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Figure 1: Sample results using our sparse PS reconstruction. By using just 5 input images (left), our method can recover very

high quality 3D face geometry with fine geometric details.

Abstract

We present a novel 3D face reconstruction technique

that leverages sparse photometric stereo (PS) and latest ad-

vances on face registration / modeling from a single image.

We observe that 3D morphable faces approach [21] pro-

vides a reasonable geometry proxy for light position cali-

bration. Specifically, we develop a robust optimization tech-

nique that can calibrate per-pixel lighting direction and il-

lumination at a very high precision without assuming uni-

form surface albedos. Next, we apply semantic segmenta-

tion on input images and the geometry proxy to refine hairy

vs. bare skin regions using tailored filter. Experiments on

synthetic and real data show that by using a very small set of

images, our technique is able to reconstruct fine geometric

details such as wrinkles, eyebrows, whelks, pores, etc, com-

parable to and sometimes surpassing movie quality produc-

tions.

1. Introduction

The digitization of photorealistic 3D face is a long-

standing problem and can benefit numerous applications,

ranging from movie special effects [2] to face detection

and recognition [17]. Human faces contain both low-

frequency geometry (e.g., nose, cheek, lip, forehead) and

high-frequency details (e.g., wrinkles, eyebrows, beards,

and pores). Passive reconstruction techniques such as stereo

matching [19], multiview geometry [37, 5], structure-from-

motion [3], and most recently light field imaging [1] can

now reliably recover low frequency geometry. Recover-

ing high-frequency details is way more challenging. Suc-

cessful solutions still rely on professional capture systems

such as 3D laser scans or ultra-high precision photometric

stereo such as the USC Light Stage systems [15, 26]. Devel-

oping commodity solutions to simultaneously capture low-

frequency and high-frequency face geometry is particularly

important and urgent.

To quickly reiterate the challenges, PS requires knowing

the lighting direction at a very high precision. It is common

practice to position a point light at a far distance to emulate a

directional light source for easy calibration. In reality, such

setups are huge and require strong lighting power. Alterna-

tively, one can use near-field point light sources [40, 9, 28]

to set up a more portable system. However, calibrating the

lighting direction for each face vertex becomes particularly

difficult: one needs to know the relative position between

the light source(s) and the face geometry. The light posi-

tion can be estimated by using sphere [42, 48, 36] or pla-

nar light probes [29, 46]. However, the human face would

have to be positioned at approximately the same location as

the probe. Then the relative position between point lights

and facial vertices can be measured. One may resolve this
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problem by measuring relative position between probe and

human face in the camera coordinates. This would need ex-

tra depth camera to locate human face. Our method uses a

single camera and perfectly solves this problem by directly

calibrating the light position relative to the individual face

model. Latest techniques such as [30] uniformly attempt to

calibrate lights from subjects. In our paper, we have shown

that using morphable face model as proxy, we can already

calibrate the light source positions at a high accuracy and

our approach achieves higher quality face model than [30].

We leverage recent advances on 3D morphable faces for

lighting calibration and geometric reconstruction [10, 8, 21,

35, 33, 39, 12, 13, 22, 43, 34, 51]. Such solutions only

use very few or even a single image as input. The 3D

face model can then be inferred by morphing the canoni-

cal model. Their results are impressive for neutral facial ex-

pressions [8, 12]. But high frequency details are still largely

missing [10, 7, 35, 31]. The seminal work of [22, 34] man-

ages to recover high frequency geometry to some extent but

the results are still not comparable to high-end solutions

(e.g., from the USC Light Stage [15, 26]).

In this paper, we combine morphable face approach with

sparse PS for ultra high quality 3D face reconstruction.

We observe that morphable face approach [21] provides a

reasonable geometry proxy for light position calibration.

