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Abstract

The representation of geometry in real-time 3D per-

ception systems continues to be a critical research issue.

Dense maps capture complete surface shape and can be

augmented with semantic labels, but their high dimension-

ality makes them computationally costly to store and pro-

cess, and unsuitable for rigorous probabilistic inference.

Sparse feature-based representations avoid these problems,

but capture only partial scene information and are mainly

useful for localisation only.

We present a new compact but dense representation of

scene geometry which is conditioned on the intensity data

from a single image and generated from a code consisting

of a small number of parameters. We are inspired by work

both on learned depth from images, and auto-encoders. Our

approach is suitable for use in a keyframe-based monocular

dense SLAM system: While each keyframe with a code can

produce a depth map, the code can be optimised efficiently

jointly with pose variables and together with the codes of

overlapping keyframes to attain global consistency. Condi-

tioning the depth map on the image allows the code to only

represent aspects of the local geometry which cannot di-

rectly be predicted from the image. We explain how to learn

our code representation, and demonstrate its advantageous

properties in monocular SLAM.

1. Introduction

The underlying representation of scene geometry is a

crucial element of any localisation and mapping algorithm.

Not only does it influence the type of geometric qualities

that can be mapped, but also dictates what algorithms can

be applied. In SLAM in general, but especially in monoc-

ular vision, where scene geometry cannot be retrieved from

a single view, the representation of geometrical uncertain-

ties is essential. However, uncertainty propagation quickly

becomes intractable for large degrees of freedom. This dif-

ficulty has split mainstream SLAM approaches into two cat-

Figure 1. Two view reconstruction on selected frames from the

EuRoC dataset. The proposed compact representation of 3D ge-

ometry enables joint optimisation of the scene structure and rel-

ative camera motion without explicit priors and in near real-time

performance.

egories: sparse SLAM [5, 16, 20] which represents geome-

try by a sparse set of features and thereby allows joint prob-

abilistic inference of structure and motion (which is a key

pillar of probabilistic SLAM [6]) and dense or semi-dense

SLAM [21, 9] that attempts to retrieve a more complete de-

scription of the environment at the cost of approximations

to the inference methods (often discarding cross-correlation

of the estimated quantities and relying on alternating opti-

misation of pose and map [22, 8]).

However, the conclusion that a dense representation of

the environment requires a large number of parameters is

not necessarily correct. The geometry of natural scenes is

not a random collection of occupied and unoccupied space

but exhibits a high degree of order. In a depth map, the

values of neighbouring pixels are highly correlated and can

often be accurately represented by well known geometric

smoothness primitives. But more strongly, if a higher level
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of understanding is available, a scene could be decomposed

into a set of semantic objects (e.g. a chair) together with

some internal parameters (e.g. size of chair, number of legs)

and a pose, following a direction indicated by the SLAM++

system [26] towards representation with very few param-

eters. Other more general scene elements which exhibit

simple regularity such as planes can be recognised and effi-

ciently parametrised within SLAM systems (e.g. [25, 11]).

However, such human-designed dense abstractions are lim-

ited in the fraction of natural, cluttered scenes which they

can represent.

In this work we aim at a more generic compact represen-

tation of dense scene geometry by training an auto-encoder

on depth images. While a straightforward auto-encoder

might over-simplify the reconstruction of natural scenes,

our key novelty is to condition the training on intensity im-

ages. Our approach is planned to fit within the common and

highly scalable keyframe-based SLAM paradigm [16, 9],

where a scene map consists of a set of selected and esti-

mated historical camera poses together with the correspond-

ing captured images and supplementary local information

such as depth estimates. The intensity images are usually

required for additional tasks, such as descriptor matching

for place recognition or visualisation, and are thus readily

available for supporting the depth encoding.

The depth map estimate for a keyframe thus becomes a

function of the corresponding intensity image and an un-

known compact representation (henceforth referred to as

‘code’). This allows for a compact representation of depth

without sacrificing reconstruction detail. In inference al-

gorithms the code can be used as dense representation of

the geometry and, due to its limited size, this allows for

full joint estimation of both camera poses and dense depth

maps for multiple overlapping keyframes. We might think

of the image providing local details and the code as sup-

plying more global shape parameters which are often not

predicted well by ‘depth from single image’ learning. Im-

portantly though, these global shape parameters are not a

designed geometric warp but have a learned space which

tends to relate to semantic entities in the scene, and could

be seen as a step towards enabling optimisation in general

semantic space.

