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Abstract

The collaborative reasoning for understanding each

image-question pair is very critical but under-explored for

an interpretable Visual Question Answering (VQA) system.

Although very recent works also tried the explicit composi-

tional processes to assemble multiple sub-tasks embedded

in the questions, their models heavily rely on the annota-

tions or hand-crafted rules to obtain valid reasoning layout,

leading to either heavy labor or poor performance on com-

position reasoning. In this paper, to enable global context

reasoning for better aligning image and language domains

in diverse and unrestricted cases, we propose a novel rea-

soning network called Adversarial Composition Modular

Network (ACMN). This network comprises of two collab-

orative modules: i) an adversarial attention module to ex-

ploit the local visual evidence for each word parsed from the

question; ii) a residual composition module to compose the

previous mined evidence. Given a dependency parse tree

for each question, the adversarial attention module progres-

sively discovers salient regions of one word by densely com-

bining regions of child word nodes in an adversarial man-

ner. Then residual composition module merges the hidden

representations of an arbitrary number of children through

sum pooling and residual connection. Our ACMN is thus

capable of building an interpretable VQA system that grad-

ually dives the image cues following a question-driven rea-

soning route and makes global reasoning by incorporating

the learned knowledge of all attention modules in a prin-

cipled manner. Experiments on relational datasets demon-

strate the superiority of our ACMN and visualization results

show the explainable capability of our reasoning system.
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Figure 1: Illustration of our Adversarial Composition Mod-

ule Network (ACMN) that sequentially performs reasoning

over a dependency tree parsed from the question. Condi-

tioning on preceding word nodes, our ACMN alternatively

mines visual evidence for nodes with modifier relations via

an adversarial attention module and integrates features of

child nodes of nodes with clausal predicate relation via a

residual composition module.

1. Introduction

The task of Visual Question Answering (VQA) is to

predict the correct answer given an image and a textual

question. The key to this task is the capability of co-

reasoning over both image and language domains. How-

ever, most of the previous methods [21, 20, 16] work more

like a black-box manner, i.e., simply mapping the visual

content to the textual words by crafting neural networks.

The main drawback of these methods is the lack of inter-

preting ability to the results, i.e., why these answers are

produced? Moreover, it has been shown that their accu-
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racy may be achieved by over-fitting the data bias in the

VQA benchmark [9], and the absence of explicitly exploit-

ing structures of text and image leads to unsatisfying per-

formance on relational reasoning [14]. Very recently, a few

pioneering works [11, 15, 26] take advantage of the struc-

ture inherently contained in text and image, which parses

the question-image input into a tree or graph layout and as-

sembles local features of nodes to predict the answer. For

example, layout “more(find(ball),find(yellow))” means the

module should locate the ball and the yellow object on the

image first, then compose the two results to answer whether

there are more balls than yellow objects. However, these

methods would either rely on hand-designed rules for un-

derstanding questions or train a layout parser from scratch

which suffers large decay in performance. We argue those

limitations severely prohibit their application potentials in

understanding general image-question pairs that may con-

tain diverse and open-ended question styles.

To achieve a general and powerful reasoning system with

the ability to enable reasoning over any dependency trees

of questions rather than fixed layouts in prior works, we

propose a novel Adversarial Composition Modular Network

(ACMN) that designs two collaborative modules to perform

tailored reasoning operations for addressing two most com-

mon word relations in the questions. As shown in Figure 1,

given a specific dependency tree of each question by an off-

the-shelf dependency parser, we construct a reasoning route

following the dependency layout that is a tree-structure

composed of clausal predicate relation and modifier rela-

tion. Our module network then alternatively performs two

collaborative modules on each word node for global reason-

ing: 1) exploit local visual evidence of each word guided

by exploited regions of its child nodes in an adversarial way

in terms of nodes with modifier relations; 2) integrate the

hidden representations of child nodes via residual compo-

sition with respect to nodes with clausal predicate relation.

Notably, in contrast to previous methods, our ACMN aims

at a general and interpretable reasoning VQA framework

that does not require any complicated handcrafted rules or

ground-truth annotation to obtain a specific layout.

Specifically, we observe that the frequently used types of

dependency relations can be categorize in two sets: whether

the head is a predicate that describes the relation of its chil-

dren (e.g. color← is, is→nose), or a word decorated by its

child (e.g. furthest→object). We refer the first set as clausal

predicate relation and the second is modifier relation. Thus

our ACMN designs adversarial attention modules for en-

coding modifier relation and residual composition modules

for clausal predicate relations.