Specifically, we develop a robust optimization technique

that can calibrate per-pixel incident lighting direction as

well as brightness. Our technique overcomes the artifacts

of geometric deformations caused by inaccurate lighting es-

timation and produces a high-precision normal map. Next,

we apply semantic segmentation on input images and the

approximated geometry to separately refine hairy vs. bare

skin regions. For hairy regions, we adopt a bidirectional

extremum filter for detail-preserving denoising. Compre-

hensive experiments on synthetic and publicly available

datasets demonstrate our approach is reliable and accurate.

For real data, we construct a capture dome composed of

5 near point light sources with an entry-level DSLR cam-

era. Our technique is able to deliver high quality recon-

struction with ultra-fine geometric details such as wrinkles,

eyebrows, whelks, pores, etc. The reconstruction quality is

comparable to and sometimes surpasses movie quality pro-

ductions based on dense inputs and expensive setups.

2. Related Works

Photometric Stereo. In computer graphics and vision,

photometric stereo (PS) [49] is a widely adopted technique

for inferring the normal map of human faces. The normal

map can then be integrated (e.g., using Poisson comple-

tion [38]) to reconstruct point cloud and then mesh. We

refer readers to the comprehensive survey [18] for the ben-

efits and problems of the state-of-the-art methods. In gen-

eral, recovering high quality 3D geometry requires using

complex setups. The most notable work is the USC Light

Stage [26, 15] that utilizes 156 dedicatedly controlled light

sources to simulate first-order spherical harmonics function.

Their solution can produce very high-quality normal map

using near point light sources and the superb results have

been adopted in movie productions. The setup, however, is

rather expensive in cost and labor. Developing cheaper so-

lutions capable of producing similar quality reconstruction

is highly desirable , but by far few solutions can match the

Light Stage.

2D-to-3D Conversion. There is an emerging inter-

est on directly converting a 2D face image to a 3D face

model. Most prior works can be categorized into 3D mor-

phable faces and learning-based techniques. Kemelmacher

et al. [25, 23] and Suwajanakorn [41] reconstructed 3D face

models from large unstructured photo collections (or video

frames). Booth et al. [8] automatically synthesized a 3D

morphable model from over 10,000 3D faces. Bolkar [7]

utilized a multilinear model based learning framework that

uses much smaller training datasets. [21] proposed a Sur-

rey Face Model which provides high resolution 3D mor-

phable model and landmarks alignment. Hu [20] further

added hair for the face model. Face models obtained from

these approaches are sensitive to pose, expression, illumi-

nation, etc, and the problem can be mitigated by using more

images [35, 31] or special facial feature decoders [12].

In the past few years, a large volume of deep learning

based approaches have shown great success on face pose

and geometry estimations [13, 22, 34]. Trigeorgis et al. [43]

tailored a deep CNN to estimate face normal map “in the

wild” and then inferred the face shape. Tran et al. [44]

applied regression to recover discriminative 3D morphable

face models. The main goal of these approaches is face

recognition and the recovered geometry is generally highly

smooth. Most recent techniques [34] can recover certain

medium-scale details such as deep wrinkles but the quality

is still not comparable to professional solutions.

In a similar vein as ours, Park et al. [30] utilized a coarse

initial 3D geometry to estimate lighting parameters where

the initial geometry was obtained via multiview stereo and

refined the geometry using a large set of photometric im-

ages. Compared with the large number of images, our

method requires much fewer inputs. The 3D morphable

face is smoother than that from multiview stereo but less ac-

curate. We further conduct optimization and semantic seg-

mentations for refinement.

3. Methods

Fig. 2 shows our processing pipeline. The input is

a small set of images taken under different illumination.

