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Abstract

We propose a method to learn a distribution of shape tra-

jectories from longitudinal data, i.e. the collection of indi-

vidual objects repeatedly observed at multiple time-points.

The method allows to compute an average spatiotemporal

trajectory of shape changes at the group level, and the indi-

vidual variations of this trajectory both in terms of geometry

and time dynamics. First, we formulate a non-linear mixed-

effects statistical model as the combination of a generic sta-

tistical model for manifold-valued longitudinal data, a de-

formation model defining shape trajectories via the action

of a finite-dimensional set of diffeomorphisms with a man-

ifold structure, and an efficient numerical scheme to com-

pute parallel transport on this manifold. Second, we intro-

duce a MCMC-SAEM algorithm with a specific approach

to shape sampling, an adaptive scheme for proposal vari-

ances, and a log-likelihood tempering strategy to estimate

our model. Third, we validate our algorithm on 2D sim-

ulated data, and then estimate a scenario of alteration of

the shape of the hippocampus 3D brain structure during the

course of Alzheimer’s disease. The method shows for in-

stance that hippocampal atrophy progresses more quickly

in female subjects, and occurs earlier in APOE4 mutation

carriers. We finally illustrate the potential of our method for

classifying pathological trajectories versus normal ageing.

1. Introduction

1.1. Motivation

At the interface of geometry, statistics, and computer sci-

ence, statistical shape analysis meets a growing number of

applications in computer vision and medical image anal-

ysis. This research field has addressed two main statisti-

cal questions: atlas construction for cross-sectional shape

datasets, and shape regression for shape time series. The

former is the classical extension of a mean-variance analy-

sis, which aims to estimate a mean shape and a covariance

structure from observations of several individual instances

of the same object or organ. The latter extends the concept

of regression by estimating a spatiotemporal trajectory of

shape changes from a series of observations of the same in-

dividual object at different time-points. The emergence of

longitudinal shape datasets, which consist in the collection

of individual objects repeatedly observed at multiple time-

points, has raised the need for a combined approach. One

needs statistical methods to estimate normative spatiotem-

poral models from series of individual observations which

differ in shape and dynamics of shape changes across in-

dividuals. Such model should capture and disentangle the

inter-subject variability in shape at each time-point and the

temporal variability due to shifts in time or scalings in pace

of shape changes. Considering individual series as samples

along a trajectory of shape changes, this approach amounts

to estimate a spatiotemporal distribution of trajectories, and

has potential applications in various fields including silhou-

ette tracking in videos, analysis of growth patterns in biol-

ogy or modelling disease progression in medicine.

1.2. Related work

The central difficulty in shape analysis is that shape

spaces are either defined by invariance properties [21, 40,

41] or by the conservation of topological properties [5, 8,

13, 20, 34], and therefore have intrinsically a structure of

infinite dimensional Riemannian manifolds or Lie groups.

Statistical Shape Models [9] are linear but require consistent

points labelling across observations and have no topology

preservation guarantees. A now usual approach is to use

the action of a group of diffeomorphisms to define a metric

on a shape space [29, 43]. This approach has been used to

compute a “Fréchet mean” together with a covariance ma-

trix in the tangent-space of the mean [1, 16, 17, 33, 44] from

a cross-sectional dataset, and regression from time series of

shape data [4, 15, 16, 18, 26, 32]. In [12, 14, 31], these tools
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have been used to estimate an average trajectory of shape

changes from a longitudinal dataset using the convenient

assumption that the parameters encoding inter-individual

variability are independent of time. The work in [27] in-

troduced the idea to use the parallel transport to translate

the spatiotemporal patterns seen in one individual into the

geometry of another one. The co-adjoint transport is used

in [38] for the same purpose. Both estimate a group average

trajectory from individual trajectories. The proposed mod-

els do not account for inter-individual variability in the time

dynamics, which is of key importance in the absence of tem-

poral markers of the progression to align the sequences. The

same remarks can be applied to [6], which introduces a nice

theoretical setting for spaces of trajectories, in the case of a

fixed number of temporal observations across subjects. The

need for temporal alignment in longitudinal data analysis

is highlighted for instance in [13] with a diffeomorphism-

based morphometry approach, or in [40, 41] with quotient

shape spaces. In [24, 37], a generative mixed-effects model

for the statistical analysis of manifold-valued longitudinal

data is introduced for the analysis of feature vectors. This

model describes both the variability in the direction of the

individual trajectories by introducing the concept of “exp-

parallelization” which relies on parallel transport, and the

pace at which those trajectories are followed using “time-

warp” functions. Similar time-warps are used by the authors

of [23] to refine their linear modeling approach [22].

