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Abstract

Adversarial learning has been successfully embedded into

deep networks to learn transferable features, which reduce

distribution discrepancy between the source and target do-

mains. Existing domain adversarial networks assume fully

shared label space across domains. In the presence of big

data, there is strong motivation of transferring both classifi-

cation and representation models from existing large-scale

domains to unknown small-scale domains. This paper in-

troduces partial transfer learning, which relaxes the shared

label space assumption to that the target label space is only

a subspace of the source label space. Previous methods typi-

cally match the whole source domain to the target domain,

which are prone to negative transfer for the partial transfer

problem. We present Selective Adversarial Network (SAN),

which simultaneously circumvents negative transfer by se-

lecting out the outlier source classes and promotes positive

transfer by maximally matching the data distributions in

the shared label space. Experiments demonstrate that our

models exceed state-of-the-art results for partial transfer

learning tasks on several benchmark datasets.

1. Introduction

Deep networks have significantly improved the state of

the art for a wide variety of machine learning problems and

applications. At the moment, these impressive gains in per-

formance come only when massive amounts of labeled data

are available. Since manual labeling of sufficient training

data for diverse application domains on-the-fly is often pro-

hibitive, for problems short of labeled data, there is strong

motivation to establishing effective algorithms to reduce the

labeling consumption, typically by leveraging off-the-shelf

labeled data from a different but related source domain. This

promising transfer learning paradigm, however, suffers from

the shift in data distributions across different domains, which
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poses a major obstacle in adapting classification models to

target tasks [23].

Existing transfer learning methods assume shared label

space and different feature distributions across the source

and target domains. These methods bridge different domains

by learning domain-invariant feature representations without

using target labels, and the classifier learned from source

domain can be directly applied to target domain. Recent

studies have revealed that deep networks can learn more

transferable features for transfer learning [5, 33], by disen-

tangling explanatory factors of variations behind domains.

The latest advances have been achieved by embedding trans-

fer learning in the pipeline of deep feature learning to extract

domain-invariant deep representations [30, 16, 7, 31, 18].

In the presence of big data, we can readily access large-

scale labeled datasets such as ImageNet-1K. Thus, a natural

ambition is to directly transfer both the representation and

classification models from large-scale dataset to our target

dataset, such as Caltech-256, which are usually small-scale

and with unknown categories at training and testing time.

From big data viewpoint, we can assume that the large-scale

dataset is diverse enough to subsume all categories of the

small-scale dataset. Thus, we introduce a novel partial trans-

fer learning problem, assuming that the target label space is

a subspace of the source label space. It is a prerequisite of

open set domain adaptation [3]. As shown in Figure 1, partial

transfer learning problem is more general and challenging

than standard transfer learning, since outlier source classes

(“sofa”) will result in negative transfer when discriminating

the target classes (“soccer-ball” and “binoculars”). Negative

transfer is the phenomenon that a transfer learner performs

even worse than a supervised classifier trained solely on

the source domain, which is the key challenge of transfer

learning [23]. Thus, matching the whole source and target

domains as previous methods is not an effective solution to

this new partial transfer learning scenario.

This paper presents Selective Adversarial Networks

(SAN), which largely extends the ability of deep adversarial

adaptation [7] to address partial transfer learning from large-
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Figure 1. The partial transfer learning problem, where source label space subsumes target label space (should be prone to negative transfer).

scale domains to small-scale domains. SAN aligns the distri-

butions of source and target data in the shared label space and

more importantly, selects out the source data in the outlier

source classes. A key improvement over previous methods is

the capability to simultaneously promote positive transfer of

relevant data and alleviate negative transfer of irrelevant data,

which can be trained in an end-to-end framework. Experi-

ments show that our models exceed state-of-the-art results

for deep transfer learning on public datasets.