We first obtain a proxy face model through 3D morphable

model [21], with pose and expression aligned with the in-

put images. At the same time, initial normal map and seg-
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Figure 2: The processing pipeline of our proposed sparse PS face reconstruction framework.

mentation are inferred from proxy model. We then develop

an optimization scheme that, without assuming uniform

albedo, jointly estimates positions and illumination of all

lights from the proxy model. It should be noted that the es-

timated light source positions are relative to the subject face,

so the incident lighting direction for each face vertex can be

easily calculated. This is the key idea in our method. Next,

we detect shadows and choose at least three reliable inci-

dent lights to calculate high-resolution normal map. Subse-

quently, depth gradient maps are calculated from the normal

map. We further develop a bidirectional extremum filter to

denoise depth gradient maps. Finally we get the face geom-

etry by integrating the depth gradient maps [32]. We update

the proxy model with the refined model and iterate the pro-

cessing. Our method benefits from the face segmentation

twofold: it is more robust to carry out lighting calibration

using only initial normal in smooth facial area; we can ap-

ply denoising filter only on hairy area to maximally preserve

the geometry details in bare skin regions.

3.1. Shading Model and Proxy Geometry

Under the Lambertian assumption, the intensity of a

pixel is:

I = ρN · L (1)

where ρ and N are the albedo and normal at the pixel, L is

the light direction at the corresponding vertex.

PS [49] is an over-determined problem: for one pixel,

given at least 3 intensity values I and lighting directions

L, the normal N and albedo ρ can be uniquely deter-

mined. Conversely, the lighting calibration problem is

under-determined: the L and ρ can NOT be figured out us-

ing I and N at only one pixel. As shown in Fig. 3, each ver-

tex maps to a triplet of (I , ρ, N ), and constrain the potential

lighting directions on a conical surface. For the directional

light source model, three linearly independent triplets of (I ,

ρ, N ) can be used to figure out the light direction. For near

point light model, more triplets are needed to calculate the

positions of the light source. It is easy to measure I and N ,

but it is challenging to obtain ρ in advance. So lighting cal-

Figure 3: In traditional PS, parallel (left) and point light

(right) calibrations rely on uniform albedo assumption.

ibration generally relies on given albedo or uniform albedo

assumption.

In our approach, we exploit recent 3D morphable model

[21] to generate a proxy face model at first. We utilize the

normal map of proxy model to calibrate the light positions.

We also use the proxy model to segment the photographed

face into two categories of regions: smooth regions includ-

ing forehead, cheekbone, inner cheek and nose bridge po-

tentially have reliable initial normal, and hairy regions in-

cluding eyebrows, eyelids, mouth surroundings, chin and

outer cheek are generally noisy and require additional pro-

cessing. Since proxy face models always share the same

vertex topology, we can conduct coherent segmentations for

different faces.

3.2. Near Point Light Calibration

We aim to replace distant directional light sources with

near point light sources, to substantially reduce the cost and

space requirement of the PS setup while maintaining the

performance. The key challenge is to estimate relative po-

sitions from each point light to each surface vertex. In ad-

dition, illumination variations across the light sources can

cause severe geometry deformation [9]. In this section, we

describe a robust auto-calibration technique that conducts

estimation for the positions and illumination of near point

lights.

There are two classical approaches for calibrating near

point lights. One resorts to specific instrument like spher-

ical [48, 36] or planar [29, 46] probes. These light probe-
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Figure 4: Our light calibration approach uses proxy model

for relative light position calibrations. Assuming known

surface normal, we can form over-determined systems by

jointly considering constraints from multiple light sources

on multiple key vertices. Cones of different colors indicate

constraints imposed by different light sources.

based methods only recover the light positions in camera

coordinate system. The relative positions to surface ver-

tices, however, need extra efforts. The second utilizes the

reflectance data of the Lambertian surface with known ge-

ometry/normal. For example, Zheng et al. [52] recovers

the light directions from known surface normals at multi-

ple points with uniform albedo. By further assuming that

neighboring pixels have similar albedo, Mancini et al. [27]

estimates the light directions at multiple vertices and sub-

sequently the light positions. Weber et al. [47] uses two

cubes covered with white paper for light position calibra-

tion. More recently, some works calibrate “in-the-wild”

lighting based on spherical harmonics representation or

quadratic lighting model [4, 50, 24, 45, 14, 30]. All these

approaches strongly rely on uniform albedo assumption and

reach a low-rank approximation of real lighting condition,

while most surface, including human face, exhibits non-

uniform albedo. In this paper, we employ the second ap-

proach with the proxy model to calibrate light positions and

brightness without assuming uniform albedo.

