
HashGAN: Deep Learning to Hash with Pair Conditional Wasserstein GAN

Yue Cao, Bin Liu, Mingsheng Long∗, Jianmin Wang

KLiss, MOE; School of Software, Tsinghua University, China

National Engineering Laboratory for Big Data Software

Beijing Key Laboratory for Industrial Big Data System and Application

{caoyue10,liubinthss}@gmail.com, {mingsheng,jimwang}@tsinghua.edu.cn

Abstract

Deep learning to hash improves image retrieval perfor-

mance by end-to-end representation learning and hash cod-

ing from training data with pairwise similarity information.

Subject to the scarcity of similarity information that is often

expensive to collect for many application domains, existing

deep learning to hash methods may overfit the training data

and result in substantial loss of retrieval quality. This paper

presents HashGAN, a novel architecture for deep learning

to hash, which learns compact binary hash codes from both

real images and diverse images synthesized by generative

models. The main idea is to augment the training data with

nearly real images synthesized from a new Pair Conditional

Wasserstein GAN (PC-WGAN) conditioned on the pairwise

similarity information. Extensive experiments demonstrate

that HashGAN can generate high-quality binary hash codes

and yield state-of-the-art image retrieval performance on

three benchmarks, NUS-WIDE, CIFAR-10, and MS-COCO.

1. Introduction

In the big data era, large-scale and high-dimensional me-

dia data has been pervasive in search engines and social net-

works. To guarantee retrieval quality and computation effi-

ciency, approximate nearest neighbors (ANN) search has at-

tracted increasing attention. Parallel to the traditional index-

ing methods [21], another advantageous solution is hash-

ing methods [37], which transform high-dimensional me-

dia data into compact binary codes and generate similar bi-

nary codes for similar data items. This paper will focus on

the learning to hash methods [37] that build data-dependent

hash encoding schemes for efficient image retrieval, which

have shown better performance than data-independent hash-

ing methods, e.g. Locality-Sensitive Hashing (LSH) [12].

Many learning to hash methods have been proposed to

enable efficient ANN search by Hamming ranking of com-

pact binary hash codes [19, 13, 28, 11, 25, 36, 41]. Recently,
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deep learning to hash methods [40, 20, 34, 10, 42, 22, 24, 6]

have shown that deep neural networks can enable end-to-

end representation learning and hash coding with nonlinear

hash functions. These deep learning to hash methods have

shown state-of-the-art results on many datasets. In partic-

ular, it proves crucial to jointly learn similarity-preserving

representations and control quantization error of converting

continuous representations to binary codes [42, 22, 24, 6].

However, the encouraging performance comes only by

large-scale image data where sufficient supervised informa-

tion is available in the forms of pointwise labels or pairwise

similarity. In many image retrieval applications, the super-

vised information available may be insufficient, especially

for new domains. And it is usually costly or even prohibitive

to annotate sufficient training data for deep learning to hash.

Subject to the scarcity of similarity information, existing

deep learning to hash methods [42, 6] may overfit the train-

ing images and result in substantial loss of retrieval quality.

This paper presents HashGAN, a novel deep architecture

for deep learning to hash, which learns compact binary hash

codes from both real images and large-scale synthesized

images. We propose a novel Pair Conditional Wasserstein

GAN (PC-WGAN), which synthesizes discriminative and

diverse images by conditioning on the pairwise similarity

information. To the best of our knowledge, PC-WGAN is

the first GAN that enables image synthesis by incorporating

pairwise similarity information. Well-specified loss func-

tions including cosine cross-entropy loss and cosine quan-

tization loss are proposed for similarity-preserving learning

and quantization error control. The proposed HashGAN can

be trained end-to-end by back-propagation in a minimax op-

timization mechanism. Extensive experiments demonstrate

that HashGAN can generate high-quality binary hash codes

and yield state-of-the-art multimedia retrieval performance

on three datasets, NUS-WIDE, CIFAR-10, and MS-COCO.

2. Related Work

Hashing Methods. Existing hashing methods [2, 4, 19,

13, 28, 11, 25, 41] consist of unsupervised and supervised
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hashing. Please refer to [37] for a comprehensive survey.

Unsupervised hashing methods learn hash functions that

encode data to binary codes by training from unlabeled data

[33, 13, 17, 39, 26]. Supervised hashing further explores su-

pervised information (e.g. pairwise similarity or relevance

feedback) to generate compact hash codes [19, 28, 25, 34].

