
“Learning-Compression” Algorithms for Neural Net Pruning

Miguel Á. Carreira-Perpiñán

EECS, University of California, Merced

http://eecs.ucmerced.edu

Yerlan Idelbayev

EECS, University of California, Merced

http://eecs.ucmerced.edu

Abstract

Pruning a neural net consists of removing weights with-

out degrading its performance. This is an old problem

of renewed interest because of the need to compress ever

larger nets so they can run in mobile devices. Pruning has

been traditionally done by ranking or penalizing weights

according to some criterion (such as magnitude), remov-

ing low-ranked weights and retraining the remaining ones.

We formulate pruning as an optimization problem of find-

ing the weights that minimize the loss while satisfying a

pruning cost condition. We give a generic algorithm to

solve this which alternates “learning” steps that optimize a

regularized, data-dependent loss and “compression” steps

that mark weights for pruning in a data-independent way.

Magnitude thresholding arises naturally in the compression

step, but unlike existing magnitude pruning approaches, our

algorithm explores subsets of weights rather than commit-

ting irrevocably to a specific subset from the beginning. It is

also able to learn automatically the best number of weights

to prune in each layer of the net without incurring an ex-

ponentially costly model selection. Using a single pruning-

level user parameter, we achieve state-of-the-art pruning in

LeNet and ResNets of various sizes.

Pruning neural nets is an old problem that has been re-

vived in recent years. It consists of removing weights and/or

neurons with the goal of reducing the size of the net without

hurting its accuracy, learning automatically the right num-

ber of neurons and weights, or avoiding overfitting. Work

in the 90s produced various algorithms that generally op-

erate by using some criterion or penalty to detect unimpor-

tant weights or neurons, removing them and retraining the

remaining ones, possibly on the fly while training the net.

The 2010s have shown that neural nets achieve state-of-the-

art performance in various applications if trained on large

data sets using GPUs and using a large net, having many

layers, neurons and weights. The large size of these nets

(upwards of millions of weights) make them difficult to de-

ploy in limited-computation devices such as mobile phones.

This has brought a renewed interest in pruning and gener-

ally in neural net compression, so that one can obtain small

yet accurate nets. Pruning and compression are possible

because these large nets are hugely overparameterized, and

empirical evidence suggests it is easier to train a large net

and compress it than to train a smaller net from start [28].

Although pruning can be seen as a way to find the right

architecture for a net or to improve generalization, here we

focus on pruning as a way to compress a well-trained, ref-

erence net with little accuracy loss (the reference net is also

helpful in telling us what is the best that we can achieve, up

to local optima). Much pruning work uses a heuristic modi-

fication of the usual neural net training so that one removes

weights on the fly via some criterion. While this can suc-

ceed in practice, it is not clear whether the resulting pruned

net is optimal and in what sense. We take a top-down op-

timization view: we define the problem mathematically as

an optimization over the net weights that incorporates our

conflicting desires of minimizing the loss (e.g. classification

error) and minimizing the number of weights. Specifically,

we are inspired by recent work [2, 3] that formulates neu-

ral net compression in a general way via constrained op-

timization and shows how this leads to a powerful weight

quantization algorithm. Here, we develop and extend this

approach for the problem of pruning a deep net. In addi-

tion, we seek algorithms that are able to identify exactly

which weights should be zero. An example that does not

satisfy this are interior-point methods (one of the best ap-

proaches for large-scale problems), since their iterates are

nonzero throughout training and only converge to exact ze-

ros in the limit. The reason to identify the zeros exactly

is that, with many weights, optimizing to high accuracy

is impractical, and this introduces uncertainty about which

nonzero weights should really be zero based on their value.

We consider pruning as a form of compression, where

unpruned weights w ∈ R
n are compressed into sparse

weights θ ∈ R
n satisfying a condition dependent on a

pruning cost function C(θ) which promotes sparsity in the

weight vector θ, such as ℓ0 or ℓ1, and is mathematically

expressed as either a constraint or a penalty. The result is

a “learning-compression” (LC) algorithm that alternates a

learning step that optimizes the data-dependent loss over

18532

http://eecs.ucmerced.edu
http://eecs.ucmerced.edu

the real-valued weights w with a compression (pruning)

step that compresses w into θ, independently of the loss

and data. Interestingly, for certain pruning costs this com-

pression step naturally has the form of magnitude pruning,

which gives support to using magnitude as a measure of

weight saliency (as opposed to, say, curvature). However,

our algorithm does not prune permanently: weights move

in and out of the set of pruned weights during training un-

til we converge on a final set. We first describe our gen-

eral approach and develop it for its constraint and penalty

forms. Although we focus on ℓ0, ℓ1 and ℓ22, we emphasize

our framework applies to other costs. Then we describe

how to learn the amount of pruning per layer automatically

and discuss the algorithm’s behavior. Our experiments with

LeNet and ResNets show that our LC algorithm achieves

larger amounts of pruning with no loss degradation, and

show the peculiar structure of the pruned net that arises.

Related work Pruning was recognized as an important

problem since the 1980s; see reviews [28] and [1, ch. 9.5].