Our work comes at a time when many authors are com-

bining techniques from deep learning with estimation-based

SLAM frameworks, and there is an enormously fertile field

of possibilities for this. Some particularly eye-catching

pieces of work over the past year have focused on super-

vised and self-supervised training of surprisingly capable

networks which are able to estimate visual odometry, depth

and other quantities from video [10, 29, 30, 4, 32, 31].

These methods run with pure feed forward network oper-

ation at runtime, but rely on geometric and photometric for-

mulation and understanding at training time to correctly for-

mulate the loss functions which connect different network

components. Other systems are looking towards making

consistent long-term maps by constantly refining geometric

estimates, and this is the domain in which we are more in-

terested here. In CNN-SLAM [28] single image depth pre-

diction and dense alignment are used to produce a dense 3D

map and this gives a promising result, but it is not possible

to optimise the predicted depth maps further for consistency

when multiple keyframes overlap as it is in our approach.

To summarise, the two key contributions of our paper

are:

• The derivation of a compact and optimisable represen-

tation of dense geometry by conditioning a depth auto-

encoder on intensity images.

• The implementation of the first real-time targeted

monocular system that achieves such a tight joint opti-

misation of motion and dense geometry.

In the rest of this paper, we will first explain our method for

depth learning and prediction, and then show the applicabil-

ity of this approach in a SLAM setting.

2. Intensity Conditioned Depth Auto-Encoding

Two important qualities of geometry representations are

accuracy and practicality. While the accuracy of a repre-

sentation simply relates to its ability to reproduce the ge-

ometry, the practicality describes how well the representa-

tion can be used in an overall system. For inference-based

SLAM systems, the latter typically requires the represen-

tation to lead to an optimisable loss function. For a repre-

sentation G of the geometry a loss function L(G) should

be differentiable and have a clear minimum. Additionally,

the size of the representation G should be limited in order

to allow the estimation of second-order statistical moments

(a covariance matrix) as part of more powerful inference

methods.

In order to come up with a compact representation of the

scene geometry we explore auto-encoder-like network ar-

chitectures. Auto-encoders are networks which attempt to

learn an identity mapping while being subject to an informa-

tion bottleneck which forces the network to find a compact

representation of the data [24]. In a naive attempt to auto-

encode depth this would lead to very blurry depth recon-

struction since only the major traits of the depth image can

make it through the bottleneck (see Figure 2). In a monoc-

ular vision setup, however, we have access to the intensity

images, which we are very likely to store alongside every

keyframe. This can be leveraged to make the encoding more

efficient: We do not need to encode the full depth infor-

mation, but only need to retain the part of the information

which cannot be retrieved from the intensities. The depth D
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Reconstruction Groundtruth

Figure 2. Depth auto-encoder without the use of image intensity

data. Due to the bottleneck of the auto-encoder only major traits

of the depth image can be captured.

thus becomes a function of image I and (unknown) code c:

D = D(I, c) . (1)

The above equation also highlights the relation to depth-

from-mono architectures [7, 17, 10, 32] which solve a code-

less version of the problem, D = D(I). Essentially, the

employed architecture is a combination of the depth-from-

mono-architecture of Zhou et al. [32] and a variational auto-

encoder for depth. We have chosen a variational auto-

encoder network [15] in order to increase the smoothness

of the mapping between code and depth: small changes in

the code should lead to small changes in the depth. While

the practicality of our representation is thus addressed by

the smoothness and the limited code size, the accuracy is

maximised by training for the reconstruction error.

2.1. Detailed Network Architecture

An overview of the network architecture is provided in

Figure 3. The top part illustrates the U-Net [23] applied on

the intensity image, which first computes an increasingly

coarse but high-dimensional feature representation of the

input image. This is followed by an up-sampling part with

skip-layers. The computed intensity features are then used

to encode and decode the depth in the lower part of the fig-

ure. This part is a fairly standard variational auto-encoder

architecture with again a down-sampling part and an up-

sampling part. Embedded in the middle are two fully con-

nected layers as well as the variational part, which samples

the code from a Gaussian distribution and is subject to a reg-

ularisation cost (KL-divergence, see [15]). The condition-

ing of the auto-encoder is achieved by simply concatenating

the intensity features of the corresponding resolution.