Recently, deep learning to hash methods yield breakthrough

results on image retrieval datasets by blending the power of

deep learning [40, 20]. In particular, DHN [42] is the first

end-to-end framework that jointly preserves pairwise simi-

larity and controls the quantization error. HashNet [6] im-

proves DHN by balancing the positive and negative pairs in

training data to trade of precision vs. recall, and by continu-

ation technique for lower quantization error, which obtains

state-of-the-art performance on several benchmark datasets.

Generative Models. Generative Adversarial Networks

(GANs) [14] are powerful models for generating images in

a minimax game mechanism without requiring supervised

information. State-of-the-art unsupervised generative mod-

els for image synthesis include Deep Convolutional GANs

(DCGANs) [31] and Wasserstein GANs (WGANs) [1, 15].

Recently, a more powerful family of generative models syn-

thesize images with GANs by further conditioning on su-

pervised information (e.g., class labels or text descriptions)

[27, 32]. Auxiliary Classifier GAN (AC-GAN) [29] is the

state-of-the-art solution to integrate supervised information

by feeding it into the generator and adding a loss function to

account for the supervised information in the discriminator.

Existing supervised generative models only incorporate

pointwise supervised information, e.g. class labels or text

descriptions. However, in many real retrieval applications,

we only have pairwise similarity information for training

hashing models [40, 20, 42, 5, 6]. Deep Semantic Hashing

(DSH) [30] is the first hashing method that explores GANs

for image synthesis, but it can only incorporate pointwise

side information (class labels) which is often unavailable in

online image retrieval applications. Different from previous

methods, we propose a new HashGAN architecture, which

consists of a specifically-designed Pair Conditional Wasser-

stein GAN (PC-WGAN) that enables incorporation of pair-

wise similarity information for generating diverse synthetic

images, and a deep hashing network trained with both real

and synthetic images to generate nearly lossless hash codes.

3. HashGAN

In similarity retrieval systems, we are given N training

points X = {xi}Ni=1, where some pairs of points xi and xj

are given with pairwise similarity labels sij , where sij = 1
if xi and xj are similar while sij = 0 if xi and xj are dis-

similar. The goal of deep learning to hash is to learn nonlin-

ear hash function F : x 7→ h ∈ {−1, 1}K from input space

to Hamming space {−1, 1}K using deep neural networks,

which encodes each point x into compact K-bit hash code

h = F (x) such that the similarity information S between

the given pairs can be preserved in the compact hash codes.

In supervised hashing, the similarity pairs S = {sij} can be

constructed from semantic labels of data points or relevance

feedback from click-through data in online search systems.

This paper presents HashGAN, a deep learning to hash

architecture with a novel Pair Conditional Wasserstein GAN

(PC-WGAN) specifically designed for generative learning

from images with pairwise similarity information. Figure 1

shows the architecture of HashGAN, which consists of two

main components. (1) A pair conditional Wasserstein GAN

(PC-WGAN), which takes as inputs the training images and

pairwise similarity and jointly learns a generator G and a

discriminator D: the generator G accepts as input the con-

catenation of a random noise u and an embedding vector v

that encodes the similarity information to synthesize nearly

real images; the discriminator D tries to distinguish the real

and synthetic images using the adversarial loss. (2) A hash

encoder F , which generates compact binary hash codes h

for all images in a Bayesian learning framework: the frame-

work jointly preserves the similarity information of both the

real and synthetic images by a cosine cross-entropy loss and

controls the quantization error by a cosine quantization loss.

3.1. Pair Conditional WGAN

The training strategy of generative adversarial networks

(GANs) [14] defines a minimax game between two compet-

ing networks: a generator network G that captures underly-

ing data distribution of real images for synthesizing images,

and a discriminator network D that distinguishes the real

images from synthetic images. Specifically, the generator G
accepts as input a random noise u, which is sampled from

some simple noise distribution such as uniform distribution

or spherical Gaussian distribution, and synthesizes a fake

image x̃ = G(u); the discriminator D takes as inputs either

a real image x or a synthetic image x̃ and must distinguish

them by minimizing the classification error of probabilities

D(x) and D(x̃). To tackle the training difficulty of GANs,

[15] proposes an improved training strategy of Wasserstein

GAN (WGAN) [1], which trains the discriminator through

the Wasserstein distance that is continuous everywhere and

differentiable almost everywhere, and proposes to enforce a

differentiable Lipschitz constraint with gradient penalty as

min
D

LD = E
x̃∼Pg

[D (x̃)]− E
x∼Pr

[D (x)]