2. Related Work

Transfer learning [23] bridges different domains or tasks

to mitigate the burden of manual labeling for machine learn-

ing [22, 6, 34, 32], computer vision [26, 9, 14] and natural

language processing [4]. The main technical difficulty of

transfer learning is to formally reduce the distribution dis-

crepancy across different domains. Deep networks can learn

abstract representations that disentangle different explana-

tory factors of variations behind data [2] and manifest invari-

ant factors underlying different populations that transfer well

from original tasks to similar novel tasks [33]. Thus deep

networks have been explored for transfer learning [8, 21, 14],

multimodal and multi-task learning [4, 20], where signifi-

cant performance gains have been witnessed relative to prior

shallow transfer learning methods.

However, recent advances show that deep networks can

learn abstract feature representations that can only reduce,

but not remove, the cross-domain discrepancy [8, 30], re-

sulting in unbounded risk for target tasks [19, 1]. Some

recent work bridges deep learning and domain adaptation

[30, 16, 7, 31, 18], which extends deep convolutional net-

works (CNNs) to domain adaptation by adding adaptation

layers through which the mean embeddings of distributions

are matched [30, 16, 18], or by adding a subnetwork as

domain discriminator while the deep features are learned

to confuse the discriminator in a domain-adversarial train-

ing paradigm [7, 31]. While performance was significantly

improved, these state of the art methods may be restricted

by the assumption that the source and target domains share

the same label space. This assumption is violated in par-

tial transfer learning, which transfers both representation

and classification models from existing large-scale domains

to unknown small-scale domains. To our knowledge, this

is the first work that addresses partial transfer learning in

adversarial networks.

3. Partial Transfer Learning

In this paper, we propose partial transfer learning, a

novel transfer learning paradigm where the target domain

label space Ct is a subspace of the source domain label space

Cs i.e. Ct ⊂ Cs. This new paradigm finds wide applications

in practice, as we usually need to transfer a model from a

large-scale dataset (e.g. ImageNet) to a small-scale dataset

(e.g. Caltech-256). Similar to standard transfer learning, in

partial transfer learning we are also provided with a source

domain Ds = {(xi, yi)}
ns

i=1 of ns labeled examples associ-

ated with |Cs| classes and a target domain Dt = {xi}
ns+nt

i=ns+1

of nt unlabeled examples associated with |Ct| classes, but

differently, we have |Cs| > |Ct| in partial transfer learning.

The source domain and target domain are sampled from prob-

ability distributions p and q respectively. In standard transfer

learning, we have p 6= q; and in partial transfer learning, we

further have pCt
6= q, where pCt

denotes the distribution of

the source domain labeled data belonging to label space Ct.
The goal of this paper is to design a deep neural network that

enables learning of transfer features f = Gf (x) and adap-

tive classifier y = Gy (f) to bridge the cross-domain discrep-

ancy, such that the target risk Pr(x,y)∼q [Gy (Gf (x)) 6= y]
is minimized by leveraging the source domain supervision.

In standard transfer learning, one of the main challenges

is that the target domain has no labeled data and thus the

source classifier Gy trained on source domain Ds cannot be
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directly applied to target domain Dt due to the distribution

discrepancy of p 6= q. In partial transfer learning, another

more difficult challenge is that we even do not know which

part of the source domain label space Cs is shared with the

target domain label space Ct because Ct is not accessible

during training, which results in two technical difficulties.

On one hand, the source domain labeled data belonging to

outlier label space Cs\Ct will cause negative transfer effect

to the overall transfer performance. Existing deep transfer

learning methods [16, 7, 31, 18] generally assume source

domain and target domain have the same label space and

match the whole distributions p and q, which are prone to

negative transfer since the source and target label spaces

are different and thus cannot be matched in principle. Thus,

how to eliminate or at least decrease the influence of the

source labeled data in outlier label space Cs\Ct is the key

to alleviating negative transfer. On the other hand, reducing

the distribution discrepancy between pCt
and q is crucial

to enabling knowledge transfer in the shared label space

Ct. These challenges should be tackled by filtering out the

negative influence of unrelated part of source domain and at

the same time enabling effective transfer learning between

related part of source domain and target domain.

We propose a novel selective adversarial network to en-

able partial transfer learning by addressing two challenges.