Most methods can be classified into two types: saliency

ranking methods use a criterion to estimate the importance

of each weight in the net, remove less important weights

and retrain the rest; and penalty methods minimize the loss

L(w) plus a penalty term αC(w) that penalizes nonzero

weights, remove small weights upon convergence and re-

train the rest. Many saliency criteria exist, such as magni-

tude |wi|, curvature using the diagonal [23] or all the Hes-

sian entries [17, 18], and sensitivity of the loss to remov-

ing wi. While most saliency methods are simple and fast,

their performance is limited: they are local (the saliency

estimate for each wi is valid at the reference net but not

away from it), greedy (weights are pruned irrevocably, with

no backtracking), and individual weight saliency is after all

a heuristic estimate for the effect on the loss of the set of

weights to be pruned. This can be partly improved by ap-

plying the pruning/retraining in stages (where only a few

weights are pruned at a time, e.g. [33, 15]), but this is time-

consuming in practice. Penalty methods were mostly based

on weight decay and variations of it, penalizing α
∑

iw
2
i

or variations such as α
∑

iw
2
i /(A+ w2

i) [16, 31] that en-

courage weights to be either large or small. Weight decay

helps avoid overfitting and prune weights, but is not spar-

sifying: upon convergence, none of the weights are zero,

and truncation is somewhat arbitrary just as with saliency

methods. Sparsifying penalties such as ℓ0 or ℓ1 seem not

to have been investigated, presumably because backpropa-

gation cannot handle their nonsmoothness. Group LASSO

penalties (to prune entire filters of a net) have been recently

considered in [25, 32]. Their SGD optimization adds a

heuristic thresholding step to zero values below 10−4. How-

ever, online methods such as SGD have trouble deciding

whether a given weight should be pruned or not based on a

minibatch [33, section 3.1]. Finally, pruning can be com-

bined with other compression techniques, such as weight

quantization [12, 15, 3], low-rank decomposition of weight

matrices [29, 8, 21, 9, 27], hashing [5], lossless compression

such as Huffman codes [14], etc. Here we focus on pruning

alone. Interestingly, although saliency and penalty methods

appear very different, we will show they are related in our

LC algorithm: an iterative form of magnitude-based prun-

ing arises in a principled way from the use of sparsifying

penalties on the loss.

1. Neural network pruning as an optimization

problem1

We define a pruning cost as a function C: R
n → R

+

satisfying C(0) = 0 and C(w) > 0 if w 6= 0. We say that

C is separable if C(w) =
∑n

i=1
c(wi) where c: R → R

+

is a scalar pruning cost. C should be designed such that it

penalizes nonzeros in w. The pruning cost function C and

the pruning operators Π+

C , Π≤
C defined later are central con-

cepts in our framework. We study three important examples

of C(w): ‖w‖
0

(the number of nonzero elements of w),

‖w‖
1
, and ‖w‖2

2
, all of which are separable. While other

costs could be studied that are of practical interest, these are

representative of what can be achieved in our framework

and illustrate the issues of sparsification and shrinkage. ℓ0
is arguably the most natural definition of pruning, as it is

equivalent to finding the best subset of pruned weights, but

it is a hard combinatorial problem. ℓ22 corresponds to regu-

lar weight decay and can be optimized directly by descent

methods, but it is instructive in our discussion.

Consider then the following general formulation for

learning an optimally pruned network, where L(w) is a loss

function of interest (such as the classification or regression

error on a training set):

Constraint form: minw L(w) s.t. C(w) ≤ κ (1a)

Penalty form: minw L(w) + αC(w). (1b)

Both naturally aim at learning an optimal model, by min-

imizing the data-dependent loss L(w), but subject to hav-

ing many zero weights, as given by the pruning parame-

ters κ ≥ 0 and α ≥ 0. Although optimizing the above

could be done in different ways, here we focus on a com-

mon mechanism that results in a very simple yet effective

learning-compression (LC) algorithm [2] for both forms.

This alternates a data-dependent step that updates the “un-

compressed parameters” (here, all the weights in the net)

with a data-independent step that compresses the parame-

ters (here, prunes the weights). The idea is to decouple the

pruning term on C from the learning term on L via an aux-

iliary variable θ, a quadratic-penalty function and an alter-

1Notation. Norms ‖·‖ are Euclidean norms ‖·‖
2

by default. We use

the indicator function I(x) = 1 if x is true and 0 otherwise, and the sign

function sgn (x) = −1 if x < 0, 0 if x = 0 and +1 if x > 0.

8533

nating optimization over w and θ. We describe the mathe-

matical development for the constraint form first and for the

penalty form next.

Before proceeding, note that the penalty and the con-

straint forms define problems that are equivalent for appro-

priate choices of κ and α. However, algorithmically they

differ, and one form may be preferable over the other de-

pending on the case; see our discussions later of factors

such as computational cost, global vs local sparsity, or user

friendliness of hyperparameter setting. This is particularly

true with nonconvex problems, having local optima, and

nonsmooth or combinatorial functions such as ℓ0.