Firstly, for child nodes with modifier relations, we apply

the adversarial attention mechanism similar to [28]. To en-

able effectively mining all visual evidence, we enforce each

parent node explore new regions by masking out attentive

regions of its child nodes at each step. More specifically, we

sum up the attention maps from child nodes and mask out

features weighted by the mined attention map in a soft man-

ner. We then perform attention operation on manipulated

hidden representations to extract new local visual evidence

for the parent node. Secondly, for those with clausal pred-

icate relation, our residual composition module integrates

the hidden representations weighted by attention maps of

its child nodes using bilinear fusion. In order to retain the

information from the child nodes and deal with an arbitrary

number of child nodes, the module learns a residual that will

be added to the input on the sum of child nodes to modify

their hidden representations. Finally, the final hidden rep-

resentation of the root node will go through a multi-layer

perceptron to predict the final answer.

Extensive experiments show that our model can achieve

state-of-art VQA performance on both natural image VQA

benchmark VQAv2 dataset and CLEVR relational dataset.

And qualitative results further demonstrate the interpretable

capability of our ACMN on collaborative reasoning over

image and language domains.

Our contributions summarized as follows: 1) We present

a general and interpretable reasoning VQA system follow-

ing a general dependency layout composed by modifier re-

lations and clausal predicate relations. 2) a novel adversarial

attention module is proposed to enforce efficient visual ev-

idence mining for modifier relations while a residual com-

position module for integrating knowledge of child nodes

for clausal predicate relations.

2. Related Works

Visual question answering The visual question answer-

ing task requires co-reasoning over both image and text to

infer the correct answer.

The baseline methods proposed in VQA dataset [4] to

solve this task using a CNN-LSTM based architecture,

which consists of a convolution neural network to extract

image features, and an LSTM to encode the question fea-

tures. It combines these two features to predict the final an-

swer. Recent years, a large number of works followed this

pipeline and have achieved substantial improvements over

baseline model. Among these works, the attention mech-

anism [12, 30, 24, 34, 31, 20] and the joint embedding of

image and question representation [8, 16] have been widely

studied. Attention mechanism learns to focus on the most

discriminate sub-region instead of the whole image, provide

a certain extent of reasoning to the answer. Different atten-

tion methods such as stacked attention [31] and co-attention

between question and image on different levels [20] con-

stantly improve the performance of the VQA task. As for

the multi-modal joint embedding, Fukui et al. [8], Kim

et al. [16] and Hedi et al. [5] exploited the compact bilinear

method to fuse the embedding of image and question and in-
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(a) Adversarial Composition Neural Module

(b) Adversarial Attention Module

(c) Residual Composition Module

Figure 2: The modules in our ACMN: a) each ACMN module that is composed by an adversarial attention module and

residual composition module; b) adversarial attention module; c) residual composition module. The blue arrows indicate the

modifier relation and the yellow arrows represent the clausal predicate relation. Each node receives the output attention maps

and the hidden features from its children, as well as the image feature and word encoding. The adversarial attention module

is employed to generate a new attention map conditioned on image feature, word encoding and previous attended regions

given by modifier-dependent children. The residual composition module is learned to evolve higher-level representation by

integrating features of its children and local visual evidence.

corporated the attention mechanism to further improve the

performance.

However, some recently proposed works [9, 13] showed

that the promising performance of these deep models might

be achieved by exploiting the dataset bias. It is possible to

perform equally well by memorizing the QA-pairs or en-

code the question with the bag-of-words method. To ad-

dress this concern, newer datasets were released in the very

recent. The VQAv2 dataset [9] was proposed to eliminate

the data biases through balancing question-answer pairs.

The CLEVR [14] dataset consists of synthetic images, and

provides more complex questions that involve multiple ob-

jects. It also has balanced answer distribution to suppresses

the data bias.

Reasoning model There exist prior works that tried to

explicitly incorporate the knowledge into the network struc-

ture. [18, 27] encoded both image and question into discrete

vectors such as image attributes or database queries. These

vectors enable their model to query the external data source

for common senses and basic factual knowledge to answer

the question. [35] actively acquires pre-defined types of

evidence to obtain external information and predicted the

answer. Other recent works proposed modular network to

handle the composition reasoning. [29] augmented a dif-

ferentiable memory and encoding long-term knowledge to

infer the answer.