1.3. Contributions

In this paper, we propose to extend the approach of [37]

from low-dimensional feature vectors to shape data. Us-

ing an approach designed for manifold-valued data for

shape spaces defined by the action of a group of diffeomor-

phisms raises several theoretical and computational difficul-

ties. Are notably needed: a finite-dimensional set of dif-

feomorphisms with a Riemannian manifold structure; sta-

ble and efficient numerical schemes to compute Riemannian

exponential and parallel transport operators on this mani-

fold as no closed-form expressions are available; acceler-

ated algorithmic convergence to cope with an hundreds of

times larger dimensionality. To this end, we propose here:

• to formulate a generative non-linear mixed-effects

model for a finite-dimensional set of diffeomorphisms

defined by control points, to show that this set is sta-

ble under exp-parallelization, and to use an efficient

numerical scheme for parallel transport;

• to introduce an adapted MCMC-SAEM algorithm with

an adaptive block sampling of the latent variables, a

specific sampling strategy for shape parameters based

on random local displacements of the shape contours,

and a vanishing tempering of the target log-likelihood;

• to validate our method on 2D simulated data and a

large dataset of 3D brain structures in the context of

Alzheimer’s disease progression, and to illustrate the

potential of our method for classifying spatiotemporal

patterns, e.g. to discriminate pathological versus nor-

mal trajectories of ageing.

All in one, the proposed method estimates an average

spatiotemporal trajectory of shape changes from a longi-

tudinal dataset, together with distributions of space-shifts,

time-shifts and acceleration factors describing the variabil-

ity in shape, onset and pace of shape changes respectively.

2. Deformation model

2.1. The manifold of diffeomorphisms Dc0

We follow the approach taken in [12] built on the princi-

ples of the Large Deformation Diffeomorphic Metric Map-

ping (LDDMM) framework [30]. We note d ∈ {2, 3} the

dimension of the ambient space. We choose k a Gaussian

kernel of width σ ∈ R
∗
+ and c a set of ncp ∈ N “con-

trol” points c = (c1, ..., cncp
) of the ambient space R

d. For

any set of “momentum” vectors m = (m1, ...,mncn
), we

define the “velocity” vector field v : Rd → R
d as the con-

volution v(x) =
∑ncp

k=1 k(ck, x)mk for any point x of the

ambient space Rd. From initial sets of ncp control points c0
and corresponding momenta m0, we obtain the trajectories

t→ (ct,mt) by integrating the Hamiltonian equations:

ċ = Kcm ; ṁ = −
1

2
∇c

{

mT Kcm
}

(1)

where Kc is the ncp×ncp “kernel” matrix [k(ci, cj)]ij ,∇(.)
the gradient operator, and (.)T the matrix transposition.

Those trajectories prescribe the trajectory t → vt in the

space of velocity fields. The integration along such a path

from the identity generates a flow of diffeomorphisms t →
φt of the ambient space [5]. We can now define:

Dc0 =
{

φ1 ; ∂tφt = vt ◦ φt, φ0 = Id, vt = Conv(ct,mt)

(ċt, ṁt) = Ham(ct,mt), m0 ∈ R
dncp

}

(2)

where Conv(., .) and Ham(., .) are compact notations for

the convolution operator and the Hamiltonian equations (1)

respectively. Dc0 has the structure of a manifold of finite

dimension, where the metric at the tangent space Tφ1
Dc0 is

given by K−1
c1

. It is shown in [29] that the proposed paths

t → φt are the paths of minimum deformation energy, and

are therefore the geodesics of Dc0 . These geodesics are

fully determined by an initial set of momenta m0.

Then, any point x ∈ R
d of the ambient space follows the

trajectory t → φt(x). Such trajectories are used to deform

any point cloud or mesh embedded in the ambient space,

defining a diffeomorphic deformation of the shape. For-

mally, this operation defines a shape space Sc0,y0 as the or-

bit of a reference shape y0 under the action of Dc0 . The

manifold of diffeomorphisms Dc0 is used as a proxy to ma-

nipulate shapes: all computations are performed in Dc0 or
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more concretely on a finite set of control points and mo-

mentum vectors, and applied back to the template shape y0
to obtain a result in Sc0,y0 .

