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Abstract

In this work we introduce a time- and memory-efficient

method for structured prediction that couples neuron de-

cisions across both space at time. We show that we are

able to perform exact and efficient inference on a densely-

connected spatio-temporal graph by capitalizing on recent

advances on deep Gaussian Conditional Random Fields

(GCRFs). Our method, called VideoGCRF is (a) effi-

cient, (b) has a unique global minimum, and (c) can

be trained end-to-end alongside contemporary deep net-

works for video understanding. We experiment with mul-

tiple connectivity patterns in the temporal domain, and

present empirical improvements over strong baselines on

the tasks of both semantic and instance segmentation of

videos. Our implementation is based on the Caffe2 frame-

work and will be available at https://github.com/

siddharthachandra/gcrf-v3.0.

1. Introduction

Video understanding remains largely unsolved despite

significant improvements in image understanding over the

past few years. The accuracy of current image classification

and semantic segmentation models is not yet matched in

action recognition and video segmentation, to some extent

due to the lack of large-scale benchmarks, but also due to

the complexity introduced by the time variable. Combined

with the increase in memory and computation demands,

video understanding poses additional challenges that call

for novel methods.

Our objective in this work is to couple the decisions

taken by a neural network in time, in a manner that allows

information to flow across frames and thereby result in de-

cisions that are consistent both spatially and temporally. To-

wards this goal we pursue a structured prediction approach,

where the structure of the output space is exploited in order

to train classifiers of higher accuracy. For this we introduce

VideoGCRF, an extension into video segmentation of the

Deep Gaussian Random Field (DGRF) technique recently
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Figure 1: Overview of our VideoGCRF approach: we

jointly segment multiple images by passing them firstly

through a fully convolutional network to obtain per-pixel

class scores (‘unary’ terms U), alongside with spatial (S)

and temporal (T) embeddings. We couple predictions at

different spatial and temporal positions in terms of the in-

ner product of their respective embeddings, shown here as

arrows pointing to a graph edge. The final prediction is ob-

tained by solving a linear system; this can eliminate spu-

rious responses, e.g. on the left pavement, by diffusing the

per-pixel node scores over the whole spatio-temporal graph.

The CRF and CNN architecture is jointly trained end-to-

end, while CRF inference is exact and particularly efficient.

proposed for single-frame structured prediction in [5, 6].

We show that our algorithm can be used for a variety of

video segmentation tasks: semantic segmentation (CamVid

dataset), instance tracking (DAVIS dataset), and a combina-

tion of instance segmentation with Mask-RCNN-style ob-

ject detection, customized in particular for the person class

(DAVIS Person dataset).

Our work inherits all favorable properties of the DGRF

method: in particular, our method has the advantage of

delivering (a) exact inference results through the solu-

tion of a linear system, rather than relying on approxi-

mate mean-field inference, as [24, 25], (b) allowing for ex-

act computation of the gradient during back-propagation,

thereby alleviating the need for the memory-demanding

back-propagation-through-time used in [41] (c) making it

possible to use non-parametric terms for the pairwise term,

rather than confining ourselves to pairwise terms of a pre-

determined form, as [24, 25], and (d) facilitating inference
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on both densely- and sparsely-connected graphs, as well as

facilitating blends of both graph topologies.

Within the literature on spatio-temporal structured pre-

diction, the work that is closest in spirit to ours is the work

of [25] on Feature Space Optimization. Even though our

works share several conceptual similarities, our method is

entirely different at the technical level. In our case spatio-

temporal inference is implemented as a structured, ‘lat-

eral connection’ layer that is trained jointly with the feed-

forward CNNs, while the method of [25] is applied at a

post-processing stage to refine a classifier’s results.

1.1. Previous work

Structured prediction is commonly used by semantic

segmentation algorithms [5, 6, 7, 9, 10, 35, 38, 41] to

capture spatial constraints within an image frame. These

approaches may be extended naively to videos, by mak-

ing predictions individually for each frame. However, in

doing so, we ignore the temporal context, thereby ignor-

ing the tendency of consecutive video frames to be sim-

ilar to each other. To address this shortcoming, a num-

ber of deep learning methods employ some kind of struc-

tured prediction strategy to ensure temporal coherence in

the predictions. Initial attempts to capture spatio-temporal

context involved designing deep learning architectures [22]

that implicitly learn interactions between consecutive im-

age frames. A number of subsequent approaches used Re-

current Neural Networks (RNNs) [2, 12] to capture inter-

dependencies between the image frames. Other approaches

have exploited optical flow computed from state of the art

approaches [17] as additional input to the network [14, 18].