1.1. Constraint form for the pruning cost

Let us introduce an auxiliary variable θ in eq. (1) that

duplicates w:

minw,θ L(w) s.t. C(θ) ≤ κ, w = θ. (2)

This problem is in the “model compression as constrained

optimization” form minw,θ L(w) s.t. w = ∆(θ) of [2],

where the “decompression mapping” w = ∆(θ), which re-

covers the uncompressed model parameters from their com-

pressed version, takes a very simple form: w = θ but

satisfying C(θ) ≤ κ, i.e., having few nonzeros. We now

optimize this constrained problem via either the quadratic-

penalty (QP) or augmented-Lagrangian (AL) method (ap-

plied only to the equality constraint, not to the inequality):

Q(w, θ;µ) = L(w) + µ
2
‖w− θ‖2 s.t. C(θ) ≤ κ

LA(w, θ,λ;µ) = L(w) + µ
2
‖w− θ‖2

− λ
T (w − θ) s.t. C(θ) ≤ κ.

For the QP, we optimize Q over (w, θ) while driving µ →
∞, so the equality constraints are satisfied in the limit. For

the AL, we alternate optimizingLA over (w, θ) with updat-

ingλ← λ−µ(w−θ) while drivingµ→∞. The Lagrange

multiplier estimates λ make the iterates (w, θ) be closer to

the solution for the same value of µ, so the AL is preferable.

Finally, in order to optimize the QP or AL functions

over the variables (w, θ), we apply alternating optimiza-

tion. This results in the following steps for the QP:

Learning (L) step (over w) minw L(w) + µ
2
‖w − θ‖2.

This has the form of a usual neural net learning but

with a quadratic regularizer that pulls some weights to

zero (since θ will usually contain some exactly zero

elements) and the rest to some other nonzero value.

Compression (C) step (over θ)

Π≤
C(w;κ) = argminθ ‖w − θ‖2 s.t. C(θ) ≤ κ

(where the “≤” superindex refers to the constraint

form). This has the form of a proximal operator, which

we call pruning operator. It can be solved exactly for

several useful costs C, including ℓ0, ℓ1 and ℓ22. In our

context, “compression” means “weight pruning”.

We describe the C step in more detail later for the QP. For

the AL, replace θ by θ+ 1

µ
λ in the L step, and w by w− 1

µ
λ

in the C step. The suppl. mat. gives the algorithm pseu-

docode for the AL.

Note that the C step does not actually prune weights, it

simply “marks” weights to be pruned (by setting their θi =
0); the wi values stay as nonzero. The L step is the one

that actually updates the real-valued weights wi taking into

account both the loss and the markup. As the LC algorithm

alternates both steps, it explores different sets of marked

weights, eventually converging to a specific set for which

wi −−−−→
µ→∞

0 and thus is actually pruned.

C step The proximal operator θ = Π≤
C(w;κ) =

argminθ ‖w − θ‖2 s.t. C(θ) ≤ κ maps a real-valued

weight vector w to another real-valued vector θ of the same

dimension containing a certain number of zero elements, so

θ is a pruned version of w (and, as we will see, it possibly

shrinks its nonzero values). It has the form of a projection,

or nearest point θ to w (in Euclidean distance) that lies in

the feasible set C(θ) ≤ κ. The projection operator leaves

all weights unchanged if C(w) ≤ κ (i.e., Π≤
C(w;κ) = w).

Otherwise, the resulting θ has C(θ) ≤ κ < C(w), which

implies that θ is “smaller” thanw, and indeed many weights

will individually satisfy |θ|i < |wi|, but some may stay or

increase in magnitude.

The solution for several costs C corresponding to pro-

jection on ℓp balls is well known and is given in fig. 1

(see proofs in the suppl. mat.). When w is in the ball,

θ = w. Otherwise, ℓ0 leaves the top-κ weights unchanged

and prunes the rest; ℓ1 shrinks on average the top-k weights

(where k depends on w and κ) and prunes the rest; and ℓ22
shrinks all weights (normalizes w).

Computationally, a simple algorithm for ℓ0 and ℓ1 in-

volves sorting the elements of w in magnitude (at a runtime

O(n logn) if w has n elements), and scanning this inO(n)
to find the threshold η and return the nonzeros. But both ℓ0
and ℓ1 can be solved is O(n) worst case runtime by using

selection to find the kth value inO(n) (this can be achieved

with a partial quicksort; [7, ch. 9]). For ℓ0, this is obvious.

For ℓ1, see [6]. Since the number of weights in a deep net,

which is our driving application, is large (upwards of mil-

lions in practice), using selection instead of sorting matters.

That said, the L step dominates the C step by far.

1.2. Penalty form for the pruning cost

Although the penalty form does not have the model com-

pression as constrained optimization form of [2], we can

apply the same technique to arrive at a convenient LC algo-

rithm. First we duplicate w via an auxiliary variable θ:

minw,θ L(w) + αC(θ) s.t. w = θ. (3)

8534

Then we optimize this via QP or AL:

Q(w, θ;µ) = L(w) + µ
2
‖w − θ‖2 + αC(θ)

LA(w, θ,λ;µ) = L(w) + µ
2
‖w − θ‖2

− λ
T (w − θ) + αC(θ).