Instead of predicting just raw depth values, we predict

a mean µ and an uncertainty b for every depth pixel. The

uncertainty is predicted from intensity only and thus is not

directly influenced by the code. Subsequently, we derive a

cost term by evaluating the negative log-likelihood of the

observed depth d̃. This allows the network to attenuate the

cost of difficult regions and to focus on reconstructing parts

which can be well explained. At test time, the learned un-

certainties can also serve to gauge the reliability of the re-

construction. In the present work we employ a Laplace dis-

tribution which has heavier tails than the traditional Gaus-

sian distribution:

p(d̃|µ, b)) =
1

2b
exp

(

−
|d̃− µ|

b

)

. (2)

Discarding a constant offset, the negative log-likelihood

thus becomes:

− log(p(d̃|µ, b)) =
|d̃− µ|

b
+ log(b) . (3)

Intuitively, the network will tune the pixel-wise uncertainty

b such that it best attenuates the reconstruction error |d̃−µ|
while being subject to a regularisation term log(b). Using

likelihoods as cost terms is a well-established method and

has previously been applied to deep learning problems in

computer vision [12, 3].

In analogy to previous work, we evaluate the error at

multiple resolutions [32]. To this end, we create a depth

image pyramid with four levels and derive the negative log-

likelihood for every pixel at every level. We increase the

weight on every level by a factor of 4 in order to account for
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Figure 3. Network architecture of the variational depth auto-

encoder conditioned on image intensities. We use a U-Net to de-

compose the intensity image into convolutional features (the upper

part of the figure). These features are then fed into the depth auto-

encoder by concatenating them after the corresponding convolu-

tions (denoted by arrows). Down-sampling is achieved by varying

stride of the convolutions, while up-sampling uses bilinear inter-

polation (except for the last layer which uses a deconvolution). A

variational component in the bottleneck of the depth auto-encoder

is composed of two fully connected layers (512 output channels

each) followed by the computation of the mean and variance, from

which the latent space is then sampled. The network outputs the

predicted mean µ and uncertainty b of the depth on four pyramid

levels.
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the lower pixel count. Except for the computation of the la-

tent distribution and the output channels, the activations are

all set to ReLu. Furthermore, for allowing pre-computation

of the Jacobians (see Section 4.1), we explore identity ac-

tivations for the depth decoder. However, in order to re-

tain an influence from image to code-Jacobian, we add the

element-wise multiplication of every concatenation to the

concatenation itself. I.e., we increment every concatenation

[L1, L2] of layers L1 and L2 to [L1, L2, L1⊙ L2].

2.2. Training Setup

The depth values of the dataset are transformed to the

range [0, 1]. We do this by employing a hybrid depth

parametrisation which we call proximity:

p =
a

d+ a
. (4)

Given an average depth value a, it maps the depth in [0, a] to

[0.5, 1.0] (similar to regular depth) and maps the depths in

[a,∞] to [0, 0.5] (similar to inverse depth). This parametri-

sation is differentiable and better relates to the actual ob-

servable quantity (see inverse depth parametrisation [19]).

The network is trained on the SceneNet RGB-D

dataset [18] which is composed of photorealistic renderings

of randomised indoor scenes. It provides colour and depth

images as well as semantic labeling and poses, out of which

we only make use of the two former ones. We make use

of the ADAM optimiser [14] with an initial learning rate of

10−4. We train the network for 6 epochs while reducing the

learning-rate to 10−6.

3. Dense Warping

Due to the latent cost of the variational auto-encoder, the

zero code can be used to obtain a likely single view depth

prediction D(I, 0) (see Figure 6). However, if overlapping

views are available we can leverage stereopsis to refine the

depth estimates. This can be done by computing dense cor-

respondences between the views: Given the image IA and

the estimated code cA of a view A, as well as the relative

transformation T
B
A = (RB

A ,Bt
B
A) ∈ SO(3)×R

3 to a view

B, we compute the correspondence for every pixel u with:

w(u, cA,T
B
A) = π(RB

A π−1(u, DA[u]) + Bt
B
A) , (5)

where π and π−1 are the projection and inverse projection

operators. We use the shortcut DA = D(IA, cA) and use

square brackets to denote pixel lookup. If applied to inten-

sity images we can for instance derive the following photo-

metric error:

IA[u]− IB [w(u, cA,T
B
A)] . (6)

The above expressions are differentiable w.r.t. to their inputs

and we can compute the corresponding Jacobians using the

chain rule:

∂IB [v]

∂Bt
B
A

=
∂IB [v]

∂v

∂π(x)

∂x
, (7)

∂IB [v]

∂RB
A

=
∂IB [v]

∂v

∂π(x)

∂x
(−R

B
A π−1(u, d))× , (8)

∂IB [v]

∂ca
=

∂IB [v]

∂v

∂π(x)

∂x
R

B
A

∂π−1(u, d)

∂d

∂DA[u]

∂cA
, (9)

where × refers to the skew symmetric matrix of a 3D vector

and with the abbreviations:

v = w(u, cA,T
B
A) , (10)

x = R
B
A π−1(u, DA[u]) + Bt

B
A , (11)

d = D(IA, cA)[u]. (12)

Most partial derivatives involved in Equations (7) to (9)

are relatively well-known from dense tracking literature

[13] and include the image gradient (∂IB [v]/∂v), the dif-

ferential of the projection (∂π(x)/∂x), as well as transfor-

mation related derivatives (also refer to [1] for more details).

The last term in Equation (9), ∂DA[u]/∂cA, is the deriva-

tive of the depth w.r.t. the code. Since it involves many

convolutions, it is computationally costly to evaluate (up to

1 sec depending on the size of the network). In case of a

linear decoder this term can be pre-computed which signif-

icantly accelerates the evaluation of the Jacobians.

4. Inference Framework

4.1. N­Frame Structure from Motion (Mapping)

The proposed depth parametrisation is used to construct

a dense N -frame Structure from Motion (SfM) framework

(see Figure 4). We do this by assigning an unknown code

and an unknown pose to every frame. All codes and poses

are initialised to zero and identity, respectively. For two

frames A and B with overlapping field of view we then de-

rive photometric and geometric residuals, Epho and Egeo,

as follows:

Epho = Lp

(

IA[u]− IB [w(u, cA,T
B
A)]
)

, (13)

Egeo = Lg

(

DA[u]−DB [w(u, cA,T
B
A)]
)

. (14)

The loss functions Lpho and Lgeo have the following mask-

ing and weighting functionality: (i) mask invalid correspon-

dences, (ii) apply relative weighting to geometric and pho-

tometric errors, (iii) apply a Huber weighting, (iv) down-

weight errors on strongly slanted surfaces, and (v) down-

weight pixels which might be occluded (only Lpho).

In order to optimise both sets of residuals w.r.t. our mo-

tion and geometry we compute the Jacobians w.r.t. all codes

and poses according to Section 3. As mentioned above,

we investigate the applicability of linear decoding networks

2563



c0

D1

c2 c3

T0

E(c0,c1,T0,T1)
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Figure 4. Illustration of the SfM system. The image Ii and cor-

responding code ci in each frame are used to estimate the depth

Di. Given estimated poses T i, we derive relative error terms be-

tween the frames (photometric and geometric). We then jointly

optimise for geometry (ci) and motion (T i) by using a standard

second-order method.

(see Section 2.1) as this allows us to compute the Jaco-

bian of the decoder D(I, c) w.r.t. the code c only once per

keyframe. After computing all residuals and Jacobians we

apply a damped Gauss-Newton algorithm in order to find

the optimal codes and poses of all frames.

4.2. Tracking (Localisation)

The tracking system, responsible for estimating the pose

of keyframes with respect to an existing keyframe map, can

be built much in the spirit of the above SfM approach. The

current frame is paired with the last keyframe and the esti-

mated relative pose results from a cost-minimisation prob-

lem. In our vision-only setup we do not have access to the

current depth image (except for a rough guess), and thus in

contrast to the described SfM system we do not integrate a

geometric cost.

In order to increase tracking robustness we perform a

coarse to fine optimisation by first doing the dense align-

ment on the low depth image resolutions.

4.3. SLAM System

We implement a preliminary system for Simultaneous

Localisation and Mapping inspired by PTAM [16] where we

alternate between tracking and mapping. The initialisation

procedure takes two images and jointly optimises for their

relative pose and the codes of each frame. After that we

can track the current camera pose w.r.t. the last keyframe.