Finally, [25] explicitly capture temporal constraints via pair-

wise terms over probabilistic graphical models, but operate

post-hoc, i.e. are not trained jointly with the underlying net-

work.

In this work, we focus on three problems, namely (i)

semantic and (ii) instance video segmentation as well as

(iii) semantic instance tracking. Semantic instance track-

ing refers to the problem where we are given the ground

truth for the first frame of a video, and the goal is to pre-

dict these instance masks on the subsequent video frames.

The first set of approaches to address this task start with

a deep network pretrained for image classification on large

datasets such as Imagenet or COCO, and finetune it on the

first frame of the video with labeled ground truth [4, 37], op-

tionally leveraging a variety of data augmentation regimes

[23] to increase robustness to scale/pose variation and oc-

clusion/truncation in the subsequent frames of the video.

The second set of approaches poses this problem as a warp-

ing problem [29], where the goal is to warp the segmenta-

tion of the first frame using the images and optical flow as

additional inputs [19, 23, 26].

A number of approaches have attempted to exploit tem-

poral information to improve over static image segmenta-

tion approaches for video segmentation. Clockwork con-

vnets [32] were introduced to exploit the persistence of fea-

tures across time and schedule the processing of some layers

at different update rates according to their semantic stabil-

ity. Similar feature flow propagation ideas were employed

in [25, 42]. In [28] segmentations are warped using the flow

and spatial transformer networks. Rather than using optical

flow, the prediction of future segmentations [21] may also

temporally smooth results obtained frame-by-frame. Fi-

nally, the state-of-the-art on this task [14] improves over

PSPnet[40] by warping the feature maps of a static segmen-

tation CNN to emulate a video segmentation network.

2. VideoGCRF

In this work we introduce VideoGCRF, extending the

Deep Gaussian CRF approach introduced in [5, 6] to op-

erate efficiently for video segmentation. Introducing a CRF

allows us to couple the decisions between sets of variables

that should be influencing each other; spatial connections

were already explored in [5, 6] and can be understood as

propagating information from distinctive image positions

(e.g. the face of a person) to more ambiguous regions (e.g.

the person’s clothes). In this work we also introduce tempo-

ral connections to integrate information over time, allowing

us for instance to correctly segment frames where the ob-

ject is not clearly visible by propagating information from

different time frames.

We consider that the input to our system is a video

V = {I1, I2, . . . , IV } containing V frames. We denote

our network’s prediction as xv, v = 1, . . . , V , where at

any frame the prediction xi ∈ R
PL provides a real-valued

vector of scores for the L classes for each of the P image

patches; for brevity, we denote by N = P × L the num-

ber of prediction variables. The L scores corresponding to

a patch can be understood as inputs to a softmax function

that yields the label posteriors.

The Gaussian-CRF (or, G-CRF) model defines a joint

posterior distribution through a Gaussian multivariate den-

sity for a video as:

p(x|V) ∝ exp(−
1

2
x⊤AVx +BVx),

where BV , AV denote the ‘unary’ and ‘pairwise’ terms re-

spectively, with BV ∈ R
NV and AV ∈ R

NV×NV . In the

rest of this work we assume that A,B depend on the input

video and we omit the conditioning on V for convenience.

What is particular about the G-CRF is that, assuming

the matrix of pairwise terms A is positive-definite, the

Maximum-A-Posterior (MAP) inference merely amounts to

solving the system of linear equations Ax = B. In fact, as

in [5], we can drop the probabilistic formulation and treat

the G-CRF as a structured prediction module that is part
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Figure 2: VideoGCRF schematic for 2 video frames. Our network takes in 2 input images, and delivers the per frame unaries

b1,b2, spatial embeddings A1,A2, and temporal embeddings T1, T2 in the feed-forward mode. Our VideoGCRF module

collects these and solves the inference problem in Eq. 2 to recover predictions x1,x2. During backward pass, the gradients

of the predictions are delivered to the VideoGCRF model. It uses these to compute the gradients for the unary terms as well

as the spatio-temporal embeddings and back-propagates them through the network.

of a deep network. In the forward pass, the unary and the

pairwise terms B and A, delivered by a feed-forward CNN

described in Sec. 2.1 are fed to the G-CRF module which

performs inference to recover the prediction x by solving a

system of linear equations given by

(A+ λI)x = B, (1)

where λ is a small positive constant added to the diagonal

entries of A to make it positive definite.