Neural modular network The recently proposed neu-

ral modular network provides a framework to address com-

positional visual reasoning. Instead of using a fixed struc-

ture to predict the answer to every question, this line of

works assembles a structure layout for different question

into pre-defined sub-tasks. Then a set of neural modules is

designed to solve a particular sub-task respectively. Earlier

works [3, 2] generated their layouts based on dependency

parse. Later, [11, 15] use sequence-to-sequence RNN to

predict the post-order of layout tree, and jointly train the

RNN and the neural module using RL or EM manner.

However, it is difficult to jointly train the RNN and the

modular network from scratch. On the other hand, exist-

ing neural module will propagate its error through the rest

of modular network, thus these methods heavily depend on

the correctness of the structured layout. Our method modi-

fies the structure of neural modules to avoid the error prop-

agation and takes advantage of the information lay on the

type of dependency. This substantially improves the predic-

tion accuracy while preserving the compositional reasoning

ability.

3. Adversarial Composition Modular Network

3.1. Overview

Given the free-form questions Q and images I , our pro-

posed ACMN model learns to predict the answers y and

their corresponding explainable attention maps. Specifi-

cally, we first generate the structure layout given the in-

put question Q by parsing it into a tree structure using an

off-the-shelf universal Stanford Parser [6]. To reduce the

computational complexity, we prune the leaf-nodes that are

not noun, then categorize the labels of dependency relations

such as “nominal modifier” (e.g. (left, object)), “nominal
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subject”(e.g. (is, color) into two classes: the modifier rela-

tion M and the clausal predicate relation P .

Our ACMN model is constituted by a set of network

modules f on each word node in the layout from bottom to

top. Suppose a node is x, and its n children {xc
1, x

c
2, ..., x

c
n}.

The module f has three inputs: the image feature v, the

word encoding w, and its children’s outputs [attci , h
c
i ] =

f(xc
i ). It outputs a new attentive region attout, and a hidden

feature hout, which are generated by the adversarial atten-

tion module fa and residual composition module fh respec-

tively, as shown in Figure 2a.

The spatial feature v is extracted for each image via

any pre-trained convolution neural network on ImageNet

(e.g. conv5 features from ResNet-152 [10] or conv4 features

from ResNet-101 [10]). The word embedding vector w is

obtained with a Bi-LSTM [23]. Specifically, each word in

the question is first embedded as a 300 dimension vector,

then the question is feed into a bidirectional LSTM. The fi-

nal word embedding w is the hidden vector of Bi-LSTM at

its corresponding position.

3.2. Adversarial Attention Module

Specifically, as shown in Figure 2b, we first filter the

child nodes whose relation is modifier M and perform ad-

versarial attention module on the parent node x. The input

attention map attin of each node x is first obtained by sum-

ming attention maps {attci} of its modifier-dependent child

nodes xi. The adversarial mask is generated by subtracting

attin by 1 followed by a ReLU layer to keep the results non-

negative. Then the mask is used to softly weights the spatial

feature v via a multiplication operation. Finally, the adver-

sarial module fa outputs a new attention map attout condi-

tioned on the input word embedding w and weighted spatial

features. We further apply Softmax to regularize the result-

ing attention map into the range of [0, 1]. The visual repre-

sentation h′ of the node x is then generated by the weighted

sum of each grid features in v given the attended weight

attout.

3.3. Residual Composition Module

As shown in Figure 2c, the residual composition mod-

ule fh first sums the hidden features {hc
i} of its children

with clausal predicate relation P into hin, and then con-

catenate hin with extracted local evidence h′, and finally

combine with word encoding w to generate a new hidden

feature hout. A fully connected layer is applied to project

both the concatenated hidden [hin, h
′] and word encoding

w feature to 2048 dimension feature vector. Then we per-

form element-wise multiplication on two features, project

it to 128 dimension vector, and add it with all of its chil-

dren’s hidden feature {hc
i} as the output hidden representa-

tion hout.

Clausal Predicate Relation Relation Description

NSUBJ Nominal subject

NSUBJPASS Passive nominal subject

CSUBJ Clausal subject

CSUBJPASS Clausal passive subject

DOBJ Direct object

IOBJ Indirect object

CCOMP Clausal complement

XCOMP Open clausal complement

Modifier Relation Relation Description

NMOD Nominal modifier

AMOD Adjectival modifier

NUMMOD Numeric modifier

ADVMOD Adverbial modifier

APPOS Appositional modifier

ACL Clausal modifier of noun

DET Determiner

CASE Prepositions, postpositions...