(1) Circumvent negative transfer by filtering out the unre-

lated source labeled data belonging to the outlier label space

Cs\Ct. (2) Promote positive transfer by maximally matching

the data distributions pCt
and q in the shared label space Ct.

3.1. Domain Adversarial Network

Domain adversarial networks have been successfully ap-

plied to transfer learning [7, 31] by extracting transferable

features that can reduce the distribution shift between the

source domain and the target domain. The adversarial learn-

ing procedure is a two-player game, where the first player is

the domain discriminator Gd trained to distinguish the source

domain from the target domain, and the second player is the

feature extractor Gf fine-tuned simultaneously to confuse

the domain discriminator.

To extract domain-invariant features f , the parameters

θf of feature extractor Gf are learned by maximizing the

loss of domain discriminator Gd, while the parameters θd of

domain discriminator Gd are learned by minimizing the loss

of the domain discriminator. In addition, the loss of label

predictor Gy is also minimized. The objective of domain

adversarial network [7] is the following functional:

C0 (θf , θy, θd) =
1

ns

∑

xi∈Ds

Ly (Gy (Gf (xi)) , yi)

−
λ

ns + nt

∑

xi∈Ds∪Dt

Ld (Gd (Gf (xi)) , di)

(1)

where λ is a trade-off parameter between the two objectives

that shape the features during learning. After training conver-

gence, the parameters θ̂f , θ̂y, θ̂d will deliver a saddle point

of the functional (1):

(θ̂f , θ̂y) = arg min
θf ,θy

C0 (θf , θy, θd) ,

(θ̂d) = argmax
θd

C0 (θf , θy, θd) .
(2)

Domain adversarial networks are particularly effective for

standard transfer learning where the source domain label

space and target domain label space are the same, Cs = Ct.

3.2. Selective Adversarial Network

In partial transfer learning, the target domain label space

is a subset of the source domain label space, Ct ⊂ Cs. Thus,

matching the whole source domain distribution p and target

domain distribution q will result in negative transfer caused

by the outlier label space Cs\Ct. The larger the outlier label

space Cs\Ct compared to the target label space Ct, the severer

the negative transfer effect will be. To combat negative

transfer, we should find a way to select out the outlier source

classes as well as the associated source labeled data in Cs\Ct
when performing domain adversarial adaptation.

To match the source and target domains of different label

spaces Cs 6= Ct, we need to split the domain discriminator

Gd in Equation (1) into |Cs| class-wise domain discrimina-

tors Gk
d, k = 1, . . . , |Cs|, each is responsible for matching

the source and target domain data associated with label k,

as shown in Figure 2. Since the target label space Ct is

inaccessible during training while the target domain data

are fully unlabeled, it is not easy to decide which domain

discriminator Gk
d is responsible for each target data point.

Fortunately, we observe that the output of the label pre-

dictor ŷi = Gy(xi) to each data point xi is a probability

distribution over the source label space Cs. This distribution

well characterizes the probability of assigning xi to each

of the |Cs| classes. Therefore, it is natural to use ŷi as the

probability to assign each data point xi to the |Cs| domain

discriminators Gk
d, k = 1, . . . , |Cs|. The assignment of each

point xi to different discriminators can be implemented by a

probability-weighted domain discriminator loss for all |Cs|
domain discriminators Gk

d, k = 1, . . . , |Cs| as follows,

L′
d =

1

ns + nt

|Cs|
∑

k=1

∑

xi∈Ds∪Dt

ŷki L
k
d

(

Gk
d (Gf (xi)) , di

)

,

(3)

where Gk
d is the k-th domain discriminator while Lk

d is its

cross-entropy loss, and di is the domain label of point xi.