Finally, we apply alternating optimization over (w, θ). This

results in an L step (over w) identical to that of the

constraint form, and a C step (over θ) Π+

C

(

w; 2α
µ

)

=
argminθ ‖w− θ‖2 + 2α

µ
C(θ) (where the “+” superindex

refers to the penalty form). This is again a proximal opera-

tor that can often be solved exactly, as shown next.

C step If the pruning cost separates, C(θ) =
∑n

i=1
c(θi),

so does the C step objective, which can then be solved ele-

mentwise (separately for each weight in the net) and takes

the form Π+
c

(

w; 2α
µ

)

= argminθ (w − θ)2 + 2α
µ
c(θ) with

scalars w, θ ∈ R. Firstly, we show that Π+

C

(

w; 2α
µ

)

makes

w smaller or equal with the same sign.

Theorem 1.1. Call F (θ;w) = (w − θ)2 + 2α
µ
c(θ) where

c(0) = 0, c(θ) > 0 if θ 6= 0, c(θ) = c(−θ) and c(θ) is

nondecreasing for θ ≥ 0. Assume θ∗ = argminθ F (θ;w)
is the unique global minimizer. Then sgn (θ∗) = sgn (w)
and |θ∗| ≤ |w|.

Proof. First, F (−θ;−w) = (−w + θ)2 + 2α
µ
c(−θ) =

(w − θ)2 + 2α
µ
c(θ) = F (θ;w), so F is invariant to negat-

ing θ and w. Second, let w ∈ R. Since (w − θ)2 is smaller

when θ has the same sign as w than when it has the opposite

sign (for the same magnitude of θ), and c(θ) = c(−θ), then

F is smaller also. Hence, θ∗ has the same sign as w. Finally,

we prove by contradiction that θ∗ ≤ w for the case w ≥ 0
w.l.o.g. Suppose θ∗ > w, then F (θ∗;w) = (w − θ∗)2 +
2α
µ
c(θ∗) ≥ (w − θ∗)2 + 2α

µ
c(w) > 2α

µ
c(w) = F (w;w),

which contradicts F (θ∗;w) ≤ F (θ;w) ∀θ ≥ 0.

This means that the pruning operator drives w to zero,

as one would expect, but how this happens depends on the

pruning cost C. Fig. 1 gives explicitly the pruning operator

for several costs (see proofs in the suppl. mat.). We observe

two types of behavior: sparsification, in which weights

within some interval become exactly zero; and shrinkage,

in which weights that do not become zero become smaller

anyway. ℓ0 sparsifies but does not shrink: w is either

pruned (θ = 0) or left as is (θ = w). ℓ1 sparsifies and

shrinks: w is either pruned (θ = 0) or shifted towards zero

(θ = w− sgn (w) α
µ

). ℓ22 does not sparsify but shrinks: w is

divided by a number bigger than 1.

1.3. Global vs local sparsity

In a neural net, a fully-connected layer has many more

weights than a convolutional layer and can be pruned more

aggressively. Hence, allowing a different sparsity level for

each layer (say, 5% unpruned weights for the convolutional

layer and 1% for the fully-connected one) will result in net-

works with lower loss for the same total number of weights.

In the penalty form, this unfortunately requires an expo-

nentially costly selection for the per-layer penalties (“local”

sparsity). However, in the constraint form we can prove

that using a single κ parameter for the whole net (“global”

sparsity) can find the optimal per-layer sparsities. This is re-

markable because we achieve the best of both worlds: ease

of use (only one pruning parameter to select) and best re-

sults. The LC algorithm automatically determines the best

number of weights for each layer.

Theorem 1.2. Let C be a separable pruning cost;

κ1, . . . , κK , κ ∈ R
+ with κ1 + · · · + κK ≤ κ; and Sl =

{w = (w1, . . . ,wK) ∈ R
n: C(w1) ≤ κ1, . . . , C(wK) ≤

κK} and Sg = {w ∈ R
n: C(w) ≤ κ}. Then Sl ⊂ Sg.

Proof. Let w ∈ Sl. Then C(w1) ≤ κ1, . . . , C(wK) ≤
κK , so C(w) = C(w1)+· · ·+C(wK) ≤ κ1+· · ·+κK ≤ κ
and w ∈ Sg.

Our optimization applies equally easily to both global

and local sparsity. For example, for the ℓ0 case with global

sparsity, the top-κ weights throughout the entire net stay

and the rest are pruned; how many weights are pruned in

each layer in the C step arises automatically and optimally.