For the single-frame case (V = 1) the iterative conju-

gate gradient [33] algorithm was used to rapidly solve the

resulting system for both sparse [5] and fully connected [6]

graphs; in particular the speed of the resulting inference is in

the order of 30ms on the GPU, almost two orders of mag-

nitude faster than the implementation of DenseCRF [24],

while at the same time giving more accurate results.

Our first contribution in this work consists in designing

the structure of the matrix AV so that the resulting system

solution remains manageable as the number of frames in-

creases. Once we describe how we structure AV , we then

will turn to learning our network in an end-to-end manner.

2.1. Spatiotemporal connections

In order to capture the spatio-temporal context, we are

interested in capturing two kinds of pairwise interactions:

(a) pairwise terms between patches in the same frame and

(b) pairwise terms between patches in different frames.

Denoting the spatial pairwise terms at frame v by Av and

the temporal pairwise terms between frames u, v as Tu,v we

can rewrite Eq. 1 as follows:











A1 + λI T1,2 · · · T1,V

T2,1 A2 + λI · · · T2,V

...

TV,1 TV,2 · · · AV + λI





















x1
x2
...

xV











=











b1

b2

...

bV











,

(2)

where we group the variables by frames. Solving this sys-

tem allows us to couple predictions xv across all video

frames v ∈ {1, . . . , V }, positions, p and labels l. If fur-

thermore Av = AT
v , ∀v and Tu,v = TT

v,u, ∀u, v then the

resulting system is positive definite for any positive λ.

We now describe how the pairwise terms Av, Tu,v are

constructed through our CNN, and then discuss acceleration

of the linear system in Eq. 2 by exploiting its structure.

Spatial Connections: We define the spatial pairwise

terms in terms of inner products of pixel-wise embeddings,

as in [6]. At frame v we couple the scores for a pair of

patches pi, pj taking the labels lm, ln respectively as fol-

lows:

Av,pi,pj
(lm, ln) = 〈Alm

v,pi
,Aln

v,pj
〉, (3)

where i, j ∈ {1, . . . , P} and m,n ∈ {1, . . . , L}, v ∈
{1, . . . , V }, and Aln

v,pj
∈ R

D is the embedding associated

to point pj . In Eq. 3 the Aln
v,pj

terms are image-dependent

and delivered by a fully-convolutional “embedding” branch

that feeds from the same CNN backbone architecture, and

is denoted by Av in Fig. 2.

The implication of this form is that we can afford infer-

ence with a fully-connected graph. In particular the rank

of the block matrix Av = A⊤
v Av , equals the embedding

dimension D, which means that both the memory- and
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time- complexity of solving the linear system drops from

O(N2) to O(ND), which can be several orders of magni-

tude smaller. Thus, Av ∈ R
N×D

Temporal Connections: Turning to the temporal pair-

wise terms, we couple patches pi, pj coming from different

frames u, v taking the labels lm, ln respectively as

Tu,v,pi,pj
(lm, ln) = 〈T lm

u,pi
, T ln

v,pj
〉, (4)

where u, v ∈ {1, . . . , V }. The respective embedding terms

are delivered by a branch of the network that is separate,

temporal embedding network denoted by Tv in Fig. 2.

In short, both the spatial pairwise and the temporal pair-

wise terms are composed as Gram matrices of spatial and

temporal embeddings as Av = A⊤
v Av , and Tu,v = T ⊤

u Tv .

We visualize our spatio-temporal pairwise terms in Fig. 3.

VideoGCRF in Deep Learning: Our proposed spatio-

temporal Gaussian CRF (VideoGCRF) can be viewed as

generic deep learning modules for spatio-temporal struc-

tured prediction, and as such can be plugged in at any

stage of a deep learning pipeline: either as the last layer,

i.e. classifier, as in our semantic segmentation experiments

(Sec. 3.3), or even in the low-level feature learning stage, as

in our instance segmentation experiments (Sec. 3.1).