2.2. Riemmanian exponentials on Dc0

For any set of control points c0, we define the exponen-

tial operator Expc0 : m0 ∈ R
dncp → φ1 ∈ Dc0 . Note that

Dc0 =
{

Expc0(m0) |m0 ∈ R
dncp

}

.

The following proposition ensures the stability ofDc0 by

the exponential operator, i.e. that the control points obtained

by applying successive compatible exponential maps with

arbitrary momenta are reachable by an unique integration

of the Hamiltonian equations from c0:

Proposition. Let c0 be a set of control points. ∀φ1 ∈ Dc0 ,

∀w momenta, we have Expφ1(c0)(w) ∈ Dc0 .

Proof. We note φ′1 = Expφ1(c0)(w) ∈ Dφ1(c0) and c′1 =
φ′1 ◦ φ1(c0). By construction, there exist two paths t → ϕt
in Dc0 and s → ϕ′

s in Dφ1(c0) such that ϕ′
1 ◦ ϕ1(c0) = c′1.

Therefore there exist a diffeomorphic path u → ψu such

that ψ(c0) = c′1. Concluding with [29], the path u→ ψu of

minimum energy exists, and is written u → Expc0(u.m
′
0)

for some m′
0 ∈ R

dncp . �

As a physical interpretation might be given to the inte-

gration time t when building a statistical model, we intro-

duce the notation Expc0,t0,t : m0 ∈ R
dncp → φt ∈ Dc0

where φt is obtained by integrating from t = t0. Note that

Expc0 = Expc0,0,1.

On the considered manifold Dc0 , computing exponen-

tials – i.e. geodesics – therefore consists in integrating or-

dinary differential equations. This operation is direct and

computationally tractable. The top line on Figure 1 plots a

geodesic γ : t→ φt applied to the top-left shape y0.

2.3. Parallel transport and exp­parallels on Dc0

In [37] is introduced the exp-parallelism, which is a

generalization of Euclidian parallelism to geodesically-

complete manifolds. It relies on the Riemmanian parallel

transport operator, which we propose to compute using the

fanning scheme [28]. This numerical scheme only requires

the exponential operator to approximate the parallel trans-

port along a geodesic, with proved convergence.

We note Pc0,m0,t0,t : R
dncp → R

dncp the parallel trans-

port operator, which transports any momenta w along the

geodesic γ : t → φt = Expc0,t0,t(m0) from φt0 to φt. For

any c0, m0, w and t0, we can now define the curve:

t→ ηc0,m0,t0,t(w) = Expγ(t)(c0)
[

Pc0,m0,t0,t(w)
]

. (3)

This curve, that we will call exp-parallel to γ, is well-

defined on the manifoldDc0 , according to the proposition of

Section 2.2. Figure 1 illustrates the whole procedure. From

the top-left shape, the computational scheme is as follow:

integrate the Hamiltonian equations to obtain the control

Figure 1: Samples from a geodesic γ (top) and an exp-

parallelized curve η (bottom) on Sc0,y0 . Parameters encod-

ing the geodesic are the blue momenta attached to con-

trol points and plotted together with the associated velocity

fields. Momenta in red are parallel transported along the

geodesic and define a deformation mapping each frame of

the geodesic to a frame of η. Exp-parallelization allows to

transport a shape trajectory from one geometry to another.

points c(t) (red crosses) and momenta m(t) (bold blue ar-

rows); compute the associated velocity fields vt (light blue

arrows); compute the flow γ : t → φt (shape progression);

transport the momenta w along γ (red arrows); compute the

exp-parallel curve η by repeating the three first steps along

the transported momenta.

3. Statistical model

For each individual 1 ≤ i ≤ N are available ni longitu-

dinal shape measurements y = (yi,j)1≤j≤ni
and associated

times (ti,j)1≤j≤ni
.

3.1. The generative statistical model

Let c0 a set of control points and m0 associated mo-

menta. We call γ the geodesic t → Expc0,t0,t(m0) of Dc0 .