Compared with the single-discriminator domain adversarial

network in Equation (1), the proposed multi-discriminator

domain adversarial network enables fine-grained adaptation

where each data point xi is matched only by those relevant
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Figure 2. The architecture of the proposed Selective Adversarial Networks (SAN) for partial transfer learning, where f is the extracted deep

features, ŷ is the predicted data label, and d̂ is the predicted domain label; Gf is the feature extractor, Gy and Ly are the label predictor and

its loss, Gk
d and Lk

d are the domain discriminator and its loss; GRL stands for Gradient Reversal Layer. The blue part shows the class-wise

adversarial networks (|Cs| in total) designed in this paper. Best viewed in color.

domain discriminators according to its probability ŷi. This

fine-grained adaptation may introduce three benefits. (1)

It avoids the hard assignment of each point to only one

domain discriminator, which tends to be inaccurate for target

domain data. (2) It circumvents negative transfer since each

point is only aligned to one or several most relevant classes,

while the irrelevant classes are filtered out by the probability-

weighted domain discriminator loss. (3) The probability-

weighted domain discriminator loss puts different losses

to different domain discriminators, which naturally learns

multiple domain discriminators with different parameters θkd ;

these domain discriminators with different parameters can

promote positive transfer for each instance.

Besides the instance-level weighting mechanism de-

scribed above, we introduce another class-level weighting

method to further remove the negative influence of outlier

source classes Cs\Ct and the associated source data. We ob-

serve that only the domain discriminators responsible for the

target classes Ct are effective for promoting positive trans-

fer, while the other discriminators responsible for the outlier

source classes Cs\Ct only introduce noises and deteriorate

the positive transfer between the source domain and the tar-

get domain in the shared label space Ct. Therefore, we need

to down-weight the domain discriminators responsible for

the outlier source classes, which can be implemented by

class-level weighting of these domain discriminators. Since

target data are not likely to belong to the outlier source

classes, their probabilities yki , k ∈ Cs\Ct are also sufficiently

small. Thus, we can down-weight the domain discriminators

responsible for the outlier source classes as follows,

Ld =
1

ns + nt

|Cs|
∑

k=1

[(

1

nt

∑

xi∈Dt

ŷki

)

×





∑

xi∈(Ds∪Dt)

ŷki L
k
d

(

Gk
d (Gf (xi)) , di

)







 ,

(4)

where 1
nt

∑

xi∈Dt
ŷki is the class-level weight for class k,

which is small for the outlier source classes.

Although the multiple domain discriminators introduced

in Equation (4) can selectively transfer relevant knowledge

to target domain by decreasing the negative influence of

outlier source classes Cs\Ct and by effectively transferring

knowledge of shared label space Ct, it highly depends on the

probability ŷi = Gy(xi). Thus, we further refine the label

predictor Gy by exploiting the entropy minimization princi-

ple [10] which encourages low-density separation between

classes. This criterion is implemented by minimizing the

entropy E over probability ŷki on target domain Dt as

E =
1

nt

∑

xi∈Dt

H (Gy (Gf (xi))) (5)

where H(·) is the conditional-entropy loss functional

H (Gy (Gf (xi))) = −
∑|Cs|

k=1 ŷ
k
i log ŷ

k
i . By minimizing

the entropy functional (5), the label predictor Gy(xi) can

directly access target unlabeled data and will amend itself

to pass through the target low-density regions to give more

accurate probability ŷi with minimal prediction uncertainty.
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Integrating all things together, the final objective of the

proposed Selective Adversarial Network (SAN) is

C
(

θf , θy, θ
k
d |

|Cs|
k=1

)

=
1

ns

∑

xi∈Ds

Ly (Gy (Gf (xi)), yi)

+
1

nt

∑

xi∈Dt

H (Gy (Gf (xi)))

−
1

ns + nt

|Cs|
∑

k=1









1

nt

∑

xi∈Dt

ŷ
k
i





×





∑

xi∈Ds∪Dt

ŷ
k
i L

k
d

(

G
k
d (Gf (xi)) , di

)









(6)

where λ is a hyper-parameter that trade-offs the two objec-

tives in the unified optimization problem. The optimiza-

tion problem is to find the network parameters θ̂f , θ̂y and

θ̂kd(k = 1, 2, ..., |Cs|) that satisfy

(θ̂f , θ̂y) = arg min
θf ,θy

C
(

θf , θy, θ
k
d |

|Cs|
k=1

)

,

(θ̂1d, ..., θ̂
|Cs|
d ) = arg max

θ1

d
,...,θ

|Cs|
d

C
(

θf , θy, θ
k
d |

|Cs|
k=1

)

.
(7)

The selective adversarial network (SAN) enables partial

transfer learning, which simultaneously circumvents neg-

ative transfer by filtering out outlier source classes Cs\Ct,
and promotes positive transfer by maximally matching the

data distributions pCt
and q in the shared label space Ct.