COMPOUND Compound

Table 1: The two major categories of relations classified by

the universal dependency parser.

3.4. The proposed ACMN model

Given the tree-structured layout of the dependency tree,

our ACMN module is sequentially used on each word node

to mine visual evidence and integrate features of its child

nodes from bottom to top, and then predict the final answer

at the root of the tree. Formally, each ACMN module can

be written as:

attin =
∑

(x,xc

i
)∈M

attci ,

hin =
∑

(x,xc

i
)∈P

hc
i ,

attout = fa(attin, v, w),

h′ = attout ∗ v,

hout = fh([hin, h
′], w) +

∑

i

hc
i ,

(1)

Where (x, xc
i ) represents the relation of node x and its child

xc
i . Because the nodes with modifier relations M can mod-

ify their parent node by referring to a more specific object,

we thus generate a more precise attention map as attout. On

the other hand, the clausal predicate relation P suggests the

parent node is a predicate of child nodes, we thus integrate

features of child nodes to enhance the representation given

the predicate word.

After propagating through all word nodes with a se-

quence of adversarial attention module and residual compo-

sition module, the output features of the root node hroot are

passed through a three Multi-Layer Perceptron to predict

the final answer y. Our model that is stacked by a list of ad-

versarial attention modules and residual composition mod-

7252



ules following a tree-structured layout. Weights are share

across modules with same height in order to learn different

levels of semantic representation. The whole model can be

trained end-to-end with only the supervision signal y.

3.5. Modifier Relation and Clausal Predicate Rela­
tion

A dependency-based parser is to draw directed edges

from head words to dependent words in a sentence. It also

labels the head-dependent relations to provide an approxi-

mation to the relationship between predicates and their ar-

guments. One of the most widely used head-dependent re-

lation sets is the Universal Dependencies(UD) [7]. It has a

total of 42 relations that can be clustered into 9 categories.

But the frequently used relations concentrate on only two

of them: the core dependents of clausal predicate and the

noun dependents, as shown in Figure 3. In this work, we

make some small modification to noun dependents sets and

refer these two kinds of relationships as clausal predicate

relation P and modifier relation M . The details of both sets

are shown on Table 1. For those relations that belong to nei-

ther of the two sets, we will pass both the attention map and

the hidden representation to the parent nodes.

Dependents of clausal predicate relation P describe syn-

tactic roles with respect to a predicate that often describes

how to compose its children. For example, in question What

color is the nose of the plane?, word is is the head of color

and nose, and their relations are (is,color) = direct object

and (is,nose) = nominal subject. So the word is tells us how

to compose word color and nose, such as using a function

“describes(color, nose)” in a modular network [3]. Thus,

our residual composition module learns to compose features

{hc
i} of its children nodes with clausal predicate relation P

conditioned on current word embedding w of a parent node.

The modifier relations M categorize the ways words that

can modify their parents. For example, the modifier re-

lation M of the question What size is the cylinder that is

left of the brown metal thing from CLEVR dataset [14] can

be the relation (left, brown metal thing) = nominal modi-

fier. The reason is that the word left indicates the region

related to brown metal thing instead of cylinder, which is

similar to “transform(left, thing)” relation in the modular

network [3]. Thus we can obtain a modified attention map

for the part node according to attention maps {attci} of its

children given the current word encoding w via our adver-

sarial attention module.

4. Experiment

We validate the effectiveness and interpretation capa-

bility of our models on both two synthetic datasets (i.e.,

CLEVR and Sort-of-CLEVR) that mainly focus on rela-

tion reasoning and one natural dataset (i.e., VQAv2) with

diverse image-question pairs in the wild.

Figure 3: The statistic of clausal predicate relation and mod-

ifier relation in the questions of VQAv2 [9] dataset training

split and CLEVR dataset [14] training split.

4.1. Datasets

The CLEVR [14] is a synthesized dataset with 100, 000
images and 853, 554 questions. The images are photo-

realistic rendered images with objects of random shapes,

colors, materials and sizes. The questions are generated us-

ing sets of functional programs, which consists of functions

that can filter certain color, shape, or compare two objects.