Let y0 be a template mesh shape embedded in the ambi-

ent space. For a subject i, the observed longitudinal shape

measurements yi,0, ..., yi,ni
are modeled as sample points at

times ψi(ti,j) of an exp-parallel curve t → ηc0,m0,t0,t(wi)
to this geodesic γ, plus additional noise ǫi,j :

yi,j = ηc0,m0,t0,ψi(ti,j)(wi) ◦ y0 + ǫi,j . (4)

The time warp function ψi and the space-shift momenta wi
respectively encode for the individual time and space vari-

ability. The time-warp is defined as an affine reparametriza-

tion of the reference time t: ψi(t) = αi(t − t0 − τi) + t0
where the individual time-shift τi ∈ R allows an inter-

individual variability in the stage of evolution, and the in-

dividual acceleration factor αi ∈ R
∗
+ a variability in the

pace of evolution. For convenience, we write αi = exp(ξi).
In the spirit of Independent Component Analysis [19], the

space-shift momenta wi is modeled as the linear combi-

nation of ns sources, gathered in the ncp × ns matrix A:
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wi = Am⊥

0

si. Before computing this superposition, each

column cl(A) of A has been projected on the hyperplane

m⊥
0 for the metric Kc0 , ensuring the orthogonality between

m0 and wi. As argued in [37], this orthogonality is fun-

damental for the identifiability of the model. Without this

constraint, the projection of the space shifts (wi)i on m0

could be confounded with the acceleration factors (αi)i.

3.2. Mixed­effects formulation

We use either the current [42] or varifold [7] noise model

for the residuals ǫi,j , allowing our method to work with in-

put meshes without any point correspondence. In this set-

ting, we note ǫi,j
iid
∼ N (0, σ2

ǫ ). The other previously in-

troduced variables are modeled as random effects z, with:

y0 ∼ N (y0, σ
2
y), c0 ∼ N (c0, σ

2
c ), m0 ∼ N (m0, σ

2
m), A ∼

N (A, σ2
A), τi

iid
∼ N (0, σ2

τ ), ξi
iid
∼ N (0, σ2

ξ ), si
iid
∼ N (0, 1).

We define θ = (y0, c0,m0, A, t0, σ
2
τ , σ

2
ξ , σ

2
ǫ ) the fixed ef-

fects i.e. the parameters of the model. The remaining vari-

ance parameters σ2
y , σ2

c , σ2
m and σ2

A can be chosen arbitrar-

ily small. Standard conjugate distributions are chosen as

Bayesian priors on the model parameters: y0 ∼ N (y0, ς
2
O),

c0 ∼ N (c0, ς
2
c ), m0 ∼ N (m0, ς

2
m), A ∼ N (A, ς2A),

t0 ∼ N (t0, ς
2
t ), σ

2
τ ∼ IG(mτ , σ

2
τ,0), σ

2
ξ ∼ IG(mξ, σ

2
ξ,0),

and σ2
ǫ ∼ IG(mǫ, σ

2
ǫ,0) with inverse-gamma distributions

on variance parameters. Those priors ensure the existence

of the maximum a posteriori (MAP) estimator. In practice,

they regularize and guide the estimation procedure.

The proposed model belongs to the curved exponential

family (see supplementary material, which gives the com-

plete log-likelihood). In this setting, the algorithm intro-

duced in the following section has a proved convergence.

We have defined a distribution of trajectories that could

be noted t → y(t) = fθ,t(z) where z is a random variable

following a normal distribution. We call t→ fθ,t(E[z]) the

average trajectory, which may not be equal to the expected

trajectory t→ E[fθ,t(z)] in the general non-linear case.

4. Estimation

4.1. The MCMC­SAEM algorithm

The Expectation Maximization (EM) algorithm [11] al-

lows to estimate the parameters of a mixed-effects model

with latent variables, here the random effects z. It alter-

nates between an expectation (E) step and a maximiza-

tion (M) one. The E step is intractable in our case, due

to the non-linearity of the model. In [10] is introduced

and proved a stochastic approximation of the EM algo-

rithm, where the E step is replaced by a simulation (S)

step followed by an approximation (A) one. The S step

requires to sample q(z|y, θk), which is also intractable

in our case. In the case of curved exponential mod-

els, the authors in [2] show that the convergence holds

if the S step is replaced by a single transition of an er-

godic Monte-Carlo Markov Chain (MCMC) whose sta-

tionary distribution is q(z|y, θk). This global algorithm is

called the Monte-Carlo Markov Chain Stochastic Approxi-

mation Expectation-Maximization (MCMC-SAEM), and is

exploited in this paper to compute the MAP estimate of the

model parameters θmap = maxθ
∫

q(y, z|θ) dz.