4. Experiments

We conduct experiments on three benchmark datasets to

evaluate the efficacy of our approach against several state-of-

the-art deep transfer learning methods. Codes and datasets

will be available at: https://github.com/thuml.

4.1. Setup

The evaluation is conducted on three public datasets:

Office-31, Caltech-Office and ImageNet-Caltech.

Office-31 [26] is a standard benchmark for domain adap-

tation in computer vision, consisting of 4,652 images and 31

categories collected from three distinct domains: Amazon

(A), which contains images downloaded from amazon.com,

Webcam (W) and DSLR (D), which contain images taken by

web camera and digital SLR camera with different settings,

respectively. We denote the three domains with 31 categories

as A 31, W 31 and D 31. Then we use the ten categories

shared by Office-31 and Caltech-256 and select images of

these ten categories in each domain of Office-31 as target

domains, denoted as A 10, W 10 and D 10. We evaluate

all methods across six transfer tasks A 31 → W 10, D 31

→ W 10, W 31 → D 10, A 31 → D 10, D 31 → A 10 and

W 31 → A 10. These tasks represent the performance on

the setting where both source and target domains have small

number of classes.

Caltech-Office [9] is built by using Caltech-256 (C

256) [12] as source domain and the three domains in Of-

fice 31 as target domains. We use the ten categories shared

by Caltech-256 and Office-31 and select images of these ten

categories in each domain of Office-31 as target domains

[9, 17, 28]. Denoting source domains as C 256, we can build

3 transfer tasks: C 256 → W 10, C 256 → A 10 and C

256 → D 10. This setting aims to test the performance of

different methods on the task setting where source domain

has much more classes than the target domain.

ImageNet-Caltech is built from ImageNet-1K [25]

dataset containing 1000 classes and Caltech-256 containing

256 classes. They share 84 common classes, thus we form

two transfer learning tasks: ImageNet 1000 → Caltech 84

and Caltech 256 → ImageNet 84. To prevent the effect

of the pre-trained model on ImageNet, we use ImageNet

validation set when ImageNet is used as target domain and

ImageNet training set when ImageNet is used as source do-

main. This setting represents the performance on tasks with

large number of classes in both source and target domains.

We compare the performance of SAN with state of the

art transfer learning and deep learning methods: Convolu-

tional Neural Network (AlexNet [15]), Deep Adaptation

Network (DAN) [16], Reverse Gradient (RevGrad) [7],

Residual Transfer Networks (RTN) [18], and Adversarial

Discriminative Domain Adaptation (ADDA) [29]. DAN

learns transferable features by embedding deep features of

multiple task-specific layers to reproducing kernel Hilbert

spaces (RKHSs) and matching different distributions opti-

mally using multi-kernel MMD. RevGrad improves domain

adaptation by making the source and target domains indis-

tinguishable for a discriminative domain classifier via an

adversarial training paradigm. RTN jointly learns transfer-

able features and adapts different source and target classifiers

via deep residual learning [13]. ADDA combines discrimi-

native modeling, untied weight sharing, and a GAN loss to

yield much better results than RevGrad. All prior methods

do not address partial transfer learning where the target label

space is a subspace of the source label space. To test SAN on

different base-networks, we also compare different methods

on VGG-16 [27]. To go deeper with the efficacy of selective

mechanism and entropy minimization, we perform ablation

study by evaluating two variants of SAN: (1) SAN-selective

is the variant without selective mechanism, which has the

same model complexity as AlexNet; (2) SAN-entropy is the

variant without entropy minimization, which has the same

model complexity as SAN.