+ γ E
x̂∼Px̂

[

(‖∇x̂D(x̂)‖2 − 1)
2
]

,
(1)

where γ is the penalty coefficient typically set as γ = 10,

Pr is the real data distribution, Pg is the generator distribu-

tion implicitly defined by x̃ = G(u), and Px̂ is implicitly

defined as sampling uniformly along straight lines between

pairs of points sampled from the real data distribution Pr
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Figure 1. HashGAN for deep learning to hash with a new Pair Conditional Wasserstein GAN (PC-WGAN). The architecture of the proposed

HashGAN consists of two main components. (1) A pair conditional Wasserstein GAN (PC-WGAN), which takes as inputs the training

images and pairwise similarity and jointly learns a generator G and a discriminator D: the generator G accepts as input the concatenation

of a random noise u and an embedding vector v that encodes the similarity information to synthesize nearly real images; the discriminator

D tries to distinguish the real and synthetic images using the adversarial loss. (2) A hash encoder F , which generates compact binary hash

codes h for all images in a Bayesian learning framework: the framework jointly preserves the similarity information of both the real and

synthetic images by a cosine cross-entropy loss and minimizes the quantization error by a cosine quantization loss. Best viewed in color.

and the generator distribution Pg . In the minimax game, the

generator is trained to maximize probability of classifying

synthetic images as real, which is equivalent to minimizing

min
G

LG = E
u∼Pu

[−D (G(u))] , (2)

where u is a random noise sampled from some simple noise

distribution Pu. The goal of the generator is to maximally

fool the discriminator with nearly real synthesized images.

This improved WGAN [15] performs better than standard

WGAN and enables stable and efficient training of various

GAN architectures with almost no hyper-parameter tuning.

While WGAN with stabilized training strategy [15] can

synthesize good images from random noises, it cannot take

the advantage of useful side information. Class conditional

synthesis can significantly improve the quality of generated

samples [29], by supplying both the generator and discrimi-

nator with class labels to produce class conditional samples

[27]. The auxiliary classifier GAN (AC-GAN) [29] is the

state-of-the-art solution to integrate side information, which

enables conditioning by feeding the supervised information

into the generator and adding a new loss function with the

supervised information in the discriminator. The generator

synthesizes images from the inputs combined of supervised

information and random noise, and the discriminator jointly

distinguishes different classes as well as real from synthetic.

A major disadvantage of AC-GAN is that it can only be

conditioned on point-wise supervised information, such as

class labels or feature vectors from counterpart modalities.

However, in deep learning to hash, we only have data X =

{xi}Ni=1 with pairwise similarity information S = {sij}. A

naive solution to applying AC-GAN on data with pairwise

information is that for each image xi, use each row si· ∈
R

N of the similarity matrix S as the supervised information.

Unfortunately, this solution is infeasible since the number

N of training points is usually larger than several thousands

in deep learning to hash, whereas AC-GAN with such high-

dimensional inputs cannot be trained successfully. Hence,

it still remains an open problem how to enable GANs and

WGANs conditioned on pairwise supervised information.

In this paper, we propose Pair Conditional WGAN (PC-

WGAN), a new extension of WGAN to learn from data with

pairwise supervised information {X ,S}. At first, we reduce

the high-dimension of pointwise supervised information si·

by a similarity embedding approach, which embeds the sim-

ilarity information si· associated with each image to a low-

dimensional vector vi ∈ R
V . The similarity embedding can

be attained by minimizing the following reconstruction loss

min
vi>0|N

i=1

LV =
∑

sij∈S

(

sij − v
T

i vj

)2
, (3)

where LV is the similarity embedding loss, and the nonneg-

ative constraints are imposed to make the latent embeddings

consistent with prior supervised information, which is given

as nonnegative similarity labels {sij}. Since sij ≈ v
T

i vj ,

each embedding vector vi can approximately represent the

similarity information of each point xi with V -dimension,

which is low-dimensional and can be fed as inputs to GANs.

In PC-WGAN, each generated point has a corresponding

embedding vector vi ∼ Pv in addition to the random noise
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ui ∈ R
V . The generator uses both embedding vector and

random noise to generate every image as x̃i = G(vi,ui).
The discriminator should give two probability distributions:

one over the synthetic vs real as D (x̃) and D (x) for binary

classification, and another over the similar vs dissimilar in

all image pairs as C (x̃i,xj) and 1−C (x̃i,xj) for pairwise

classification. More specifically, the discriminator network

(except the last classifier layer) is shared between D and C.