Once a certain baseline is achieved we add a keyframe to

the map and perform a global optimisation, before continu-

ing with the tracking. If the maximum number of keyframes

is reached we marginalise old keyframes and thereby obtain

a linear prior on the remaining keyframes. In a 4-keyframes

setup, we achieve a map update rate of 5 Hz, which if we

do not have to add keyframes too frequently is enough for

real-time performance. The system currently relies on Ten-
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Figure 5. Validation loss during training on the per-pixel prox-

imity errors. As the reference implementation, we use a network

trained on greyscale images with a linear decoder. Lower losses

can be achieved by increasing the code size (increasing shades of

grey). Using a nonlinear decoder or colour images during training

does not affect the results in a significant way.

sorflow for image warping, and could be sped up with a

more targeted warping and optimisation system which are

both part of future work.

5. Experimental Evaluation and Discussion

Please also see our submitted video which includes

demonstrations of our results and system http://

www.imperial.ac.uk/dyson-robotics-lab/

projects/codeslam/.

5.1. Image Conditioned Depth Encoding

First we present results and insights related to our key

concept of encoding depth maps conditioned on intensity

images.

We trained and compared multiple variations of our net-

work. Our reference network has a code size of 128, em-

ploys greyscale image information only, and makes use of a

linear decoder network in order to speed up Jacobian com-

putation. Figure 5 shows results on reconstruction accuracy

using different code sizes as well as setups with RGB infor-

mation and nonlinear depth decoding. The use of colour or

nonlinear decoding did not significantly affect the accuracy.

With regard to code size, we observe a saturation of the ac-

curacy at a code size of 128; there is little to be gained from

making the code bigger. This value may be surprisingly low,

but the size seems to be large enough to transmit the infor-

mation that can be captured in the code by the proposed

network architecture.

Figures 6 to 8 provide some insight into how our image
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Figure 6. An example image passed through encoding and decod-

ing. Top left: input image. Top right: ground truth depth. Middle

left: zero code reconstruction (image only prediction). Middle

right: decoded depth (code from encoder). Bottom left: estimated

reconstruction uncertainty (scaled four times for visibility). Bot-

tom right: optimised depth (code minimising reconstruction error).
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Figure 7. Encodings of different depth images. The encoding

allows to capture even fine geometrical details.

conditioned depth encoding works. In Figure 6 we show

how we encode a depth image into a code of size 128. Using

the corresponding intensity image this can then be decoded

into a reconstructed depth image, which captures all of the

main scene elements well. We also show the reconstruction

when passing a zero code to the decoder as well as with a

code that is optimised for minimal reconstruction error. The

zero code captures some of the geometrical details but fails

to properly reconstruct the entire scene. The reconstruc-

tion with the optimised code is very similar to the one with

the code from the encoder which indicates that the encoder

part of the network works well. The associated depth un-

certainty is also visualised and exhibits higher magnitudes

Entry 1 Entry 2 Entry 3

Im
ag

e
2

Im
ag

e
1

Figure 8. Visualisation of the influence of the code on depth re-

construction. The Jacobian of the depth w.r.t. a specific code entry

is used to colourise the input image (blue and red depict negative

and positive values, respectively). Columns represent code entries

(1-3). Rows represent two different input images.

# frames 1 2 3 4 5 6

RMSE [10−2] 2.65 2.47 2.31 2.39 2.30 2.14

Table 1. RMS of pixel proximity estimation error with different

amounts of master keyframe-frame pairs in the optimisation prob-

lem. The error is evaluated between the master keyframe prox-

imity and its corresponding ground truth proximity. Frames 1-3:

downward-backwards motion. Frames 4-6: left-forward motion.

in the vicinity of depth discontinuities and around shiny im-

age regions (but not necessarily around high image gradi-

ents in general). Further examples of depth encoding are

shown in Figure 7.

In Figure 8 we visualise the Jacobians of the depth image

w.r.t. to the code entries. An interesting observation is that

the single code entries seem to correspond to specific image

regions and, to some extent, respect boundaries given by

the intensity image. While the regions seem to be slightly

fragmented, the final reconstructions will always be a linear

combination of the effect of all code entries. We also com-

pare the regions of influence for two different but similar

images and can observe a certain degree of consistency.

5.2. Structure from Motion

The proposed low dimensional encoding enables contin-

uous refinement of the depth estimates as more overlapping

keyframes are integrated. In order to test this, we have im-

plemented an SfM system which incrementally pairs one

pre-selected frame with all the remaining frames (which

were selected from SceneNet RGB-D). Table 1 shows the

obtained reconstruction error w.r.t. the number of frames

that are connected to the first frame. The observed reduc-

tion of the reconstruction error well illustrates the strength

of the employed probabilistic inference method, application

of which is enabled by the low dimensionality of the optimi-

sation space. The magnitude of depth refinement depends

on the information content of the new frames (whether they
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Figure 9. Monocular 3D reconstruction using 9 keyframes. During optimisation a selected master keyframe is paired with the other frames.