We follow standard protocols and use all labeled source

data and all unlabeled target data for unsupervised transfer

learning [26, 16]. We compare average classification accu-

racy of each transfer task using three random experiments.
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Table 1. Classification Accuracy (%) of Partial Transfer Learning Tasks on Office-31 (AlexNet as Base Network)

Method
Office-31

A 31 → W 10 D 31 → W 10 W 31 → D 10 A 31 → D 10 D 31 → A 10 W 31 → A 10 Avg

AlexNet [15] 58.51 95.05 98.08 71.23 70.6 67.74 76.87

DAN [16] 56.52 71.86 86.78 51.86 50.42 52.29 61.62

RevGrad [7] 49.49 93.55 90.44 49.68 46.72 48.81 63.11

RTN [18] 66.78 86.77 99.36 70.06 73.52 76.41 78.82

ADDA [29] 70.68 96.44 98.65 72.90 74.26 75.56 81.42

SAN-selective 71.51 98.31 100.00 78.34 77.87 76.32 83.73

SAN-entropy 74.61 98.31 100.00 80.29 78.39 82.25 85.64

SAN 80.02 98.64 100.00 81.28 80.58 83.09 87.27

Upper Bound 91.86 98.64 100.00 92.99 90.19 90.19 93.98

Table 2. Classification Accuracy (%) of Partial Transfer Learning Tasks on Caltech-Office and ImageNet-Caltech (AlexNet as Base Network)

Method
Caltech-Office ImageNet-Caltech

C 256 → W 10 C 256 → A 10 C 256 → D 10 Avg I 1000 → C 84 C 256 → I 84 Avg

AlexNet [15] 58.44 76.64 65.86 66.98 52.37 47.35 49.86

DAN [16] 42.37 70.75 47.04 53.39 54.21 52.03 53.12

RevGrad [7] 54.57 72.86 57.96 61.80 51.34 47.02 49.18

RTN [18] 71.02 81.32 62.35 71.56 63.69 50.45 57.07

ADDA [29] 73.66 78.35 74.80 75.60 64.20 51.55 57.88

SAN-selective 76.44 81.63 80.25 79.44 66.78 51.25 59.02

SAN-entropy 72.54 78.95 76.43 75.97 55.27 52.31 53.79

SAN 88.33 83.82 85.35 85.83 68.45 55.61 62.03

For MMD-based methods (DAN and RTN), we use Gaus-

sian kernel with bandwidth b set to median pairwise squared

distances on training data, i.e. median heuristic [11]. For all

methods, we perform standard cross-validation on labeled

source data to select their hyper-parameters.

We implement all deep methods based on the Caffe deep-

learning framework, and fine-tune from Caffe-provided mod-

els of AlexNet [15] pre-trained on ImageNet. We add a

bottleneck layer between the fc7 and fc8 layers as RevGrad

[7] except for the task ImageNet 1000 → Caltech 84 since

the pre-trained model is trained on ImageNet dataset and it

can fully exploit the advantage of pre-trained model with the

original fc7 and fc8 layer. For SAN, we fine-tune all the

feature layers and train the bottleneck layer, the classifier

layer and the adversarial networks. Since these new layers

and networks are trained from scratch, we set their learning

rate to be 10 times that of the other layers. We use mini-

batch stochastic gradient descent (SGD) with momentum of

0.9 and the learning rate annealing strategy implemented in

RevGrad [7]: the learning rate is adjusted during SGD using

the following formula: ηp = η0

(1+αp)β
, where p is the training

progress linearly changing from 0 to 1, η0 = 0.001, α = 10
and β = 0.75, which is optimized for low error on the source

domain. As SAN can work stably across different transfer

tasks, the penalty of adversarial networks is increased from

0 to 1 gradually as RevGrad [7]. All the hyper-parameters of

the learning rate and penalty strategies are selected through

standard cross-validation on the labeled source data.