4.2. The adaptative block sampler

We use a block formulation of the Metropolis-Hasting

within Gibbs (MHwG) sampler in the S-MCMC step. The

latent variables z are decomposed into nb natural blocks:

z =
{

y0, c0,m0, [cl(A)]l, [τi, ξi, si]i
}

. Those blocks have

highly heterogeneous sizes, e.g. a single scalar for τi versus

possibly thousands for y0, for which we introduce a specific

proposal distribution in Section 4.3.

For all the other blocks, we use a symmetric random

walk MHwG sampler with normal proposal distributions

of the form N (0, σ2
b Id) to perturb the current block state

zkb . In order to achieve reasonable acceptance rates ar i.e.

around ar⋆ = 30% [36], the proposal standard deviations

σb are dynamically adapted every nadapt iterations by mea-

suring the mean acceptance rates ar over the last ndetect it-

erations, and applying, for any b:

σb ← σb +
1

kδ
ar − ar⋆

(1− ar⋆)✶ar≥ar⋆ + ar⋆✶ar<ar⋆
(5)

with δ > 0.5. Inspired by [3], this dynamic adaptation is

performed with a geometrically decreasing step-size k−δ ,

ensuring the vanishing property of the adaptation scheme

and the convergence of the whole algorithm [2, 3]. It proved

very efficient in practice with nadapt = ndetect = 10 and

δ = 0.51, for any kind of data.

4.3. Efficient sampling of smooth template shapes

The first block z1 = y0 i.e. the coordinates of the points

of the template mesh, is of very high dimension: naively

sampling over each scalar value of its numerical descrip-

tion would result both in unnatural distorted shapes and a

daunting computational burden.

We propose to take advantage of the geometrical na-

ture of y0 and leverage the framework introduced in Sec-

tion 2 by perturbing the current block state zk1 with a small

displacement field v, obtained by the convolution of ran-

dom momenta on a pre-selected set of control points. This

proposal distribution can be seen as a normal distribution

N (0, σ2
1 D

TD) where σ2
1 is the variance associated with

the random momenta, and D the convolution matrix. In

practice, dynamically adapting the proposal variance σ2
1 and

selecting regularly-spaced shape points as control points

proved efficient.
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4.4. Tempering

The MCMC-SAEM is proved convergent toward a local

maximum of θ →
∫

q(y, z|θ) dz. In practice, the dimen-

sionality of the energetic landscape q(y, z|θ) and the pres-

ence of multiple local maxima can make the estimation pro-

cedure sensitive to initialization. Inspired by the globally-

convergent simulated annealing algorithm, [25] proposes

to carry out the optimization procedure in a smoothed ver-

sion of the original landscape qT (y, z|θ). The temperature

parameter T controls this smoothing, and should decrease

from large values to 1, for which qT = q.

We propose to introduce such a temperature parameter

only for the population variables zpop. The tempered version

of the complete log-likelihood is given as supplementary

material. In our experiments, the chosen temperature se-

quence T k remains constant at first, and then geometrically

decreases to unity. Implementing this “tempering” feature

had a dramatic impact on the required number of iterations

before convergence, and greatly improved the robustness of

the whole procedure. Note that the theoretical convergence

properties of the MCMC-SAEM are not degraded, since the

tempered phase of the algorithm can be seen as an initializ-

ing heuristic, and may actually be improved.

Algorithm 1: Estimation of the longitudinal deformations

model with the MCMC-SAEM.

Code publicly available at: www.deformetrica.org.

input : Longitudinal dataset of shapes y = (yi,j)i,j . Initial

parameters θ0 and latent variables z0. Geometri-

cally decreasing sequence of step-sizes ρk.

output: Estimation of θmap. Samples (zs)s approximately

distributed following q(z | y, θmap).
Initialization: set k = 0 and S0 = S(z0).
repeat

Simulation: foreach block of latent variables zb do

Draw a candidate zcb ∼ pb(.|z
k
b ).

Set zc = (zk+1
1 , ..., zk+1

b−1 , z
c
b , z

k
b+1, ..., z

k
nb
).

Compute the geodesic γ : t→ Expc0,t0,t(m0).