2.2. Efficient ConjugateGradient Implementation

We now describe an efficient implementation of the con-

jugate gradient method [33], described in Algorithm 1 that

is customized for our VideoGCRFs.

Algorithm 1 Conjugate Gradient Algorithm

1: procedure CONJUGATEGRADIENT

2: Input: A, B, x0 Output: x | Ax = B

3: r0 := B−Ax0; p0 := r0; k := 0
4: repeat

5: αk :=
rTkrk

pT

k
Apk

6: xk+1 := xk + αkpk

7: rk+1 := rk − αkApk

8: if ‖rk+1‖ is sufficiently small, then exit loop

9: βk :=
rTk+1rk+1

rT
k
rk

10: pk+1 := rk+1 + βkpk

11: k := k + 1
12: end repeat

13: x = xk+1

The computational complexity of the conjugate gradient

algorithm is determined by the computation of the matrix-

vector product q = Ap, corresponding to line :7 of Al-

gorithm 1 (we drop the subscript k for convenience).

We now discuss how to efficiently compute q in a man-

ner that is customized for this work. In our case, the matrix-

vector product q = Ap is expressed in terms of the spatial

(A) and temporal (T ) embeddings as follows:











q1

q2
...

qV











=











AT
1 A1 + λI T T

1 T2 · · · T T
1 TV

T T
2 T1 AT

2 A2 + λI · · · T T
2 TV

...

T T
V T1 T T

V T2 · · · AT
V AV + λI





















p1

p2
...

pV











(5)

From Eq. 5, we can express qi as follows:

qi = AT
i Aipi + λpi +

∑

j 6=i

T T
i Tjpj . (6)

One optimization that we exploit in computing qi effi-

ciently is that we do not ‘explicitly’ compute the matrix-

matrix products AT
i Ai or T T

i Tj . We note that AT
i Aipi

can be decomposed into two matrix-vector products as

AT
i (Aipi), where the expression in the brackets is evalu-

ated first and yields a vector, which can then be multiplied

with the matrix outside the brackets. This simplification al-

leviates the need to keep N × N terms in memory, and is

computationally cheaper.

Further, from Eq. 6, we note that computation of qi re-

quires the matrix-vector product Tjpj ∀j 6= i. A black-box

implementation would therefore involve redundant compu-

tations, which we eliminate by rewriting Eq. 6 as:

qi = AT
i Aipi + λpi + T T

i



(
∑

j

Tjpj)− Tipi



 . (7)

This rephrasing allows us to precompute and cache
∑

j Tjpj , thereby eliminating redundant calculations.

While so far we have assumed dense connections be-

tween the image frames, if we have sparse temporal con-

nections (Sec. 3.1), i.e. each frame is connected to a subset

of neighbouring frames in the temporal domain, the linear

system matrix A is sparse, and qi is written as

qi = AT
i Aipi + λpi +

∑

j∈N (i)

T T
i Tjpj , (8)

where N (i) denotes the temporal neighbourhood of frame i.

For very sparse connections caching may not be necessary

because these involve little or no redundant computations.

2.3. Backward Pass

Since we rely on the Gaussian CRF we can get the back-

propagation equation for the gradient of the loss with re-

spect to the unary terms, bv , and the spatial/temporal em-

bedding terms Av, Tv in closed form. Thanks to this we

do not have to perform back-propagation in time which was

needed e.g. in [41] for DenseCRF inference. Following [6],
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the gradients of the unary terms ∂L
∂bv

are obtained from the

solution of the following system:











A1 + λI T1,2 · · · T1,V

T2,1 A2 + λI · · · T2,V

...

TV,1 TV,2 · · · AV + λI





















∂L
∂b1
∂L
∂b2

...
∂L
∂bV











=











∂L
∂x1
∂L
∂x2

...
∂L
∂xV











(9)

Once these are computed, the gradients of the spatial em-

beddings can be computed as follows:

∂L

∂Av

= −

(

∂L

∂bv

⊗ xv

)

((

I⊗A⊤
v

)

+
(

A⊤
v ⊗ I

)

QD,N

)

(10)

while the gradients of the temporal embeddings are given

by the following form:

∂L

∂Tv
= −

∑

u

(

∂L

∂bu

⊗ xv

)

((

I⊗ T ⊤
u

)

+
(

T ⊤
u ⊗ I

)

QD,N

)

(11)

where QD,N is a permutation matrix, as in [6].