Our approach is instrument-free and does not make uni-

form albedo assumption. We first extract m key pixels from

the smooth regions in the semantically segmented face im-

age and obtain their normal N ∈ R
m×3 along with their

corresponding key vertex positions V ∈ R
m×3. Recall, for

non-uniform albedos, we will not be able to solve for ρ and

L in Eq. (1) separately for each light. We therefore jointly

solve Eq. (1) for all m key vertices and n lights as shown in

Fig. 4. According to Eq. (1), we have

I = diag(ρ)NL
T, (2)

where I ∈ R
m×n is the image intensity at the key pixels and

L ∈ R
n×3 is the lighting directions. For near point lights

with inconsistent illumination intensity, we replace L with

the scaled directions Di,j for the jth light on the ith key

vertex, so that:

Di,j = βj ·
1

‖Pj −Vi‖
2

2

·
(Pj −Vi)

‖Pj −Vi‖2
=

βj(Pj −Vi)

‖Pj −Vi‖
3

2

,

for i = 1, 2, ...,m and j = 1, 2, ..., n.

(3)

where β ∈ R
n×1 and P ∈ R

n×3 are the brightness and po-

sitions of all lights. The second term 1

‖Pj−Vi‖
2

2

reflects the

inverse square law between light brightness and distance,

which is critical for near point light calibrations. The image

intensity of ith key pixel under the jth lighting is repre-

sented as

Ii,j = ρiNiD
T

i,j . (4)

To solve for the illumination β and position P of light

sources, we formulate the problem as the following opti-

mization:

ρ̃, β̃, P̃ = argmin
ρ,β,P

m
∑

i=1

n
∑

j=1

∥

∥Ii,j − ρiNiD
T

i,j

∥

∥

2

2

+ λ1

n
∑

j=1

∥

∥β̄ − βj

∥

∥

2

2
+ λ2 ‖ρ‖

2

2

+ λ3

n
∑

j=1

(‖Pj‖2 − d)2
2
,

(5)

where β̄ is the mean of all elements in β, d ∈ R is a prior

of the distance between the lights and geometry proxy. The

first term represents the least square error under the Lam-

bertian surface model. The second term is based on the fact

that brightness variations are relatively small in our setup.

Note that there is a scale ambiguity between ρ and β in

Eq. (5). Therefore we append the third term to enforce the

uniqueness of ρ and β. The last term aims to remove out-

liers in I, e.g., the ones that deviate greatly from the Lam-

bertian surface model due to noise.

We initialize ρ as the maximal image intensity of each

key pixel across the light sources. We initialize β as vector

1. The near point light sources distribute around the subject

with roughly equal distance. We roughly guess d through

human perception.

Since the normal from the proxy face model may be in-

accurate, the β̃ and P̃ estimated from Eq. (5) are impeded

by the inaccuracy of N. To compensate for this, we further

refine the estimates by iteratively performing the following

two optimizations:

(1) Fix the brightness β and positions P of all lights,

update albedo ρ and normal N̂ of the key pixels,

min
ρ,N̂

m
∑

i=1

n
∑

j=1

∥

∥

∥
Ii,j − ρiN̂iD

T

i,j

∥

∥

∥

2

2

+ λn

∥

∥

∥
N̂−N

∥

∥

∥

2

F
. (6)
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(2) Fix the albedo ρ and normal N̂ for the key pixels,

update brightness β and positions P of all lights,

min
β,P

m
∑

i=1

n
∑

j=1

∥

∥

∥
Ii,j − ρiN̂iD

T

i,j

∥

∥

∥

2

2

+ λβ

n
∑

j=1

∥

∥β̄ − βj

∥

∥

2

2
+ λP

n
∑

j=1

(‖Pj‖2 − d)2
2
.