Denote by z̃ and z the last-layer activations of network C
for pairwise classification then C (x̃i,xj) =

1

1+exp(−z̃
T

i
zj)

.

The overall loss for training discriminator of PC-WGAN is

min
D,C

LD,C = E
x̃∼Pg

[D (x̃)]− E
x∼Pr

[D (x)]

+ γ E
x̂∼Px̂

[

(‖∇x̂D(x̂)‖2 − 1)
2
]

−
∑

sij∈S

sij logC (x̃i,xj)

−
∑

sij∈S

(1− sij) log (1− C (x̃i,xj)),

(4)

where the third and fourth rows are the cross-entropy loss

between probability C (x̃i,xj) and pairwise similarity sij .

In the minimax game, the generator is trained to maximize

probabilities of synthetic being real as well as similar being

dissimilar or vice versa, which is equivalent to minimizing

min
G,V

LG,V = E
v∼Pv

u∼Pu

[−D (G (v,u))] +
∑

sij∈S

(

sij − v
T

i vj

)2

−
∑

sij∈S

sij logC (x̃i,xj)

−
∑

sij∈S

(1− sij) log (1− C (x̃i,xj)),

(5)

and note that x̃i = G(vi,ui). The goal of the generator is

to maximally fool the discriminator with synthetic images

generated from the similarity embedding and random noise.

In applications, the size of training data with similarity

information is remarkably smaller than the size of complete

unlabeled data. We enable PC-WGAN to learn from both

labeled data and unlabeled data to synthesize high-quality

images by further using zero embedding vector vj = 0 for

each unlabeled image xj /∈ X . The generator distribution

Pg changes to G(vi,ui) ∪ G(0,uj), and Pr becomes dis-

tributions of both supervised and unsupervised real images.

Though both Pg and Pr are changed due to unlabeled data,

the PC-WGAN objectives in (4) and (5) remain unchanged.

3.2. Deep Learning to Hash

The PC-WGAN trained on images with pairwise similar-

ity information can generate high-quality synthetic images,

which can be used to boost the performance of deep learn-

ing to hash over images with insufficient similarity labels.

In this paper, we propose a hash encoder network F , which

generates compact hash codes for both synthetic and real

images in a Bayesian framework. The hash encoder con-

sists of three components: (1) a deep convolutional network

(CNN) for learning deep compact codes hi = F (x̄i) for

each input image x̄i, where x̄i can be a real image x with

similarity information or a synthetic image x̃ generated by

PC-WGAN with similarity information; (2) a cosine cross-

entropy loss for similarity-preserving hash learning; and (3)

a cosine quantization loss for controlling quantization error.

Given training data X = {xi}Ni=1 and synthetic images

X̃ = {x̃j}Mj=1, we can expand the training data toX∪X̃ and

the similarity labels to S = {sij}N+M
i,j=1 for deep hashing.

The logarithm Maximum a Posteriori (MAP) estimation of

hash codes H = [h1, . . . ,hN+M ] given S and X ∪ X̃ is

logP (H|S) ∝ logP (S|H)P (H)

=
∑

sij∈S

wij logP (sij |hi,hj) +

N+M
∑

i=1

logP (hi),

(6)

where P (S|H) =
∏

sij∈S [P (sij |hi,hj)]
wij is weighted

likelihood function, and wij is the weight for each training

pair (x̄i, x̄j , sij), which tackles the data imbalance problem

by weighting the training pairs according to the importance

of misclassifying that pair [8]. Since each similarity label

in S can only be sij = 1 or sij = 0, to account for the data

imbalance between similar and dissimilar pairs, we propose

wij =

{

|S| / |S1| , sij = 1

|S| / |S0| , sij = 0
(7)

where S1 = {sij ∈ S : sij = 1} is the set of similar pairs

and S0 = {sij ∈ S : sij = 0} is the set of dissimilar pairs.

For each pair, P (sij |hi,hj) is the conditional probability

of similarity label sij given a pair of hash codes hi and hj ,

which can be naturally defined as pairwise logistic function,

P (sij |hi,hj) =

{

σ (cos (hi,hj)) , sij = 1

1− σ (cos (hi,hj)) , sij = 0

= σ(cos (hi,hj))
sij (1− σ (cos (hi,hj)))

1−sij

(8)

where σ (h) = 1/(1 + e−αh) is adaptive sigmoid function.