1.4. Behavior, convergence and practicalities of the
LC algorithm

To follow the path over µ ≥ 0 numerically, we use a mul-

tiplicative schedule µk = µ0a
k, k = 0, 1, 2 . . . , where µ0

is given in the suppl. mat. and a > 1 is determined by trial

and error (using a smaller a follows the path more slowly

and generally gives a better solution, but is computationally

slower). We stop when ‖w − θ‖ is smaller than a set tol-

erance and retrain the unpruned weights. This is unneces-

sary in theory for the ℓ0 cost, but in practice with deep nets

(which are notoriously hard to optimize accurately) retrain-

ing it will improve a bit the result. For the ℓ1 cost retraining

is necessary and will significantly improve the result (and

increase on average the weights’ magnitude).

For large enough µ the LC algorithm will identify the

final set of weights that are pruned, i.e., which elements

in θ are zero. We can analyze what happens at the begin-

ning of the path (see suppl. mat.), which provides an in-

teresting perspective on pruning/retraining algorithms (e.g.

[15]). Essentially, for the constraint form we start at a point

(w(0), θ(0)) = (w, θDC) where w is a well-trained, ref-

erence model, and θDC = Π≤
C(w;κ). This was called di-

rect compression (here, direct pruning) in [2], as it corre-

sponds to pruning the reference weights independently of

the loss. The weights θDC result from magnitude pruning

of the reference weights w and they produce a large loss,

8535

C(w) Constraint form†
θ = Π≤

C(w;κ) Penalty form θ = Π+

C

(

w; 2α
µ

)

‖w‖
0

wi · I
(

|wi| > η0
)

wi · I(|wi| >
√

2α
µ
)

‖w‖
1

(wi − sgn (wi) η1) · I(|wi| > η1)
(

wi − sgn (wi)
α
µ

)

· I
(

|wi| > α
µ

)

‖w‖2
2

√
κwi/‖w‖2 wi/

(

1 + 2α
µ

)

†Each formula applies if C(w) > κ, otherwise θ = w. −2 −1 0 1 2

−1

−0.5

0

0.5

1

w

θ

ℓ0 ℓ1
ℓ22

Figure 1. C step solution: selected pruning cost functions C(w) and their corresponding pruning operators Π≤
C(w;κ) (constraint form)

and Π+

C

(

w; 2α
µ

)

(penalty form). All cases result in an elementwise operator that computes θi from wi for each weight. The threshold η0
equals the magnitude of the (κ+ 1)th largest weight. The threshold η1 can be obtained by scanning wi in decreasing order of magnitude

(see main text). The graph plots the elementwise pruning operator for the penalty form.

which can be reduced by retraining the nonzero weights in

θDC. This pruning/retraining approach is perhaps the most

widespread pruning method for deep nets; we discuss it fur-

ther in section 3.

Theorem 2.1 in [2] applies to our penalty form (3) with-

out modification and should be easy to extend to our con-

straint form (2) (which contains the extra constraint C(θ) ≤
κ). Essentially, it states that if we follow the path closely

enough (by minimizing Q or LA for each µ via sufficiently

many L and C steps), then we reach a local solution in the

limit µ → ∞. However, that theorem assumes smooth

(though not necessarily convex)L(w) andC(θ). This holds

for ℓ22 but not for the more interesting, sparsifying costs ℓ0
and ℓ1. Guarantees for ℓ0 are likely hard to come by be-

cause it defines an NP-complete problem. Guarantees for

ℓ1 may be easier to state.

1.5. Relation with compressed sensing and Lasso

All four variations of our LC algorithm (ℓ0/ℓ1, con-

straint/penalty) arise from a common methodology: to du-

plicate variables w = θ, apply a penalty method and opti-

mize alternatingly over w and θ. Although our focus is on

deep neural nets, these algorithms also apply when the loss

L(w) is quadratic and the model is linear. There is a relation

with some fundamental algorithms in compressed sensing

and sparse learning, specifically Lasso regression. These

minimize over w objectives of the type ‖y −Aw‖2, where

w is sparse. The alternating direction method of multipliers

(ADMM) for the Lasso [19] uses an ℓ1 penalty and the re-

sulting algorithm is the same as our ℓ1-penalty variation. It-

erative hard thresholding (IHT) [11] seeks an (approximate)

ℓ0-constraint solution, but its algorithm is somewhat differ-

ent from our ℓ0-constraint variation, involving a gradient

step and a hard thresholding step. Those algorithms have

been found very effective in practice and enjoy certain the-

oretical guarantees of finding the global minimum of the ℓ0
problem (under assumptions such as restricted isometry or

incoherence on the matrix A and vectors w, y). It is un-

clear whether any of those guarantees may carry over to our

case of interest, neural net pruning, but it is encouraging

that such guarantees may hold in the linear case.

2. Experiments

We evaluate our LC algorithm for pruning on classifica-

tion neural nets of different sizes in the MNIST (LeNet) and

CIFAR10 (ResNets) datasets and compare with magnitude-

based pruning, that is, pruning all but the largest magnitude

weights of the reference net and retraining them. We ex-

ceed or are comparable in both training and test error with

any published results we know of, at any pruning level, even

though we use a single user parameter κ or α and a single

round of pruning. Code/data are available from the authors.

We report the augmented Lagrangian results and use al-

ways a single, global parameter (κ for the constraint form,α
for the penalty form). We used the Theano [30] and Lasagne

[10] libraries. We initialize all algorithms from a reasonably

(but not necessarily perfectly) well-trained reference model.