2.4. Implementation and Inference Time

Our implementation is GPU based and exploits fast

CUDA-BLAS linear algebra routines. It is implemented as

a module in the Caffe2 library. For spatial and temporal

embeddings of size 128, 12 classes (Sec. 3.3), a 321 × 321
input image, and network stride of 8, our 2, 3, 4 frame in-

ferences take 0.032s, 0.045s and 0.061s on average respec-

tively. Without the caching procedure described in Sec. 2.2,

the 4 frame inference takes 0.080s on average. This is or-

ders of magnitude faster than the DenseCRF method [24]

which takes 0.2s on average for spatial CRF for a single

input frame. These timing statistics were estimated on a

GTX-1080 GPU.

3. Experiments

Experimental Setup. We describe the basic setup followed

for our experiments. As in [6], we use a 3−phase training

strategy for our methods. We first train the unary network

without the spatio-temporal embeddings. We next train

the subnetwork delivering the spatio-temporal embeddings

with the softmax cross-entropy loss to enforce the follow-

ing objectives: Ap1,p2
(l1, l2) < Ap1,p2

(l′1 6= l1, l
′
2 6= l2),

and Tu,v,p1,p2
(l1, l2) < Tu,v,p1,p2

(l′1 6= l1, l
′
2 6= l2), where

l1, l2 are the ground truth labels for pixels p1, p2. Fi-

nally, we combine the unary and pairwise networks, and

train them together in end-to-end fashion. Unless otherwise

stated, we use stochastic gradient descent to train our net-

works with a momentum of 0.9 and a weight decay of 5e−4.

For segmentation experiments, we use a base-learning rate

of 2.5e−3 for training the unaries, 2.5e−4 for training the

             spatial affinities temporal affinities

FCN: Frame-by-frame segmentation 

VideoGCRF: Spatio-temporal segmentation 

Figure 3: Visualization of instance segmentation through

VideoGCRF: In row 1 we focus on a single point of the

CRF graph, shown as a cross, and show as a heatmap its

spatial (inter-frame) and temporal (intra-frame) affinities to

all other graph nodes. These correspond to a single col-

umn of the linear system in Eq. 2. In row 2 we show the

predictions that would be obtained by frame-by-frame seg-

mentation, relying exclusively on the FCN’s unary terms,

while in row 3 we show the results obtained after solv-

ing the VideoGCRF inference problem. We observe that in

frame-by-frame segmentation a second camel is incorrectly

detected due to its similar appearance properties. How-

ever, VideoGCRF inference exploits temporal context and

focuses solely on the correct object.

embeddings, and 1e−4 for finetuning the unary and em-

beddings together, using a polynomial-decay with power of

0.9. For the instance segmentation network, we use a sin-

gle stage training for the unary and pairwise streams: we

train the network for 16K iterations, with a base learning

rate of 0.01 which is reduced to 0.001 after 12K iterations.

The weight decay is 1e−4. For our instance tracking exper-

iments, we use unaries from [37] and do not refine them,

rather use them as an input to our network. We employ hor-

izontal flipping and scaling by factors between 0.5 and 1.5
during training/testing for all methods, except in the case of

instance segmentation experiments (Sec. 3.1).

Datasets. We use the three datasets for our experiments:

DAVIS. The DAVIS dataset [30] consists of 30 training

and 20 validation videos containing 2079 and 1376 frames

respectively. Each video comes with manually annotated

segmentation masks for foreground object instances.

DAVIS-Person. While the DAVIS dataset [31] provides
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Figure 4: Temporal neighbourhoods

in our ablation study: boxes denote

video frames and the arcs connect-

ing them are pairwise connections.

The frame in red has all neighbours

present in the temporal context.