Similar to logistic regression, we can see that the smaller the

Hamming distance distH (hi,hj) is, the larger the cosine

similarity cos (hi,hj) as well as the conditional probability

P (1|hi,hj) will be, implying that the image pair x̄i and

x̄j should be classified as similar; otherwise, the larger the

conditional probability P (0|hi,hj) will be, implying that

the image pair x̄i and x̄j should be classified as dissimilar.

Hence, Equation (8) is a reasonable extension of the logistic

regression classifier to the pairwise classification scenario,

which is optimal for binary similarity labels sij ∈ {0, 1}.
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Since discrete optimization of Equation (6) with binary

constraints hi ∈ {−1, 1}K is very challenging, continuous

relaxation hi ∈ R
K is applied to the binary constraints for

ease of optimization, as adopted by most hashing methods

[37, 42]. To control the quantization error ‖hi−sgn(hi)‖ of

continuous relaxation and close the gap between Hamming

distance and cosine distance for learning high-quality hash

codes, we propose a novel bimodal Gaussian prior for hi as

P (hi) =
1

2ǫ
exp

(

−1

ǫ

∥

∥

∥

∥

|hi|
‖hi‖

− 1√
K

∥

∥

∥

∥

2

2

)

, (9)

where ǫ is the diversity parameter of bimodal Gaussian dis-

tribution, and 1 ∈ R
K is the vector of ones with norm

√
K.

By taking Equations (8) and (9) into the MAP estimation

in Equation (6), we obtain the optimization problem of the

hash encoder F for learning compact hash codes as follows

min
F

LF =
∑

sij∈S

wij log (1 + exp (α cos (hi,hj)))

−
∑

sij∈S

wijsijα cos (hi,hj)

− β
N+M
∑

i=1

cos (|hi| ,1),

(10)

β is the parameter to balance the weight between the cosine

cross-entropy loss in the first and second rows of Eq. (10)

and the cosine quantization loss in the third row of (10).

3.3. HashGAN Optimization

This paper establishes deep learning to hash for images

with pairwise similarity information, which constitutes two

key components: Pair Conditional Wasserstein GAN (PC-

WGAN) for generating nearly real images and Deep Hash

Encoder for generating compact hash codes for each image.

The overall optimization problem is a unified integration of

the PC-WGAN objective in Equations (4) (5) and the Deep

Hash Encoder objective in Equation (10). As the proposed

HashGAN architecture is a variant of GANs, the two-player

minimax game mechanism is adopted for the optimization.

The optimization problems for discriminator D, generator

G and hash encoder F are respectively computed as follows

min
D,C

LF + λLD,C ,

min
G,V

LF + λLG,V ,

min
F

LF ,

(11)

where λ is a parameter to trade of the importance of deep

hash encoder and PC-WGAN. The network parameters can

be efficiently optimized through standard back-propagation

using automatic differentiation techniques by TensorFlow.

Finally, we obtain hash code for each image by simple

binarization h← sgn(h), where sgn(·) is the sign function.

Through the minimax optimization in Equation (11), we can

synthesize nearly real images with pairwise information by

the proposed PC-WGAN, and generate nearly lossless hash

codes by similarity-preserving learning and quantization er-

ror minimization from both real and synthetic images. It is

worth noting that, we can alleviate the difficulty in learning

with insufficient supervised information by using both real

and synthetic data for deep learning to hash, which yields

higher quality hash codes for improved search performance.

4. Experiments

We evaluate the efficacy of the proposed HashGAN ap-

proach with state-of-the-art shallow and deep hashing meth-

ods on three benchmark datasets. Codes and configurations

will be available at: https://github.com/thuml.

4.1. Setup

NUS-WIDE [7] is a public image dataset which con-

tains 269,648 images in the 81 ground truth categories. We

follow similar experimental protocols in [42, 6], and ran-

domly sample 5,000 images as the query points, with the

remaining images used as the database and randomly sam-

ple 10,000 images from the database as the training points.

CIFAR-10 is a public dataset with 60,000 images in 10

classes. We follow protocol in [5] to randomly select 100

images per class as the query set, 500 images per class as

the training set, and the rest images are used as the database.