The initial LC iteration (µ = 0) for the constraint form gives

the magnitude-based pruning solution. We only prune the

multiplicative weights in the net, not the biases. We report

the loss and classification error in training and test, and the

proportion (%) of pruned weights (total and per layer).

The optimization parameters are as follows throughout

our experiments with minor exceptions (see suppl. mat. and

[4]). We use Nesterov’s accelerated gradient method [26]

with momentum 0.95 for around 100k minibatches, with a

learning rate of the form η · 0.99j (where η is between 0.02

and 0.1), running 2k iterations for every j (each a minibatch

of 512 points). Our LC algorithm uses µj = µ0a
j with

µ0 = 9.76 · 10−5 and a = 1.1, for 0 ≤ j ≤ 30. The

jth L step runs 2k SGD iterations. We retrain the surviving

weights with SGD for our LC algorithm and for magnitude-

based pruning. The total runtime of our LC algorithm is

roughly given by the number of L steps; we found it is to be

no more than 1.5 times the runtime of the reference net.

Classification on MNIST with LeNet300 and LeNet5

The LeNet models [22] are a widely used benchmark that

allows for comparison with published work. We randomly

split the MNIST training dataset (60k grayscale images of

28 × 28, 10 digit classes) into training (90%) and valida-

tion (10%) sets. We normalize the pixel grayscales to [0,1]

8536

and then subtract the mean. The loss is the average cross-

entropy. LeNet300 is a 3-layer fully-connected feedforward

net 784–300–100–10 with tanh activations and softmax out-

puts, total 266 610 learnable parameters. LeNet5 is a con-

volutional net with ReLU activations and softmax outputs,

total 431k trainable parameters. We report results mostly

for LeNet300; see full details in the suppl. mat.

Table 1 gives a subset of pruning results for LeNet300.

Generally, the constraint form does better than the penalty

form, and the ℓ0 cost does better than the ℓ1 cost, but not

significantly. Retraining the pruned net has a large effect

for the ℓ1 cost, as expected, because ℓ1 shrinks the surviv-

ing weights: the loss decreases and the weights’ magnitude

increases on average. Retraining has barely any effect for

the ℓ0 cost, which does not shrink the weights.

We did not try to find the very best parameter settings

(for the pruning cost κ or α, or for the SGD and LC

optimization parameters), instead we sample what can be

achieved. (Note that for ℓ0-constraint the proportion P%

of surviving weights is directly given by κ, which is con-

venient for the user; but for ℓ1-constraint and the penalty

forms, achieving a desired P% requires trial and error of κ
or α, which is cumbersome.) We can prune ∼ 98–99% of

the weights with about the same loss/error as the reference.

We can go beyond 99% with a minor degradation. This

outperforms nearly all published work we have seen: mag-

nitude pruning done in stages in [15] achieves 92% (a little

better than the single-stage magnitude pruning we show)

and [32] is much worse. Only [13] is comparable to us,

however their results are not reproducible based on the in-

formation in the paper, which neglects to disclose even the

per-layer pruning parameters they used. Besides, tuning by

hand the pruning parameter for each layer or the stages of

pruning makes the network designer effectively part of the

algorithm, painstakingly so. We reiterate we simply select a

single pruning parameter, which for the ℓ0 constraint form

is trivial to set: κ equals the number of surviving weights.

Now we analyze which weights and neurons get pruned

and how this changes over LC iterations, as the final con-

nectivity structure is very interesting. Fig. 2 shows the

weight vectorsθ over LC iterations for 5 selected neurons in

the first layer of LeNet300, for pruning around 95% weights

(the same neurons for each combination of ℓ0/ℓ1 and con-

straint/penalty). As the LC algorithm iterates, θ marks

weights for pruning and w approaches θ until w = θ upon

convergence. Each weight vector can be shown as a 28×28
color image (red: positive, blue: negative, white: zero,

gray: neuron pruned). The initial weights appear random

and cover the entire image area. For the constraint form,

the first iteration prunes all weights except the largest ones.

For the penalty form, the first iteration prunes all weights,

but when µ ≈ µ0 the largest weights revive (see theoret-

ical analysis in suppl. mat.). After that, different weights

move in and out of the marked subset. The evolution of

weights and neurons can be seen dramatically in an ani-

mation (suppl. mat.), in particular how for ℓ1 the “weight

mass” of a pruned neuron is captured by weights in other

neurons. Although the weights change during training, the

final weights resemble the initially pruned ones to some ex-

tent. The ℓ1 cost changes weights more than the ℓ0 one,

and results in more neurons being pruned. The final weight

vectors often segment the image into negative and positive

regions reminiscent of center-surround receptive fields, but

these regions are sparse rather than compact. Presumably

this is because neighboring pixels are correlated and it suf-

fices to sample a few to capture a good feature.