(7)

For our experiments, we empirically set λ1 = λ2 =
λβ = 0.001, λ3 = λP = 0.0001 and λn = 10−6.

3.3. Handling Shadow Areas

Our input images contain both cast shadow and self

shadow. Image intensities in shadow areas clearly violate

the PS laws, and consequently degrade normal estimations.

Solutions to detect shadow areas, such as intensity-based

segmentation, are sensitive to the image content, especially

with non-uniform albedo.

For a pixel, albedo keeps constant under different illu-

mination. Based on this fact, we develop a robust shadow

detection method. The proxy face model provides crucial

cues to detect shadows in our method.

Cast Shadow. For pixel i ∈ {1, 2, ...,m} and light j ∈
{1, 2, ..., n}, from Eq. (4), we have

ρ̂i,j =
Ii,j

NiD
T

i,j

. (8)

We already have Ni from the proxy face model and we

can compute D
T

i,j by substituting estimated β and P into

Eq. (3). Therefore, we can get ρ̂i,j as the estimated albedo

of pixel i under light j. Theoretically, pixel i is in shadow

under light j if ρ̂i,j = 0. In reality, however, ρ̂i,j may be

nonzero even when pixel i lies in shadow due to calibration

errors, inter-reflections, subsurface scattering, etc.

In experiments, we find that under lightings that produce

no shadow, the values of ρ̂i,j are similar. On the other hand,

under lightings that do produce shadow, the values of ρ̂i,j

are very small. Eq. (9) reveals that, for each pixel i, we can

first calculate the mean albedo ρ̄i = 1

n

∑n

j=1
ρ̂i,j of this

pixel and obtain the set Si including ρ̂i,j higher than ρ̄i.

And we calculate the mean value µi of the set Si. We then

deem the pixel i out of shadow under light j if the estimated

albedo ρ̂i,j is higher than (1 − τ)µi, where τ is set as 0.4
in our experiments. Consequently, we deem the lights in Li

possibly reliable for the normal estimation at pixel i.











Si = {ρ̂i,j | ρ̂i,j > ρ̄i}

µi = mean(Si)

Li = {j | ρ̂i,j > (1− τ)µi}

(9)

Self Shadow. We further only deem lights whose inci-

dent lighting direction is smaller than 90◦ valid, as shown

in Eq. (10).

Ai = {j | NiD
T

i,j > 0} (10)

Considering both cast and self shadow, for pixel i, we

only use valid light sources in Vi = Li ∩Ai to estimate the

normal at this pixel.

3.4. Denoising Hairy Regions

Hairy regions of the face such as shaggy beards and

bushy eyebrows contain very complex geometric and shad-

ing effects where the Lambertian model fails. Under sparse

lightings, normal estimations in these regions are particu-

larly noisy. Thabo Beeler [6] detected hairs and then em-

ployed a hair-synthesis method to create hair fibers that

plausibly match the image data. We detect the hairy area

based on the semantic segmentation and reconstruct high-

fidelity realistic hair micro-geometry.

Given Nx, Ny , Nz as the x, y, z components of the nor-

mal, we first compute depth gradient maps Gx, Gy as

Gx = −
Nx

Nz

, Gy = −
Ny

Nz

. (11)

Our goal is to denoise the gradient maps. However, tradi-

tional denoising filters also remove high-frequency geome-

try. We adopt a simple yet effective bidirectional extremum

filter in Eq. (12) to eliminate the singular values in the

gradient maps while preserving high-frequency geometry.

Specifically, we first compute a transformed gradient map

Gt (for both Gx and Gy) as Gt =
∣

∣G− Ḡ
∣

∣, where Ḡ is

the mean value. For each pixel, if its transformed gradi-

ent Gt(u, v) exceeds the mean of the transformed gradient

map Ḡt scaled by a factor σ, we update the original gradient

G(u, v) with the median gradient in neighboring pixels.