MS-COCO [23] is a widely-used image dataset for im-

age recognition, segmentation and captioning. The current

release contains 82,783 training images and 40,504 valida-

tion images, where each image is labeled by some of the

80 semantic concepts. We randomly sample 5,000 images

as query points, with the rest used as the database, and ran-

domly sample 10,000 images from the database for training.

Following standard evaluation protocol as previous work

[40, 20, 42, 6], the similarity information for hash function

learning and for ground-truth evaluation is constructed from

image labels: if two images i and j share at least one label,

they are similar and sij = 1, otherwise they are dissimilar

and sij = 0. Though we use the ground truth image labels

to construct the similarity information, the proposed Hash-

GAN can learn compact binary hash codes when only the

similarity information is available, which is more general

than many label-information based hashing methods [38, 3].

We compare retrieval performance of HashGAN with

eight state-of-the-art hashing methods, including supervised

shallow hashing methods BRE [19], ITQ-CCA [13], KSH

[25], SDH [34], and supervised deep hashing methods

CNNH [40], DNNH [20], DHN [42] and HashNet [6]. We

evaluate retrieval quality based on four standard evaluation

metrics: Mean Average Precision (MAP), Precision-Recall

1291
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Table 1. Mean Average Precision (MAP) of Hamming Ranking for Different Number of Bits on the Three Image Datasets

Method
NUS-WIDE CIFAR-10 MS-COCO

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

ITQ-CCA [13] 0.460 0.405 0.373 0.347 0.354 0.414 0.449 0.462 0.566 0.562 0.530 0.502

BRE [19] 0.503 0.529 0.548 0.555 0.370 0.438 0.468 0.491 0.592 0.622 0.630 0.634

KSH [25] 0.551 0.582 0.612 0.635 0.524 0.558 0.567 0.569 0.521 0.534 0.534 0.536

SDH [34] 0.588 0.611 0.638 0.667 0.461 0.520 0.553 0.568 0.555 0.564 0.572 0.580

CNNH [40] 0.570 0.583 0.593 0.600 0.476 0.472 0.489 0.501 0.564 0.574 0.571 0.567

DNNH [20] 0.598 0.616 0.635 0.639 0.559 0.558 0.581 0.583 0.593 0.603 0.605 0.610

DHN [42] 0.637 0.664 0.669 0.671 0.568 0.603 0.621 0.635 0.677 0.701 0.695 0.694

HashNet [6] 0.662 0.699 0.711 0.716 0.643 0.667 0.675 0.687 0.687 0.718 0.730 0.736

HashGAN 0.715 0.737 0.744 0.748 0.668 0.731 0.735 0.749 0.697 0.725 0.741 0.744

curves (PR), Precision curves within Hamming distance 2

(P@H≤2), and Precision curves with respect to the num-

bers of top returned samples (P@N). For direct comparison

to published results, all methods use identical training and

test sets. We follow HashNet [6] and DHN [42] and adopt

MAP@5000 for NUS-WIDE dataset, MAP@5000 for MS-

COCO dataset, and MAP@54000 for CIFAR-10 dataset.

For shallow hashing methods, we use as image features

the 4096-dimensional DeCAF7 features [9]. For deep hash-

ing methods, we use as input the original images, and adopt

AlexNet [18] as the backbone architecture. We follow [15]

and adopt a four-layer ResNet [16] architecture for the dis-

criminator and generator in HashGAN, which is proved to

generate high quality images with 64× 64 pixels. We adopt

AlexNet [18] as the hash encoder, fine-tune all layers but

the last one copied from the pre-trained AlexNet. As the last

layer is trained from scratch, we set its learning rate to be 10

times that of the lower layers. We use mini-batch stochastic

gradient descent (SGD) with 0.9 momentum as the solver,

and cross-validate the learning rate from 10−5 to 10−2 with

a multiplicative step-size 10
1

2 . We fix the mini-batch size of

images as 256 and the weight decay parameter as 0.0005.

We cross-validate the dimension of the embedding vector v,

and observe that fixing this hyper-parameter as 32 is enough

to achieve satisfiable results. Also, HashGAN is not sensi-

tive to different dimensions given that the dimension of v is

large enough, e.g. 32. We select the parameters of all com-

parison methods through cross-validation on training data.