Thus, the reasoning routes required to answer each ques-

tion can be precisely determined by its underlying function

program. Unlike natural image dataset, it requires model

capable of reasoning on relations to answer the questions.

The Sort-of-CLEVR [22] consists of synthesized im-

ages of 2D colored shapes. Each image has exactly 6 ob-

jects that can be unambiguously identified by 6 colors, and

the objects have random shapes(square or circle) and posi-

tions. Each image is associated with 20 questions asking

about the shape or position of a certain object, 10 of which

is non-relational questions that query the object by its unam-

biguous colors and another 10 are relational questions that

query the object with furthest or closest relation to another

unambiguous colored object. It is visually simpler than the

CLEVR, but also requires the model capable of relational

reasoning. Since the original dataset is not released, we

generate a set following their detailed description, includ-

ing 9800 images for training and 200 for testing.

The VQAv2 [9] contains 204, 721 natural images from

COCO [19] and 1, 105, 904 free-form questions. Compared

with its first version [4], this dataset focuses on reducing

dataset biases through balanced pairs: for each question,

there are pair of images which the answers to that question

are different.

4.2. Implementation details

For the CLEVR dataset, we employ the same setting

used in [33, 14] to extract the image feature and words en-

coding. We first resize all images to 224 × 224, then ex-
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Figure 4: Two examples of the dependency trees of questions and corresponding regions attended by our model at each step

on CLEVR dataset. The question is shown on the bottom. The image and dependency parse tree are shown on the left. The

arrows in the dependency tree are drawn from the head words to the dependent words, The blue arrows indicate the modifier

relation M , and the yellow arrows indicate the clausal Predicate relation P . The curved arrows point to the pruned leaf words

that are not a noun. Thus word “there” and “have” is the root node for each example respectively. The regions with high

attention weight are shown as bright areas in the images on the right. Those nodes without obvious bright region indicate our

model equally attend all regions of the image, thus no specific salient regions correspond to this node.

Compare Integer Query Compare

Method Exist Count Equal Less More Size Color Material Shape Size Color Material Shape Overall

LBP-SIG [33] 79.63 61.27 80.69 88.59 76.28 78.04

RN [22] 97.8 90.1 93.6 97.9 97.1 95.5

N2NMN scratch [11] 72.7 55.1 71.6 85.1 79.0 88.1 74.0 86.6 84.1 50.1 53.9 48.6 51.1 69.0

N2NMN cloning expert [11] 83.3 63.3 68.2 87.2 85.4 90.5 80.2 88.9 88.3 89.4 52.5 85.4 86.7 78.9

N2NMN policy search [11] 85.7 68.5 73.8 89.7 87.7 93.1 84.8 91.5 90.6 92.6 82.8 89.6 90.0 83.7

PE-semi-9K [15] 89.7 79.7 85.2 76.1 77.9 94.8 93.3 93.1 89.3 97.8 94.5 96.6 95.1 88.6

PE-Strong [15] 97.7 92.7 98.0 99.0 98.9 98.8 98.4 98.1 97.3 99.8 98.5 98.9 98.4 96.9

Ours 94.21 81.37 75.06 88.23 81.51 92.61 86.45 92.35 90.65 98.50 97.44 94.93 97.37 89.31

Table 2: Comparisons in terms of question answering accuracy on the CLEVR dataset. The performance of question types

Exist, emphCount, Compare Integer, Query, Compare are reported on each column. LBP-SIG [33] and RN [22] only report

total accuracy of question types Compare Integer, Query, Compare, their performance on these types are mereged.

tract the conv4 feature from ResNet-101 pre-trained on Im-

ageNet. The resulting 1024 × 14 × 14 feature maps are

concatenated with a 2-channel coordinate map. It is fur-

ther fed into a single 3× 3 convolution layer. The resulting

128× 14× 14 feature maps are passed through our ACMN

module network. We encode the questions using a bidirec-

tional LSTM [23] with 1024-d hidden states for both di-

rections. The hidden vector of Bi-LSTM at corresponding

word position is considered as this word’s encoding w. The

maximum tree height of this dataset is 13, thus there a to-

7254



Non-relational Relational

Ours-w/o residual 99.05 93.50

Ours-DualPath [32] 98.05 91.10

Ours-relocate [11] 98.20 90.10

Ours-concat 99.10 91.15

CNN+MLP [22] - 63

CNN+RN [22] - 94.0

Ours 99.85 96.20

Table 3: Comparisons in terms of question answering accu-

racy on the Sort-of-CLEVR dataset.

tal of 13 node module instances. The hidden representation

h of each module is a 256-d vector. The three-layer MLP

have output sizes of 512, 1024 and 29 respectively.