4.2. Results

The classification results on the six tasks of Office-31, the

three tasks of Caltech-Office and the two tasks of ImageNet-

Caltech are shown in Table 1 and 2. The SAN model

outperforms all comparison methods on all the tasks. In

particular, SAN substantially improves the accuracy by huge

margins on tasks with small source domain and small target

domain, e.g. A 31 → W 10 , A 31 → D 10, and tasks

with large source domain and small target domain, e.g. C

31 → W 10. And it achieves considerable accuracy gains

on tasks with large-scale source domain and target domain,

e.g. I 1000 → C 84. These results suggest that SAN can

learn transferable features for partial transfer learning in all

the tasks under the setting where the target label space is a

subspace of the source label space.

The results reveal several interesting observations. (1)

Previous deep transfer learning methods including those

based on adversarial-network like RevGrad and those based

on MMD like DAN perform worse than standard AlexNet,

which demonstrates the influence of negative transfer effect.

These methods try to transfer knowledge from all classes

of source domain to target domain but there are classes in

source domain that do not exist in the target domain, a.k.a.
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Table 3. Classification Accuracy (%) of Partial Transfer Learning Tasks on Office-31 (VGG-16 as Base Network)

Method A 31→W 10 D 31→W 10 W 31→D 10 A 31→D 10 D 31→A 10 W 31→A 10 Avg

VGG [27] 60.34 97.97 99.36 76.43 72.96 79.12 81.03

DAN [16] 58.78 85.86 92.78 54.76 55.42 67.29 69.15

RevGrad [7] 50.85 95.23 94.27 57.96 51.77 62.32 68.73

RTN [18] 69.35 98.42 99.59 75.43 81.45 82.98 84.54

ADDA [29] 72.85 98.42 99.59 77.96 84.77 85.32 86.49

SAN 83.39 99.32 100.00 90.70 87.16 91.85 92.07

outlier source data. Fooling the adversarial network to match

the distribution of outlier source data and target data will

make the classifier more likely to classify target data in these

outlier classes, which is prone to negative transfer. Thus

these previous methods perform even worse than standard

AlexNet. However, SAN outperforms them by large margins,

indicating that SAN can effectively avoid negative transfer

by eliminating the outlier source classes irrelevant to target

domain. (2) RTN performs better than AlexNet because it

executes entropy minimization criterion which can avoid the

impact of outlier source data to some degree. But comparing

RTN with SAN-selective which only has entropy minimiza-

tion loss, we observe that SAN-selective outperforms RTN

in most tasks, demonstrating that RTN also suffers from

negative transfer effect and even the residual branch of RTN

cannot learn the large discrepancy between source and target

domain. (3) ADDA first learns a discriminative representa-

tion using the labels in the source domain and then a separate

encoding that maps the target data to the same space using an

asymmetric mapping learned through a domain-adversarial

loss. By combining discriminative modeling, untied weight

sharing, and a GAN loss, ADDA yields much better results

than RevGrad and RTN. SAN outperforms ADDA in all the

tasks, proving that our selective adversarial mechanism can

jointly promote positive transfer from relevant source do-

main data to target domain and circumvent negative transfer

from outlier source domain data to target domain. As a ref-

erence, the Upper Bound performance is achieved by man-

ually removing the outlier classes (not in the target domain)

from the source domain. We apply this to Office-31 dataset.

As shown in Table 1, our SAN performs 6.71% worse than

the upper bound while best baseline ADDA 12.56% worse.

We go deeper into different modules of SAN by com-

paring the results of SAN variants in Tables 1 and 2. (1)

SAN outperforms SAN-selective, proving that using selec-

tive adversarial mechanism can selectively transfer knowl-

edge from source data to target data. It can successfully

select the source data belonging to the classes shared with

target classes by the corresponding domain discriminators.

(2) SAN outperforms SAN-entropy especially in tasks where

source and target domains have very large distribution gap

in terms of the different numbers of classes, e.g. I 1000 →

C 84. Entropy minimization can effectively decrease the

probability of predicting each point to irrelevant classes es-

pecially when there are a large number of irrelevant classes,

which can in turn boost the performance of the selective

adversarial mechanism. This explains the improvement from

SAN-entropy to SAN.