Although our algorithm prunes weights, not neurons, we

observe an aggressive neuron pruning in the first layer,

much more than would be expected if weights were pruned

uniformly at random. Even though there are 5% of 784 ≈
39 surviving input weights per first-layer neuron, in fact up

to 3/4 of the neurons are pruned (which hence have ≈ 120

weights); see fig. 3 (# alive weights). Likewise, about half

of the input neurons (pixels) have all output weights pruned

and so are pruned (mostly around the image boundaries,

which are constant in MNIST; for ℓ0-constraint, it looks like

this:). Indeed, the original LeNet300 architecture 784–

300–100–10 becomes 400–64–99–10 with similar or even

better loss (for the ℓ1-constraint). Hence, our pruning algo-

rithm might be useful to do feature selection and determine

the optimal number of neurons in each layer automatically.

A neuron is pruned when all its input and output weights

are pruned. We observe the input weights disappear first,

followed by the output ones. ℓ0 is slightly less effective

in pruning neurons: upon convergence we often find a few

neurons each having no input weights and only a few output

weights. With ℓ1, no such neurons remain. This is visible in

the green curves in fig. 3 (# alive weights), corresponding to

the fan-in and fan-out of layer 1: for ℓ1 they both go down

(fan-in first, then fan-out) and join upon convergence; for

ℓ0 this happens partially (which is not a problem since such

neurons can be safely removed in a postprocessing step).

Fig. 3 (right subplots) shows the weight distribution in

layer 1. It starts as a zero-mean Gaussian (from the refer-

ence net). Then it becomes trimodal, with a peak at zero

(pruned weights) and two skewed distributions for negative

and positive weights. For ℓ0 the gap between the last two is

much wider than for ℓ1.

Classification on CIFAR10 with ResNets The ResNet

models [20] are one of the best performing deep nets in re-

cent literature, and they are also very lean, achieving state-

of-the-art classification error with a much smaller number

of weights than other nets such as AlexNet or VGG. This

makes them harder to prune, and indeed we are aware of

only one other work on pruning ResNets on CIFAR10 [24].

8537

κ or Before retraining After retraining

P% logα logL Etrain Etest logL Etrain Etest ∆w%

R 100=[100 100 100] -3.87 0 2.28
ℓ 0

-c 3=[1.6 11 76] 7986 -3.81 0 2.27 -3.86 0 2.13 0.22

1=[0.5 2.7 65] 2662 -0.68 5.64 6.90 -1.66 0.59 3.17 -1.99

ℓ 1
-c 2.4=[1.9 4.5 33] 1000 -0.56 9.19 10.16 -2.53 0.003 2.49 38.2

1.3=[0.9 4.2 20] 500 0.43 61.49 60.30 -1.43 1.04 3.27 123.00

ℓ 0
-p 2.9=[1.8 8.2 72] -5.69 -3.89 0 2.26 -3.94 0 2.23 0.26

0.6=[0.3 1.7 44] -5.00 0.01 25.12 23.82 -1.12 2.42 3.77 -4.22

ℓ 1
-p 3.5=[3.0 5.6 38] -4.60 -1.88 0 2.82 -3.07 0 2.21 17.52

1.7=[1.4 3.5 6.1] -4.00 0.26 52.19 52.04 -1.95 0.12 2.67 118.74

m
ag 10=[5.7 40 87] -0.19 16.11 16.13 -3.67 0 2.26 23.21

1=[0.1 5.5 74] 0.88 80.91 80.97 -0.95 3.40 4.58 93.00

Table 1. Representative pruning results for the LeNet300 reference net R, and before and after retraining the surviving weights: magnitude-

based and our LC algorithm (ℓ0 and ℓ1 cost, κ-constraint and α-penalty forms). We report: proportion of surviving weights P (%) in total

and per-layer; training loss logL and training and test classification error Etrain and Etest (%); and the average relative increase in weight

magnitude after retraining ∆w = ‖wafter‖/‖wbefore‖ − 1 (as %).

ℓ0-constraint ℓ1-constraint ℓ0-penalty ℓ1-penalty

0

1

2

3

31

Figure 2. Weight vector of selected first-layer neurons over iterations (0 = reference), P ≈ 5%. Zoom in to see details.

ℓ0-constraint ℓ1-constraint

#
al

iv
e

in
/o

u
t

w
ei

g
h
ts

5 10 15 20 25 30
0

200

400

600

800

layer0out

layer1in

layer1out

layer2in

layer2out

layer3in

iterations

#
w

ei
g
h
ts

-0.5 0 0.5
10

0

10
1

0
1
10
20
30

weights wi ∈ R
5 10 15 20 25 30

layer0out

layer1in

layer1out

layer2in

layer2out

layer3in

iterations
-0.5 0 0.5

0
1
10
20
30

weights wi ∈ R

Figure 3. Connectivity statistics: left subplot, # neurons having nonzero weights (input or output, as indicated, for each layer); right subplot,

distribution of weights for selected iterations for layer 1.