The size of images in Sort-of-CLEVR is 75×75, we used

a four-layer CNN and each layer has a 3× 3 kernel and 24-

channel outputs to extract the image features. The resulting

feature maps have the size of 24× 8× 8, so the output h′ of

the adversarial attention module is a 24-d vector. The out-

put h of the residual composition module is a 256-d vector,

and there are 5 instances of modules for each level of de-

pendency tree. The words in a question are first embedded

as a 300-d vector and then the whole question is encoded by

a bidirectional LSTM [23], which has 150-d hidden units in

both directions. The word encoding vector is represented

by the LSTM hidden vector at its corresponding position.

The image features for VQAv2 are extracted by bottom-

up attention network [1], which is trained to detect objects

on the Visual Genome dataset. The word vectors are also

extracted from a 150-d bidirectional LSTM at correspond-

ing positions. The maximum height of dependency parse

trees in this dataset is 11. The hidden representation h of

these 11 module instances are 1024-d vectors.

For VQAv2, We train our model on the training and vali-

dation split. For CLEVR and Sort-of-CLEVR dataset, only

the training split is used. The model is trained with Adam

optimizer [17]. The base learning rate is 0.0001 and the

batch-size is 32. The weight decay, β1 and β2 are 0, 0.9,

0.999 respectively, which are the default settings for Adam

optimizer.

4.3. Comparison with State­of­the­arts

4.3.1 CLEVR dataset

Table 2 shows the performances of different works on

CLEVR test set. The previous End-to-End modular net-

work [11] and Program Execution Engine [15] are shorten

as N2NMN and PE respectively. They both use the func-

tional programs as groundtruth layout, and train their ques-

tion parser with a sequence-to-sequence manner with strong

supervision. They also have variants that are trained using

semi or none supervision signals. The “N2NMN scratch”

indicating the end-to-end modular network without layout

supervision and the “N2NMN cloning expert” show the

results of their model trained with full supervision. The

“N2NMN policy search” gives this model’s best results if

it further trains the parser from “N2NMN cloning expert”

with RL. It can be seen that our model outperforms all

of these previous models by a large margin without us-

ing any dataset-specific layout, showing the good gener-

alization capability of our ACMN. Our ACMN also beats

the Program Execution Engine [15] variant trained with

semi-supervision (as “PE-semi-9K”). The PE-Strong [15]

used all program layouts as additional supervision signals,

and the RN [22] is a black-box model that lacks inter-

preting ability. Although our ACMN only obtains com-

parable results with Program Execution Engine [15] with

fully-supervision (as “PE-Strong”) and Relation Network

(as “RN”) [22], our ACMN can provide more explicit rea-

soning results without layout supervision.

Figure 4 shows the promising intermediate reasoning re-

sults achieved by our ACMN. The images and the depen-

dency parse trees are shown on the left. We highlight the

regions with high attention weights, and slightly brighter

the image if our model equally attends all of the regions.

The first example shows that our model can first locate the

“purple object”, while the phase “same material” alone does

not correspond to any object, our model doesn’t focus on

any specific region. Later, our model attends all object ex-

cept the purple object given phase “any other things”, and

“are there” locate the objects that have the same material

and predict the answer “yes”. The second example illus-

trates the process of locating the “big thing” and the “metal

sphere”. Then our model composes their visual features to

answer whether these two objects have the same color.

4.3.2 Sort-of-CLEVR dataset

Table 3 shows the comparisons among our model, its vari-

ants and prior works on Sort-of-CLEVR dataset. As de-

scribed in [22], since the visual elements in this dataset

are quite simple, a simple CNN+MLP baseline model can

achieve over 94% accuracy for non-relational questions but

fail for relational questions. We thus mainly focus on com-

paring results for relational questions. The results of two

baselines (i.e. “CNN+MLP [22]” and “CNN+RN [22]” are

originally reported in [22]. The actual accuracy number for

non-relational questions are not reported since both models

achieve nearly 100%. We can see that our ACMN achieves

superior results over two previous methods for answering

relational questions that require the model has strong capa-

bility in relation reasoning rather than overfitting the dataset

bias as previous works.