By going even deeper with convolutions, the very deep

convolutional networks have made breakthroughs in achiev-

ing new state of the art results in ImageNet Large-Scale

Visual Recognition Challenge [24]. Although the transfer-

ability of AlexNet features has been extensively quantified

[33], it remains unclear whether very deep neural networks

can learn more transferable features and how the feature

transferability may change with the depths of very deep net-

works. In this paper, we approach this goal by evaluating the

all methods based on VGG-16 network [27]. From Table 3,

we can observe that SAN outperforms all the other meth-

ods on VGG-16 network, which demonstrates that SAN can

generalize to different base networks.
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Figure 3. Empirical analysis of SAN: (a) transfer performance vs.

#target labels, and (b) test error on target domain vs. #iterations.

4.3. Analysis

Accuracy for Different Numbers of Target Classes:

We investigate a wider spectrum of partial transfer learn-

ing by varying the number of target classes. Figure 3(a)

shows that when the number of target classes decreases, the

performance of RevGrad degrades quickly, meaning that

negative transfer becomes severer when the domain gap is

enlarged. The performance of SAN degenerates when the

number of target classes decreases from 31 to 20, where neg-

ative transfer problem arises but the transfer problem itself

is still hard; the performance of SAN increases when the

number of target classes decreases from 20 to 10, where the
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Figure 4. The t-SNE visualization of DAN, RevGrad, RTN, and SAN with class information (10 classes).
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Figure 5. The t-SNE visualization of DAN, RevGrad, RTN, and SAN with domain information (31 classes).

transfer problem itself becomes easier. The margin that SAN

outperforms RevGrad becomes larger when the number of

target classes decreases. SAN also outperforms RevGrad in

standard transfer learning setting when the number of target

classes is 31.

Convergence Performance: We examine the conver-

gence of SAN by studying the test error through training

process. As shown in Figure 3(b), the test errors of DAN

and RevGrad are increasing due to negative transfer. RTN

converges very fast depending on the entropy minimization,

but converges to a higher test error than SAN. SAN con-

verges fast and stably to a lowest test error, meaning it can

be trained efficiently and stably to enable positive transfer

and alleviate negative transfer simultaneously.

Feature Visualization: We visualize the t-SNE em-

beddings [5] of the bottleneck representations by DAN,

RevGrad, RTN and SAN on transfer task A 31 → W 10 in

Figures 4(a)–4(d) (with class information) and Figures 5(a)–

5(d) (with domain information). We randomly select five

classes in the source domain not shared with target domain

and five classes shared with target domain. We can make intu-

itive observations. (1) Figure 4(a) shows that the bottleneck

features are mixed together, meaning that DAN cannot dis-

criminate both source and target data very well; Figure 5(a)

shows that the target data are aligned to all source classes

including those outlier ones, which embodies the negative

transfer issue. (2) Figures 4(b)– 4(c) show that both RevGrad

and RTN discriminate the source domain well but the fea-

tures of most target data are very close to source data even to

the wrong source classes; Figures 5(b)– 5(c) further indicate

that both RevGrad and RTN tend to draw target data close to

all source classes even to those not existing in target domain.

Thus, their performance on target data degenerates due to

negative transfer. (3) Figures 4(d) and 5(d) demonstrate

that SAN can discriminate different classes in both source

and target while the target data are close to the right source

classes, while the outlier source classes cannot influence the

target classes. These results demonstrate the efficacy of both

selective adversarial adaptation and entropy minimization.

5. Conclusion

This paper presented a novel selective adversarial net-

work approach to partial transfer learning. Unlike previous

adversarial adaptation methods that match the whole source

and target domains based on the shared label space assump-

tion, the proposed approach simultaneously circumvents

negative transfer by selecting out the outlier source classes

and promotes positive transfer by maximally matching the

data distributions in the shared label space. Our approach

successfully tackles partial transfer learning where source

label space subsumes target label space, which is testified by

extensive experiments.
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