The depth images of all frames are used for the 3D rendering. The employed geometric error term ensures the consistency between the

depth of the different views.

R
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Im
ag

e

Figure 10. Two-frame SfM on selected pairs from the NYU V2

dataset. Top row presents one of the images used for reconstruc-

tion, while the bottom row contains respective depth estimates.

The main elements of all scenes can be well perceived in the depth

image. The overexposed image regions saturate to infinite depth

values, which is a result of using the SceneNet RGB-D dataset for

training, which contains many scenes with windows (similar to the

one in the left image).

present the scene under a new view and exhibit sufficient

baseline). Figure 9 presents a 3D reconstruction based on 9

frames for the scene used in the above error computations.

Since in this rendering all the frame depth maps are super-

imposed, one can observe the quality of the alignment. In a

future full SLAM system, these keyframes would be fused

together in order to form a single global scene. Before vi-

sualisation, high frequency elements are removed from the

depth maps with bilateral filtering and highly slanted mesh

elements are cropped.

Being exposed to a large variety of depth images during

training, the proposed network embeds geometry priors in

its weights. These learned priors seem to generalise to real

scenes as well: Figure 1 depicts a two-frame reconstruction

with images from the real image EuRoC dataset [2] taken

by a drone in an industrial setting. The result corresponds

to 50 optimisation steps, each taking around 100 ms to com-

plete. Since significant exposure changes occur between the

images, we perform an affine illumination correction of the

frames. The validation of the two-frame reconstruction per-

formance is of high importance as it is directly connected

to the initialisation procedure of the full SLAM system. In

order to further highlight its effectiveness we include results

on a selection of pairs taken from the NYU V2 dataset [27]

(Figure 10).
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Figure 11. Translation error versus traveled distance on the

EuRoC dataset MH02. Despite training the auto-encoder on

SceneNet RGB-D, its decoder generalises to other datasets (after

correcting for camera intrinsics).
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Figure 12. Example structure from motion results on frames from

the EuRoC dataset. From the left: image, estimated proximity,

shaded proximity.

5.3. SLAM System

In contrast to most dense approaches, our low dimen-

sional geometry encoding allows joint optimisation of mo-

tion and geometry. Furthermore, due to the inherent prior

contained in the encoding, the framework is able to deal

with rotational motions only. The system is tested in a slid-

ing window visual odometry mode on the EuRoC dataset

on trajectory MH 02 easy. Even though the dataset is sig-

nificantly different from the data the network is trained on

(with many metallic parts and many reflections), the pro-

posed system is able to run through most of this arguably

very difficult dataset (we do not use the available IMU data).

Figure 11 shows the error against traveled distance.

While this cannot compete with a state-of-the art visual-

inertial system, it performs respectably for a vision only-

system and exhibits an error of roughly 1 m for a traveled

distance of 9 m. In Figure 12 the first and last key-frame

of our 4-frame sliding window system are illustrated. This

shows the intensity image of the encountered scene together

with the estimated proximity image and a normal based

shading. Considering that the network was trained on arti-

ficial images only which were very different in their nature,

the reconstructed depth is sensible and allows for reliable

camera tracking.

6. Conclusions

We have shown that a learned representation for depth

which is conditioned on image data provides an important

advance towards future SLAM systems. By employing an

auto-encoder like training setup, the proposed representa-

tion can contain generic and detailed dense scene informa-

tion while allowing efficient probabilistic joint optimisation

together with camera poses.

In near future work, we will use the components demon-

strated here to build a full real-time keyframe-based SLAM

system. Learned visual motion estimation methods could

surely be brought in here as priors for robust tracking. In ad-

dition to that, the training of the network should be extended

in order to include real data as well. This could be done

by using an RGB-D dataset, but might also be achieved

with intensity information only in an self-supervised man-

ner, based on photometric error as loss.

In the longer term, we would like to move beyond a

keyframe-based approach, where our dense geometry rep-

resentations are tied to single images, and work on learned

but optimisable compact representations for general 3D ge-

ometry, eventually tying our work up with 3D object recog-

nition.
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