Figure 5 shows the resulting attention regions following

the general dependency tree for the questions achieved by

our ACMN, which clearly demonstrates its promising inter-

pretable ability. The first example locates the “gray object”,

then it transforms its attention regions to its “furthest” ob-
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Figure 5: Examples of parse trees and corresponding re-

gions attended by our ACMN on Sort-of-CLEVR dataset.

Same with Figure 4, the edges in dependency tree is drawn

from head words to dependent words. The attended regions

are highlighted for different nodes.

jects. Our model successfully attends the correct objects in

last steps to answer the question. The second example also

attends the “closet” area of “blue object”, and then correctly

locate the gray circle object to answer the question.

4.3.3 VQAv2 dataset

The results on test-std and test-dev of the VQAv2 dataset

are shown in Table 4. We compare our model with the

first place method of the VQAv2 challenge. The first place

method obtained their best with an ensemble of 30 net-

works, and their results are denoted as “1st ensemble [25]”

in Table 4. The “1st single [25]” show its performance of

single network with exact same network architecture and

hyper-parameters. Since they used the image features ex-

tracted by bottom-up attention network [1], we also use fea-

tures provided by [1] for fair comparison. Specifically, we

use features of the top-36 proposal with highest object score

as visual inputs and generate a 36-D attention vector. Our

results are slightly lower than the best method on VQAv2.

Note that we haven’t applied tricks such as data augmenta-

tion, pretrained classifier, as described in [25].

4.4. Ablation Studies

We show the accuracy of our model and its variants on

Sort-of-CLEVR dataset in Table 3.

Residual composition module By removing connec-

tion in our residual composition module, the accuracy

drops 2.7% on relational question answering by comparing

test-dev test-std

Method All Yes/no Numb. Other All Yes/no Numb. Other

1st ensemble [25] 69.87 86.08 48.99 60.80 70.34 86.60 48.64 61.15

1st single [25] 65.32 81.82 44.21 56.05 65.67 82.20 43.90 56.26

ours 63.81 81.59 44.18 53.07 64.05 81.83 43.80 53.22

Table 4: The question answering accuracy on VQAv2 test-

dev and test-std. The “1st ensemble” and “1st single” de-

notes the first place method of the 2017 VQA Challenge

with and without ensemble respectively.

“Ours-w/o residual” with “ours”. Furthermore, we combine

the residual and dense connection to form a dual-path tree-

structured network, resulting in a variant “Ours-DualPath”.

This network has more parameters and exploits previous

nodes’ knowledge in a more direct way. Specifically, we

concatenate all previous hidden representation h and use an

extra fully connected layer to project them into a 256-d fea-

ture vector. “Ours-DualPath” achieves 91.1% accuracy, in-

dicates that the extra fully connected layer hurts the perfor-

mance since nodes in a general dependency parse tree may

contain duplicate information. Our residual connection can

handle these trivial nodes, demonstrate the effectiveness of

our residual composition.

Adversarial attention module We also evaluate the re-

sults of other attention modules to demonstrate the effec-

tiveness of our adversarial attention module. One com-

monly used attention module is the Relocate module in [11]

which used the soft-attention encoding applied in [11], re-

sulting in our variant “Ours-relocate”. Another option for

attention module is to directly concatenate image features

with the input attention maps attin instead of using an ad-

versarial mask, that is “Ours-concat”. The proposed ad-

versarial attention module is demonstrated to obtain better

question answering performance over these two attention

alternatives, benefiting from the adversarial-mask driven

exploration of unseen regions.

5. Conclusion

In this paper, we propose a novel ACMN module net-

work equipped with an adversarial attention module and a

residual composition module for visual question reasoning.

In contrast to previous works that rely on the annotations

or hand-crafted rules to obtain valid layouts, our ACMN

model can automatically perform interpretable reasoning

process over a general dependency parse tree from the ques-

tion, which can largely broaden its application fields. The

adversarial attention module encourages the model to at-

tend the local visual evidence for each modifier relation

while the residual composition module can learn to com-

pose representations of children for the clausal predicate

relation while retaining the information flow from its indi-

rect child nodes. Experiments show that our model outper-

forms previous modular networks without using any speci-

fied groundtruth layouts or complicated hand-crafted rules.
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