We train ResNets of depth 32, 56 and 110 layers (0.46M,

0.85M and 1.7M parameters, respectively) on the CIFAR10

dataset using the same setup as in [20]. We randomly split

the dataset (50k RGB images of 32× 32, 10 object classes)

into 90% training and 10% validation, and report results on

the CIFAR10 test portion having 10k RGB images of the

same sizes. For training, we subtract the pixel mean and use

simple augmentation (random horizontal flip, zero pad with

4 pixels on each side and randomly crop a 32 × 32 image).

For test we use the original images without augmentation.

We select the net having smallest validation error during

training. We train reference nets, nets compressed with our

LC algorithm (ℓ0-constraint version) and with magnitude-

based pruning, followed by retraining the surviving weights

8538

P% κ (# weights) Etest LC Etest mag.

R 0.46M 7.72 7.72
15 69 281 7.32 8.85

3
2
-l

ay
er

s

10 46 188 7.88 9.41
5 23 094 9.26 12.07
3 13 857 10.74 14.35

R 0.85M 6.86 6.86
15 127 342 6.92 7.39

5
6
-l

ay
er

s

10 84 895 6.67 8.66
5 42 448 7.51 9.48
3 25 469 8.21 11.50

R 1.7M 6.70 6.70
15 257 979 6.30 7.22

1
1
0
-l

ay
er

s

10 171 986 6.50 7.20
5 85 993 6.93 8.23
3 51 596 7.61 9.32

5 10 15

8

10

12

14

te
st

er
ro

r
E

te
st

(%
)

proportion of surviving weights P%

ResNet-32
ResNet-56

ResNet-110

Figure 4. ResNet results for the reference net R, and for pruning

after retraining the surviving weights: magnitude-based and our

LC algorithm (ℓ0-constraint). We report: proportion of surviving

weights P (%), κ hyperparameter for LC (equal to the number of

surviving weights), and the test error for LC and magnitude-based

pruning, in tabular form (above) and as tradeoff curves of error

vs sparsity (below). Thick lines: LC, thin lines: magnitude-based

pruning, horizontal dashed lines: reference nets.

(see details in the suppl. mat.).

Fig. 4 shows the results. We are able to achieve con-

siderable pruning of P ≈ 5–10% surviving weights with

about the same test error as the reference. The LC er-

rors are always much lower than those of magnitude-based

pruning. We found one published comparison point: [24]

remove filters from convolutional layers for ResNet56/110

and achieve P = 67.6% for ResNet110 (error 6.7%) and

P = 86.3% ResNet56 (error 6.94%). Our LC algorithm

achieves a much stronger pruning P = 10% for ResNet110

(error 6.50%) and ResNet56 (error 6.67%).

3. Discussion

Most pruning approaches are based on the idea of per-

manently removing a subset of weights (“hard pruning”)

based on some criterion that measures the importance of

each weight (such as magnitude or curvature), and then re-

training the remaining weights. This approach is successful:

it can prune many weights with no or little loss degrada-

tion. However, it is heuristic, lacking a theoretical under-

standing of how good these criteria are, and greedy: its suc-

cess depends on choosing the right subset to prune among

all possible subsets of weights, since there is no backtrack-

ing. The pruning/retraining process may be repeated several

times, each time removing a small subset of the weights. By

trial-and-error, one can make this improve over choosing a

single large subset, but this effectively shifts the effort of

searching over solutions to the user and is not practical (tak-

ing into account the long training times required for a deep

net). An important consequence of our optimization-based

approach is that magnitude pruning arises naturally both in

the constraint and penalty forms with ℓ0 and ℓ1. Hence, our

LC algorithm gives theoretical support to the use of mag-

nitude as criterion. But it differs from previous methods in

that it uses it gradually, by exploring possible sets of pruned

weights while optimizing the loss over all weights, without

committing irrevocably to any set (“soft pruning”). All the

weights are there throughout training, but some are marked

as currently pruned (zeros in θ). Compared to hard pruning,

this helps find a better subset and hence prune more weights

with no or little loss degradation.

Finally, we recommend using our LC algorithm with the

ℓ0 or ℓ1 constraint form and a global κ pruning parameter,

because it learns automatically the optimal pruning level for

each layer. Also, setting κ for ℓ0 is very simple: it equals

the desired number of surviving weights.

4. Conclusion

Our algorithm vindicates magnitude-based pruning but

in a soft, iterative way. It explores many weight sets in

search of a good one rather than committing greedily to the

largest weights in the reference model. It is easy to imple-

ment: most of the runtime is spent training the reference

model with a quadratic regularization term, with fast, peri-

odic updates to the set of weights to be pruned and to the

Lagrange multipliers. A crucial advantage is that it auto-

matically determines the best number of weights to prune in

each layer even though it uses a single user parameter. This

avoids an exponentially costly search over per-layer prun-

ing parameters and vastly simplifies the network designer’s

job. Although we focused on model compression, our al-

gorithm may be generally used during training to achieve

good generalization and a small net.

Acknowledgments

Work supported by NSF award IIS–1423515, by a UC

Merced Faculty Research Grant, by a Titan X Pascal GPU

donated by the NVIDIA Corporation, and by computing

time in the MERCED cluster (NSF grant ACI–1429783).

8539

