradient norm compared to the ground truth. (E) plots the speed and detection rate on synthetic data.
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Figure 6. Experiments on real datasets.

Therefore we collect our own set. We use a phase-shift

stereo structured light scanner and capture 35 3D scenes of

5 different objects within clutter and occlusions. Our ob-

jects are bending papers, helmet, paper towel and cylindri-

cal spray bottle. Other objects are included to create clut-

ter. To obtain the ground truth, for each scene, we gen-

erated a visually acceptable set of quadrics using 1) [47]

when shapes represent known primitives 2) by segmenting

the cloud manually and performing a fit when shapes are

more general. Each scene then contains 1-3 ground truth

quadrics. To assess the detection accuracy, we manually

count the number of detected quadrics aligning with the

ground truth. We compare the 4-point and 3-point algo-

rithms, both of which we propose. We also tried the naive

9-point RANSAC algorithm (with [51]), but found it to be

infeasible when the initial hypotheses of the inlier set is

Table 1. Detection accuracy on real datasets.

Dataset # Objects Type Occlusion Accuracy

Pilates Ball 1 Ours 580 Generic Yes 94.40%

Rugby Ball [11] 1337 Generic No 100.00%

Pilates Ball 2 [11] 1412 Sphere Yes 100.00%

Big Globe [11] 2612 Sphere Yes 90.70%

Small Globe [11] 379 Sphere Yes 56.90%

Apple [11] 577 Sphere Yes 99.60%

Football [11] 1145 Sphere Yes 100.00%

Orange Ball [11] 270 Sphere Yes 93.30%

not available. Fig. 6(a) visualizes the detected quadrics

both on our dataset and on a 3D data captured by Kinect

v1. Fig. 6(b) presents our accuracy over different sam-

pling rates along with the runtime performance. It is clear

that our 3-point method is on par with the 4-point variant in

terms of detection accuracy, while being significantly faster.

We also evaluate our detector on the large objects dataset of

[11] without further tuning. Tab. 1 shows 100% accuracy in

locating a frontally appearing ellipsoidal rugby ball over a

1337 frame sequence without type prior. While such scenes

are not particularly difficult, it is noteworthy that we man-

age to generate the similar quadric repeatedly at each frame

within 5% of the quadric diameter.

How fast is it? As our speed is influenced by the factors

of closed form fitting, RANSAC and local voting, we eval-

uate the fit and detection separately. Fig. 5E shows the run-

time of fitting part. Our method scales linearly due to the

solution of an 4N ×10 system, but it is the fastest approach

when < 300 points are used. Thus, it is more preferred for a

minimal fit. Fig. 6(b) then presents the order of magnitude

speed gain, when our 4-point C++ version is replaced by the

3-point without accuracy loss. Although the final runtime is

in the range of 1-2 seconds, our 3-point algorithm is still the

fastest known method in segmentation free detection.

How accurate is the fit? To evaluate the pose accuracy

on real objects, we use closed geometric objects of known
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Figure 7. Qualitative visualizations of sphere detection in the wild: Our algorithm is very successful in difficult scenarios including clutter,

occlusions, large distances. Note that the sphere is detected in 3D only using the point clouds of depth images and we draw the apparent

contour of the quadric. The RGB pictures are also included in the top row to ease the visual perception.

ConeCone

(a) An ITODD scene composed of many cylinders

(c) 6DoF PPF pose estimation using Cylinder as model [6,17] (d) Our model-free, unsupervised result
Only the surface parts overlapping the point set are shown.

(b) Schnabel et. al. can mis-classify or -segment 
certain types, thereby fitting the wrong primitives.

Figure 8. Multiple cylinder detection in clutter and occlusions:

Our approach is type agnostic and uninformed about cylinders.

size from the datasets and report the distribution of the er-

rors, and its statistics. We choose football and pilates ball 1

as it is easy to know their geometric properties (center and

radius). We compare the radius to the true value while the

center is compared to the one estimated from a non-linear

refinement2 of the sphere. Our results are depicted in Fig.

6(c). Note that the errors successfully remain about the used

sampling rates, which is as best as we could get.

Type-specific detection It is remarkably easy to convert

our algorithm to a type specific detection by re-designing

matrix A. We evaluate a sphere-specific detection on scenes

from [11] which contains spherical everyday objects. Tab. 1

summarizes the dataset and reports our accuracy while

Fig. 7 qualitatively shows that our sphere-specific detector

can indeed operate in challenging real scenarios. Due to

reduced basis size (b = 1) this type specific fit can meet

real-time criteria, operating in ∼ 27ms on an Intel i5 CPU.

Comparison to model based detectors The literature is

overwhelmed by the number of 3d model based pose esti-

mation methods. Hence, we decide to compare our model-

free approach to the model based ones. For that, we take the

cylinders subset of the recent ITODD dataset [17] and run

2We only use Gauss-Newton non-linear quadric refinement for evalua-

tions of accuracy and never for the actual surface estimation.

Table 2. Results on ITODD [17] cylinders: Even without looking

for a cylinder, we can do better than the model based [53].

PPF3D PPF3D-E PPF3D-E-2D S2D [53] RANSAC [40] Ours

72% 73% 74% 24% 86% 41.9%

our generic quadric detector without training or specifying

the type. Visual results of different methods are presented

in Fig. 8 whereas detection performance are reported in

Tab. 2. Our task is not to explicitly estimate the pose. Thus,

we manually accept a hypothesis if ICP [19] converges to

a visually pleasing outcome. Note, multiple models are an

important source of confusion for us, as we vote on generic

quadrics. However, our algorithm outperforms certain de-

tectors, even when we are solving a more generic problem

as our shapes are allowed to deform into geometries other

than cylinders.

Cons Unless made specific, our method is surpassed by

type-specific fits in detection rate. However, we detect a

larger variety of shapes. Yet, if A targets a specific type, we

perform even better. Degenerate cases are also difficult for

us, but we find a close approximation - see Fig. 9.

Figure 9. When planes gather a majority of the votes, our method

approximates them by a close non-degenerate quadric surface.

6. Conclusion

We presented a fast and robust approach for generic

primitive detection in noisy / cluttered 3D scenes. In a nut-

shell, a novel, linear fitting formulation for oriented point

quadruplets is backed by an efficient null-space voting, po-

tentially paving the way towards real-time operation. We

establish the minimalist case known up to now: 3 oriented

points. Optionally, we can convert to a type-specific fit to

boost speed and accuracy. Future work will address the en-

listed limitations and further analysis of the bias in the fit.
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