G-CRF

MasksRoI-Pool

Figure 5: Spatio-temporal structured prediction in Mask-RCNN. Here we use CRFs in

the feature learning stage before the ROI-Pooling (and not as the final classifier). This

helps learn mid-level features which are better aware of the spatio-temporal context.

densely annotated frames for instance segmentation, it lacks

object category labels. For category prediction tasks such

as semantic and instance segmentation, we create a subset

of the DAVIS dataset containing videos from the category

person. By means of visual inspection, we select 35 and

18 video sequences from the training and validation sets re-

spectively containing 2463 training and 1182 validation im-

ages, each containing at least one person. Since the DAVIS

dataset comes with only the foreground instances labeled,

we manually annotate the image regions containing unan-

notated person instances with the do-not-care label. These

image regions do not participate in the training or the eval-

uation. We call this the DAVIS-person dataset.

CamVid. The CamVid dataset [13, 3], is a dataset con-

taining videos of driving scenarios for urban scene under-

standing. It comes with 701 images annotated with pixel-

level category labels at 1 fps. Although the original dataset

comes with 32 class-labels, as in [34, 25, 20], we predict 11
semantic classes and use the train-val-test split of 367, 101
and 233 frames respectively.

3.1. Ablation Study on Semantic and Instance Seg
mentation Tasks

In these experiments, we use the DAVIS Person dataset

described in Sec. 3. The aim here is to explore the various

design choices available to us when designing networks for

spatio-temporal structured prediction for semantic segmen-

tation, and proposal-based instance segmentation tasks.

Semantic Segmentation Experiments. Our first set of

experiments studies the effect of varying the sizes of the

spatial and temporal embeddings, the degree of the tempo-

ral connections, and multi-scale temporal connections for

VideoGCRF. For these set of experiments, our baseline net-

work, or base-net is a single resolution ResNet-101 net-

work, with altered network strides as in [8] to produce a

spatial down-sampling factor of 8. The evaluation metric

used is the mean pixel Intersection over Union (IoU).

In Table 1 we study the effect of varying the sizes of the

spatial and temporal embeddings for 2−frame inference.

Our best results are achieved at spatio-temporal embeddings

of size 128. The improvement over the base-net is 4.2%. In

subsequent experiments we fix the size of our embeddings

to 128. We next study the effect of varying the size of the

temporal context and temporal neighbourhoods. The tem-

poral context is defined as the number of video frames V
which are considered simultaneously in one linear system

(Eq. 2). The temporal context V is limited by the GPU

RAM: for a ResNet-101 network, an input image of size

321 × 321, embeddings of size 128, we can currently fit

V = 7 frames on 12 GB of GPU RAM. Since V is smaller

than the number of frames in the video, we divide the video

into overlapping sets of V frames, and average the predic-

tions for the common frames.

The temporal neighbourhood for a frame (Fig. 4) is de-

fined as the number of frames it is directly connected to

via pairwise connections. A fully connected neighbourhood

(fc−) is one in which there are pairwise terms between ev-

ery pair of frames available in the temporal context. We

experiment with 2−, 4−, multiscale 6ms− and fc− connec-

tions. The 6ms− neighbourhood connects a frame to neigh-

bours at distances of 20, 21 and 22 (or 1, 2, 4) frames on

either side. Table 2 reports our results for different com-

binations of temporal neighbourhood and context. It can

be seen that dense connections improve performance for

smaller temporal contexts, but for a temporal context of 7
frames, an increase in the complexity of temporal connec-

tions leads to a moderate decrease in performance. This

could be a consequence of the long-range interactions hav-

ing the same weight as short-range interactions. In the fu-

ture we intend to mitigate this issue by complementing our

embeddings with the temporal distance between frames.

Instance Segmentation Experiments. We now demon-

strate the utility of our VideoGCRF method for the task

of proposal-based instance segmentation. Our hypothesis

is that coupling predictions across frames is advantageous

for instance segmentation methods. We actually show that

the performance of the instance segmentation methods im-

proves as we increase the temporal context via VideoGCRF,

and obtain our best results with fully-connected temporal

neighbourhoods. Our baseline for this task is the Mask-
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base-net 81.16

VideoGCRF spatial dimension→
temporal dimension↓ 64 128 256 512

64 84.89 85.21 85.20 84.98
128 85.18 86.38 86.34 84.91
256 85.92 86.37 85.95 84.92
512 84.85 85.95 84.95 84.21

Table 1: Ablation study: mean IoU on the DAVIS-person

dataset using 2 frame fc− connections. We study the effect

of varying the size of the spatial & temporal embeddings.

base-net 81.16

VideoGCRF temporal neighbourhood →
temporal context↓ 2− 4− 6ms− fc−
2 − − − 86.38
3 86.42 − − 86.51
4 86.70 − − 86.82
7 86.98 86.79 86.82 86.42

Table 2: Ablation study: mean IoU on the DAVIS-person

dataset. Here we study the effect of varying the size of the

temporal context and neighbourhood.