∀i, compute wi = A⊥
m0
si.

∀i, compute w : t→ Pc0,m0,t0,t(wi).
∀i, j, compute Expγ[ψi(ti,j)](c0)

{

w[ψi(ti,j)]
}

.

Compute the acceptation ratio ω = min
[

1, q(z
c|y,θk)

q(zk|y,θk)

]

.

if u ∼ U(0, 1) < ω then zk+1
b ← zcb else zk+1

b ← zkb .

end

Stochastic approx.: Sk+1 ← Sk + ρk
[

S(zk+1)− Sk
]

.

Maximization: θk+1 ← θ⋆(Sk+1).
Adaptation: if remainder(k + 1, nadapt) = 0 then update

the proposal variances (σ2
b )b with equation (5).

Increment: set k ← k + 1.
until convergence;

4.5. Sufficient statistics and maximization step

Exhibiting the sufficient statistics S1=y0, S2=c0, S3=
m0, S4=A, S5=

∑

i t0+τi, S6=
∑

i(t0+τi)
2, S7=

∑

i ξ
2
i

and S8 =
∑

i

∑

j ‖yi,j − ηc0,m0,t0,ψi(ti,j)(wi) ◦ y0‖
2, the

update of the model parameters θ ← θ⋆ in the M step of the

MCMC-SAEM can be derived in closed-form. The explicit

expressions are given as supplementary material.

5. Experiments

5.1. Validation with simulated data in R
2

Convergence study. To validate the estimation procedure,

we first generate synthetic data directly from the model

without additional noise. Our choice of reference geodesic

γ is plotted on top line of the previously introduced Fig-

ure 1: the template y0 is the top central shape, the chosen

five control points c0 are the red crosses, and the momenta

m0 the bold blue arrow. Those parameters are completed

with t0 = 70, στ = 1, σξ = 0.1. With ns = 4 independent

components, we simulate N = 100 individual trajectories

and sample 〈ni〉i = 5 observations from each.

The algorithm is run ten times. Figure 2 plots the evolu-

tion of the error on the parameters along the estimation pro-

cedure in log scale. Each color corresponds to a different

run: the algorithm converges to the same point each time,

as it is confirmed by the small variances on the residual er-

rors indicated in Table 1. Those residual errors come from

the finite number of observations of the generated dataset

Figure 2: Error on the population parameters along the esti-

mation procedure, with logarithmic scales. The residual on

the template shape y0 is computed with the varifold metric.
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‖∆y0‖
2
var. ‖∆v0‖

2 |∆t0| |∆στ | |∆σξ| |∆σǫ|
〈

‖∆vi‖
2
〉

i

〈

|∆ξi|
〉

i

〈

|∆τi|
〉

i

1.43±5.6% 0.89±0.7% 0.19±2.7% 0.029±13.2% 0.017±7.6% 0.11±0.1% 2.47±1.7% 0.022±6.7% 0.19±0.8%

Table 1: Absolute residual errors on the estimated parameters and associated relative standard deviations across the 10 runs.

Are noted v0 = Conv(c0,m0) and vi = Conv(c0, wi). The operator 〈.〉i indicates an average over the index i. Residuals

are satisfyingly small, as it can be seen for |∆t0| for instance when compared with the time-span max|∆tij | = 4. The low

standard deviations suggest that the stochastic estimation procedure is stable and reproduces very similar results at each run.

Figure 3: Estimated mean progression

(bottom line in bold), and three recon-

structed individual scenarii (top lines). In-

put data is plotted in red in the rele-

vant frames, demonstrating the reconstruc-

tion ability of the estimated model. Our

method is able to disentangle the variabil-

ity in shape, starting time of the arm move-

ment and speed.

and the Bayesian priors, but are satisfyingly small, as qual-

itatively confirmed by Figure 3. The estimated mean trajec-

tory, in bold, matches the true one, given by the top line of

Figure 1. Figure 3 also illustrates the ability of our method

to reconstruct continuous individual trajectories.