4.2. Results

The MAP results of all methods are demonstrated in Ta-

ble 1, which shows that the proposed HashGAN substan-

tially outperforms all the comparison methods by large mar-

gins. Specifically, compared to SDH, the best shallow hash-

ing method with deep features as input, HashGAN achieves

absolute increases of 11.0%, 19.5% and 15.9% in average

MAP on NUS-WIDE, CIFAR-10, and MS-COCO respec-

tively. HashGAN outperforms HashNet, the state-of-the-art

deep hashing method, by large margins of 3.9%, 5.3% and

0.9% in average MAP on the three datasets, respectively.

The MAP results reveal several interesting insights. (1)

Shallow hashing methods cannot learn discriminative deep

representations and compact hash codes through end-to-end

framework, which explains the fact that they are surpassed

by deep hashing methods. (2) Deep hashing methods DHN

and HashNet learn less lossy hash codes by jointly preserv-

ing similarity information and controlling the quantization

error, which significantly outperform pioneering methods

CNNH and DNNH without reducing the quantization error.

The proposed HashGAN improves substantially from

the state-of-the-art HashNet by two important perspectives:

(1) HashGAN integrates a novel Pair Conditional Wasser-

stein GAN (PC-WGAN) to synthesize nearly real images as

training data, which substantially increases the diversity of

training data and alleviates the technical difficulty of insuf-

ficient supervised information in many real applications. (2)

HashGAN adopts new cosine cross-entropy loss and cosine

quantization loss, which can approximate the Hamming dis-

tance more accurately to learn nearly lossless hash codes.

The performance in Precision within Hamming radius

2 (P@H≤2) is very important for efficient image retrieval

since such Hamming ranking only requires O(1) time cost

for each query, which enables really fast pruning. As shown

in Figures 2(a), 3(a) and 4(a), HashGAN achieves the high-

est P@H≤2 results on all three benchmark datasets using

different numbers of bits. This validates that HashGAN can

learn compacter hash codes than all comparison methods

to establish more efficient and accurate Hamming ranking.

When using longer hash codes, the Hamming space will be-

come higher-dimensional and more sparse such that fewer

data points will fall in the Hamming ball within radius 2.

This explains why most existing hashing methods perform

worse in terms of P@H≤2 criterion with longer hash codes.

The retrieval performance in terms of Precision-Recall

curves (PR) and Precision curves with respect to different

numbers of top returned samples (P@N) are demonstrated

in Figures 2(b), 3(b), 4(b) and 2(c), 3(c), 4(c), respectively.

The proposed HashGAN significantly outperforms all com-

parison methods by large margins under these two evalua-

tion metrics. In particular, HashGAN achieves much higher
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Figure 2. The experimental results of HashGAN and comparison methods on the NUS-WIDE dataset under three evaluation metrics.
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Figure 3. The experimental results of HashGAN and comparison methods on the CIFAR-10 dataset under three evaluation metrics.
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Figure 4. The experimental results of HashGAN and comparison methods on the MS-COCO dataset under three evaluation metrics.

precision at lower recall levels or smaller number of top

samples. This is very desirable for precision-first retrieval,

which is widely implemented in practical retrieval systems.

4.3. Analysis

4.3.1 Ablation Study

We investigate four variants of HashGAN: (1) HashGAN-B

is the HashGAN variant without binarization (h← sgn(h)
is not performed), which may serve as the upper bound of

retrieval performance; (2) HashGAN-Q is the HashGAN

variant without using the proposed quantization loss (10), in

other words β = 0; (3) HashGAN-C is the HashGAN vari-

ant by replacing the cosine cross-entropy loss in (10) with

the widely-used inner-product cross-entropy loss [42, 6];

(4) HashGAN-G is the HashGAN variant by removing the

proposed Pair Conditional Wasserstein GAN (PC-WGAN),

i.e. only the hash encoder is trained to generate hash codes

and λ = 0. The MAP results with respect to different code

lengths on three benchmark datasets are reported in Table 2.

Pair Conditional Wasserstein GAN. Table 2 shows that

HashGAN significantly outperforms HashGAN-G by large

margins of 2.5%, 3.8% and 1.8% in average MAP on three

datasets, respectively. Without generating high-quality and

nearly real synthetic images using PC-WGAN, the diversity

of training images for deep learning to hash may be limited,

which will lead to overfitting when the pairwise similarity

information is insufficient and to worse search performance.

The proposed PC-WGAN turns out to be the most important

underpinning, which helps HashGAN achieve the state-of-

the-art retrieval performance in various evaluation metrics.

Besides, we feed the images generated by PC-WGAN to the

best baselines DHN [42] and HashNet [6], which can also

outperform the traditional methods by 2.0% on average.