G
′

(u, v) =

{

median(G ∈ win(u, v)), Gt(u, v) > σḠt

G(u, v), Gt(u, v) ≤ σḠt

(12)

where win(u, v) is the neighboring window around the

pixel at (u, v). In our experiments, we set σ as 5 and neigh-

borhood window as 10× 10, and apply the filter only to the

hairy regions.

3.5. Iterative Optimization

In our experiments, face proxy from different methods

can greatly affect the light calibration accuracy and then

reconstruction quality. We adopt an iterative framework

to significantly reduce the sensitivity to the initial rough

model. Once we obtain the face model after all the steps

mentioned above, we can substitute proxy model with our

reconstructed high quality model and repeat the entire pro-

cess for further refinement, as shown in Fig. 2. The process

stops when the change of estimation is rather small. For all

experiments in this paper, we iteratively conduct the process
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Figure 5: Reconstruction error comparisons. (a) Parallel

lighting assumption with known albedo and normal. (b)

Using matrix factorization [30]. (c) Our approach. Error

is measured in terms of the ratio between the depth devia-

tion and the ground truth depth.

for no more than 10 times and the results are already highly

accurate.

4. Experiments

We have conducted comprehensive experiments on both

publicly available datasets and our own captured data.

4.1. Synthetic Data

For synthetic experiments, we use the face models re-

constructed from the Light Stage [26] as the ground truth.

The model contains highly accurate low-frequency geome-

try and high-frequency details. Using the Lambertian sur-

face model and point light source model, we render 5 im-

ages of the model illuminated by different near point light

sources on a sphere surrounding the face. The radius of the

sphere is set to be equal to the length from the forehead to

chin. We use the rendered data to compare the accuracy of

various reconstruction schemes.

We first test the parallel light assumption. Specifically,

we analyze two scenarios: 1) using the ground truth albedo

and normal to calibrate parallel light directions, and then

using the light directions to calculate normals, and 2) us-

ing the matrix factorization-based method [30] to simulta-

neously solve for parallel light directions and normals. For

point light model, we use a proxy face model predicted from

one of the rendered image for lighting calibration and use

the results to obtain per-pixel lighting direction and normal.

To apply [30], we use the normal from proxy model as

prior. To measure the reconstruction error, we align the

reconstructed face models with ground truth model under

the same scale and then calculate the reconstruction error as

the sum of per-pixel absolute depth error normalized by the

depth range of ground truth model. Fig. 5 shows that face

models reconstructed using parallel light model yield no-

ticeable geometric deformations while the face model from

our method produces much smaller error. Notice that all

30

Figure 6: Reconstruction errors under different light dis-

tances using our technique vs. the state-of-the-art. Unit dis-

tance corresponds to the face length (the distance between

forehead and chin).

Figure 7: We constructed an acquisition system composed

of 5 point light sources and a single DSLR camera.

three face models uniformly incur larger errors around the

forehead and lower edge of nose tip. This is because at such

spots, Nz approaches 0, and according to Eq. (11), a small

disturbance in normal incurs large errors in Gx and Gy and

subsequently the depth estimation.

We further test how parallel lighting assumption impact

reconstruction accuracy when the point lights are positioned

farther away. We vary the distance between the light sources

and the face, ranging from one unit of the length between

the forehead and chin to ten units, as shown in Fig. 6. For

both parallel and point light source models, the error de-

creases as the distance increases. However, our method out-

performs the other two with a significant margin.

4.2. Real Data

For real data, we have constructed a sparse photometric

capture system composed of 5 LED near point light sources

and an entry-level DSLR camera (Canon 760D) as illus-

trated in Fig. 7. The distance between the light sources and

photographed face is about 1 meter. To eliminate specular

reflectance, both light sources and camera are mounted with

polarizers, where the polarizers on light sources are orthog-

onal to the one on the camera. Each acquisition captures 5
images (1 light source per image) at a resolution of 6000 ×
4000. The process takes less than 2 seconds.