Personalizing the model to unseen data. Once a model

has been learned i.e. the parameters θmap have been esti-

mated, it can easily be personalized to the observations ynew

of a new subject by maximizing q(ynew, znew | θmap) for the

low-dimensional latent variables znew. We implemented this

maximization procedure with the Powell’s method [35], and

evaluated it by registering the simulated trajectories to the

true model. Table 2 gathers the results for the previously-

introduced dataset with 〈ni〉i = 5 observations per subject,

and extended ones with 〈ni〉i = 7 and 9. The parameters

are satisfyingly estimated in all configurations: the recon-

Experience |∆σǫ|
〈

|∆si|
〉

i

〈

|∆ξi|
〉

i

〈

|∆τi|
〉

i

〈ni〉i = 5 0.110 3.34% 37.0% 5.45%

〈ni〉i = 7 0.095 2.98% 16.2% 3.86%

〈ni〉i = 9 0.087 2.38% 11.9% 3.28%

Table 2: Residual errors metrics for the longitudinal regis-

tration procedure, for three simulated datasets. The abso-

lute residual error on σǫ is given, the other errors are given

in percentage of the simulation standard deviation.

struction error measured by |∆σǫ| remains as low as in the

previous experiment (see Table 1, Figure 3). The acceler-

ation factor is the most difficult parameter to estimate with

small observation windows of the individual trajectories; at

least two observations are needed to obtain a good estimate.

5.2. Hippocampal atrophy in Alzheimer’s disease

Longitudinal deformations model on MCIc subjects. We

extract the T1-weighted magnetic resonance imaging mea-

surements of N = 100 subjects from the ADNI database,

with 〈ni〉i = 7.6 datapoints on average. Those sub-

jects present mild cognitive impairements, and are even-

tually diagnosed with Alzheimer’s disease (MCI convert-

ers, noted MCIc). In a pre-processing phase, the 3D

images are affinely aligned and the segmentations of the

right-hemisphere hippocampi are transformed into a surface

meshes. Each affine transformation is then applied to the

corresponding mesh, before rigid alignement of follow-up

meshes on the baseline one. The hippocampus is a subcorti-

cal brain structure which plays a central role in memory, and

experiences atrophy during the development of Alzheimer’s

disease. We initialize the geodesic population parameters

y0, c0,m0 with a geodesic regression [15, 16] performed on

a single subject. The reference time t0 is initialized to the

mean of the observation times (ti,j)i,j and σ2
τ to the corre-

sponding variance. We choose to estimate ns = 4 indepen-

dent components and initialize the corresponding matrix A

to zero, so as the individual latent variables τi, ξi, si. After

10,000 iterations, the parameter estimates stabilized.
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Figure 4: Estimated mean progression of the right hippocampi. Successive ages: 69.3y, 71.8y (i.e. the template y0), 74.3y,

76.8y, 79.3y, 81.8y, and 84.3y. The color map gives the norm of the velocity field ‖v0‖ on the meshes.
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Figure 5: Third independent component. The plotted hippocampi correspond to si,3 successively equal to: -3, -2, -1, 0 (i.e.

the template y0), 1, 2 and 3. Note that this component is orthogonal to the temporal trajectory displayed in Figure 4.

Figure 4 plots the estimated mean progression, which ex-

hibits a complex spatiotemporal atrophy pattern during dis-

ease progression: a pinching effect at the “joint” between

the head and the body, combined with a specific atrophy of

the medial part of the tail. Figure 5 plots an independent

component, which is orthogonal to the mean progression

by construction. This component seems to account for the

inter-subject variability in the relative size of the hippocam-

pus head compared to its tail.

We further examine the correlation between individual

parameters and several patients characteristics. Figure 6

exhibits the strong correlation between the estimated indi-

vidual time-shifts τi and the age of diagnostic t
diag
i , sug-

gesting that the estimated model captures well the relative

stages of development of the disease across patients, and

from a medical perspective that the hippocampal atrophy

Figure 6: Comparison of the estimated individual time-

shifts τi versus the age of diagnostic t
diag
i . R2 = 0.74.

correlates well with the cognitive symptoms. The few out-

liers above the regression line might have resisted better to

the atrophy of their hippocampus with a higher brain plas-

ticity, in line with the cognitive reserve theory [39]. The few

outliers below this line could have developed a subform of

the disease, with delayed atrophy of their hippocampi. Fur-

ther investigation is required to rule out potential conver-

gence issues in the optimization procedure. Figures 7, 8, 9

propose group comparisons based on the estimated individ-

ual parameters: the acceleration factor αi, time-shift τi and

space-shift si,3 in the direction of the third component (see

Figure 5). The distributions of those parameters are signif-

icantly different for the Mann-Whitney statistical test when

dividing the N = 100 MCIc subjects according to gender,

APOE4 mutation status, and onset age t0 + τi respectively.