Cosine Cross-Entropy Loss. Table 2 shows that Hash-

GAN outperforms HashGAN-C by 2.0%, 2.5% and 1.9% in

average MAP on the three datasets. HashGAN-C uses the

widely-used inner-product cross-entropy loss [42, 6] which

achieves state-of-the-art results on previous retrieval tasks.

In real search engines, cosine similarity is widely used to
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Table 2. Mean Average Precision (MAP) Results of HashGAN and Its Variants HashGAN-B, HashGAN-Q, HashGAN-C, and HashGAN-G

Method
NUS-WIDE CIFAR-10 MS-COCO

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

HashGAN-B 0.745 0.758 0.773 0.788 0.693 0.748 0.754 0.768 0.723 0.748 0.754 0.766

HashGAN 0.715 0.737 0.744 0.748 0.668 0.731 0.735 0.749 0.697 0.725 0.741 0.744

HashGAN-Q 0.697 0.718 0.727 0.736 0.646 0.713 0.722 0.731 0.667 0.698 0.714 0.722

HashGAN-C 0.703 0.709 0.723 0.727 0.659 0.703 0.708 0.713 0.676 0.713 0.720 0.723

HashGAN-G 0.693 0.713 0.715 0.721 0.653 0.681 0.693 0.702 0.678 0.711 0.721 0.726

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

(a) HashGAN

-15 -10 -5 0 5 10 15

-20

-15

-10

-5

0

5

10

15

20

(b) HashNet

Figure 5. The t-SNE visualizations of the hash codes respectively

learned by HashGAN and HashNet on the CIFAR-10 dataset.

mitigate the diversity of vector lengths and improve retrieval

quality, while it has not been integrated with cross-entropy

loss for supervised hash learning [37]. We propose a novel

cosine cross-entropy loss (10) based on cosine similarity,

which can better approximate the Hamming distance and

preserve the similarity information of training image pairs.

Cosine Quantization Loss. By jointly optimizing the

cosine cross-entropy loss and the cosine quantization loss

over deep representations of both real and synthetic images,

HashGAN incurs small average MAP decreases of 3.0%,

2.0%, and 2.6% when binarizing continuous representations

of HashGAN-B. In contrast, without optimizing the cosine

quantization loss (10), HashGAN-Q suffers from very large

MAP decreases of 4.7%, 3.8%, and 5.3%, and substantially

underperforms HashGAN. These results in Table 2 validate

that the cosine quantization loss (10) can effectively reduce

the binarization error and yield nearly lossless hash coding.

4.3.2 Visualization Study

Visualization of Hash Codes by t-SNE. Figure 5 shows

the t-SNE visualizations [35] of the hash codes learned by

the proposed HashGAN approach and the best deep hashing

method HashNet [6] on the CIFAR-10 dataset. We observe

that the hash codes learned by HashGAN exhibit clear dis-

criminative structures where the hash codes in different cat-

egories are well separated, while the hash codes generated

by HashNet exhibit relative vague structures. This validates

that by introducing the novel pair conditional WGAN into

deep hashing, the hash codes generated through the pro-

posed HashGAN are more discriminative than that gener-

ated by HashNet, enabling more accurate image retrieval.

Visualization of Synthetic Images by HashGAN. Fig-

ure 6 illustrates the per-class image examples on CIFAR-10

dataset, which are synthetic images generated by HashGAN
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Figure 6. Visualization of image examples on CIFAR-10.
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sky sun
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Figure 7. Visualization of image examples on NUS-WIDE.

(left) and real images randomly selected from the dataset

(right). We can observe that the synthetic images are nearly

real and semantically relevant to each class but are much

more diverse, which can improve the quality of hash codes.

Figure 7 illustrates synthetic (left) and real (right) image

samples on NUS-WIDE, which is a multi-label (81 labels)

dataset with high-resolution images and is more difficult to

generate high-quality images. In both cases, HashGAN can

generate plausible images to improve retrieval performance.

5. Conclusion

This paper tackles deep learning to hash with insufficient

similarity information by image synthesis from generative

models. The proposed HashGAN can synthesize nearly real

images conditioned on the pairwise similarity information,

with more diverse synthesized images to improve the qual-

ity of compact binary hash codes. Extensive empirical re-

sults demonstrate that HashGAN can yield state-of-the-art

multimedia retrieval performance on standard benchmarks.
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