We acquire faces of people with different gender, race

and age. Fig. 10 shows our reconstruction of four faces,
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Figure 8: Reconstruction results of [30] (top row) vs. ours (bottom row). [30] causes low-frequency geometrical deformation

and high-frequency geometrical noise when using a sparse set of images. Our approach is able to faithfully reconstruct face

geometry without deformation and at the same time recover fine details.

Figure 9: Comparisons of different denoising filters in hairy

regions. Notice that spiked artifacts in beards are removed

by both filters. However, low-pass filter smooths out the

high-frequency geometry of hair while our filter preserves

such details.

where the first column shows the proxy models using [21].

The proxy models are reasonable but lack geometric de-

tails. Our reconstruction reduces geometric deformations

and reveals compelling high-frequency geometric details.

We compare our technique with [30] in Fig. 8. Note that

neither method requires additional instruments for calibra-

tion or 3D scanning. The result from [30] exhibits noisy

normals and contains bumpy artifacts as well as geometry

deformation over the entire face. This is mainly because

the images contain large areas of shadows that generate sig-

nificant amount of outliers. The outliers are detrimental to

the reconstruction especially with only 5 input images. In

contrast, our reconstruction exhibits very high quality and

low noise, largely attributed to our optimization techniques

together with shadow and hairy region detection schemes,

as shown in Fig. 8.

In Fig. 9, we demonstrate the importance and effective-

ness of our denoising filter on hairy regions. Without de-

noising, we observe a large amount of spiking artifacts at

the beard and eyebrow regions. Direct low-pass filtering

reduces the noise but at the same time over-smooths the ge-

ometry. Notice that the beards become smoothed after low-

pass filtering. Our bidirectional extremum filter, instead,

simultaneously removes noise while preserving geometric

details. We use the facial region segmentation from Section

3.1 and only apply our denoising filter on the hairy regions.

5. Conclusions and Future Work

We have presented a novel sparse photometric stereo

technique for reconstructing very high quality 3D faces with

fine details. At the core of our approach is to use base geo-

metric model obtained from 3D morphable faces as geom-

etry proxy for robustly and accurately calibrating the light

sources. We have shown our joint optimization strategy is

capable of calibration under non-uniform albedo. Finally,

we have exploited semantic segmentation techniques for

separating hairy vs. bare skin regions where we use bidi-

rectional extremum filter for handling the hairy regions.

Although our paper exploits the 3D morphable face mod-

els, we can also potentially use the recent learning-based ap-

proaches [44, 17] that can produce plausible 3D face models

from a single image. In our experiments, we found that the

initial result from [44], although visually pleasing, still de-

viates from the ground truth too much for reliable lighting
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Figure 10: Our reconstruction results across gender, race and age. From left to right, we show one of the 5 input images, the

proxy face model, and our final reconstruction results. Closeup views of the eyes and mouth regions illustrate fine geometric

details recovered by our technique. Additional results can be found in the supplementary materials.

estimation (see supplementary materials). Our immediate

next step therefore is to see how to integrate the shading in-

formation into their network framework to produce similar

quality results.

There is also an emerging trend of combining semantic

labeling with stereo or volumetric reconstruction [16, 11].

In our work, we have only used a small set of labels. In the

future, we plan to explore more sophisticated semantic la-

beling technique that can reliably separate a face into finer

regions, e.g., eye region, cheek, mouth, teeth, forehead, etc,

where we can handle each individual region based on their

characteristics. A more interesting problem is how to simul-

taneously recover multiple faces (of different people) under

the photometric stereo setting. For example, if each face ex-

hibits a different pose, a single shot under directional light-

ing will produce appearance variations across these faces

that are amenable for PS reconstruction.
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