Figure 7: Distributions of acceleration factors αi accord-

ing to the gender. Hippocampal atrophy is faster in female

subject (p = 0.045).
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Figure 8: Distributions of time-shifts τi according to the

number of APOE4 alleles. Hippocampal atrophy occurs

earlier in carriers of 1 or 2 alleles (p = 0.017 and 0.015).

Figure 9: Distribution of the third source term si,3 accord-

ing to the categories {τi ≤ −3}, {−3 < τi < 3}, and

{3 ≤ τi}. Hippocampal atrophy seems to occurs later in

subjects presenting a lower volume ratio of the hippocam-

pus tail over the hippocampus head (p = 0.0049).

〈ni〉i Shape features Naive feature All features

1 71%±4.5 [lr] 50%±5.0 [nb] 58%±5.0 [lr]

2 77%±4.3 [lr] 58%±4.9 [5nn] 68%±4.7 [dt]

4 79%±4.1 [svm] 67%±4.7 [5nn] 80%±4.0 [lr]

5 77%±4.2 [nn] 77%±4.2 [lr] 82%±3.8 [nb]

6.86 83%±3.7 [lr] 80%±4.0 [lr] 86%±3.4 [lr]

Table 3: Mean classification scores and associated standard

deviations, computed on 10,000 bootstrap samples from the

test dataset. Across all tested classifiers (sklearn default

hyperparameters), only the best performing one is reported

in each case: [lr] logistic regression, [nb] naive Bayes,

[5nn] 5 nearest neighbors, [dt] decision tree, [nn] neural net-

work, [svm] linear support vector machine.

Classifying pathological trajectories vs. normal ageing.

We processed another hundred of individuals from the

ADNI database (〈ni〉i = 7.37), choosing this time control

subjects (CN). We form two balanced datasets, each con-

taining 50 MCIc and 50 CN. We learn two distinct longitu-

dinal deformations model on the training MCIc (N = 50,

〈ni〉i = 8.14) and CN (N = 50, 〈ni〉i = 8.08) subjects.

We personalize both models to all the 200 subjects, and

use the scaled and normalized differences zMCIc
i − zCN

i as

feature vectors of dimension 6, on which a list of stan-

dard classifiers are trained and tested to predict the label

in {MCIc,CN}. For several number of observations per

test subject 〈ni〉i configurations, we compute confidence

intervals by bootstraping the test set. Table 3 compares

the results with a naive approach, using as unique feature

the slope of individually-fitted linear regressions of the hip-

pocampal volume with age. Classifiers performed consis-

tently better with the features extracted from the longitu-

dinal deformations model, even with a single observation.

The classification performance increases with the number

of available observations per subject. Interestingly, from

〈ni〉i = 4 pooling the shape and volume features yields an

improved performance, suggesting complementarity.

6. Conclusion

We proposed a hierarchical model on a manifold of dif-

feomorphisms estimating the spatiotemporal distribution of

longitudinal shape data. The observed shape trajectories

are represented as individual variations of a group-average,

which can be seen as the mean progression of the popu-

lation. Both spatial and temporal variability are estimated

directly from the data, allowing the use of unaligned se-

quences. This feature is key for applications where no ob-

jective temporal markers are available, as it is the case for

Alzheimer’s disease progression for instance, whose onset

age and pace of progression vary among individuals. Our

model builds on the principles of a generic longitudinal

modeling for manifold-valued data [37]. We provided a

coherent theoretical framework for its application to shape

data, along with the needed algorithmic solutions for paral-

lel transport and sampling on our specific manifold. We es-

timated our model with the MCMC-SAEM algorithm both

with simulated and real data. The simulation experiments

confirmed the ability of the proposed algorithm to retrieve

the optimal parameters in realistic scenarii. The application

to medical imaging data, namely segmented hippocampi

brain structures of Alzheimer’s diseased patients, deliv-

ered results coherent with medical knowledge, and provides

more detailed insights into the complex atrophy pattern of

the hippocampus and its variability across patients. In fu-

ture work, the proposed method will be leveraged for auto-

matic diagnosis and prognosis purposes. Further investiga-

tions are also needed to evaluate the algorithm convergence

with respect to the number of individual samples.
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