RCNN framework of [16] using the ResNet-50 network as

the convolutional body. The Mask-RCNN framework uses

precomputed bounding box proposals for this task. It com-

putes convolutional features on the input image using the

convolutional body network, crops out the features corre-

sponding to image regions in the proposed bounding boxes

via Region-Of-Interest (RoI) pooling, and then has 3 head

networks to predict (i) class scores and bounding box re-

gression parameters, (ii) keypoint locations, and (iii) in-

stance masks. Structured prediction coupling the predic-

tions of all the proposals over all the video frames is a

computationally challenging task, since typically we have

100 − 1000s of proposals per image, and it is not obvi-

ous which proposals from one frame should influence which

proposals in the other frame. To circumvent this issue, we

use our VideoGCRF before the RoI pooling stage as shown

in Fig. 5. Instead of coupling final predictions, we thereby

couple mid-level features over the video frames, thereby

improving the features which are ultimately used to make

predictions.

For evaluation, we use the standard COCO performance

metrics: AP50, AP75, and AP (averaged over IoU thresh-

olds), evaluated using mask IoU. Table 3 reports our in-

stance segmentation results. We note that the performance

of the Mask-RCNN framework increases consistently as we

increase the temporal context for predictions.

Method AP50 AP75 AP

ResNet50-baseline 0.610 0.305 0.321

spatial CRF [6] 0.618 0.310 0.329

2-frame VideoGCRF 0.619 0.310 0.331

3-frame VideoGCRF 0.631 0.321 0.330

4-frame VideoGCRF 0.647 0.336 0.349

Table 3: Instance Segmentation using ResNet-50 Mask R-

CNN on the Davis Person Dataset

Method mean IoU

Mask Track [29] 79.7

OSVOS [4] 79.8

Online Adaptation [37] 85.6

Online Adaptation + Spatial CRF [6] 85.9

Online Adaptation + 2-Frame VideoGCRF 86.3

Online Adaptation + 3-Frame VideoGCRF 86.5

Table 4: Instance Tracking on the Davis val Dataset

3.2. Instance Tracking

We use the DAVIS dataset described in Sec. 3. In-

stance tracking involves predicting foreground segmenta-

tion masks for each video frame given the foreground seg-

mentation for the first video frame. We demonstrate that

incorporating temporal context helps improve performance

in instance tracking methods. To this end we extend the on-

line adaptation approach of [37] which is the state-of-the-art

approach on the DAVIS benchmark with our VideoGCRF.

We use their publicly available software based on the Ten-

sorFlow library to generate the unary terms for each of the

frames in the video, and keep them fixed. We use a ResNet-

50 network to generate spatio-temporal embeddings and use

these alongside the unaries computed from [37]. The results

are reported in table Table 4. We compare performance of

VideoGCRF against that of just the unaries from [37], and

also with spatial CRFs from [6]. The evaluation criterion is

the mean pixel-IoU. It can be seen that temporal context im-

proves performance. We hypothesize that re-implementing

the software from [37] in Caffe2 and back-propagating on

the unary branch of the network would yield further im-

provements.

3.3. Semantic Segmentation on CamVid Dataset

We now employ our VideoGCRF for the task of semantic

video segmentation on the CamVid dataset. Our base net-

work here is our own implementation of ResNet-101 with

pyramid spatial pooling as in [40]. Additionally, we pretrain

our networks on the Cityscapes dataset [11], and report re-

sults both with and without pretraining on Cityscapes. We

report improvements over the baseline networks in both set-

tings. Without pretraining, we see an improvement of 1.3%
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DeconvNet [15] − 48.9

SegNet [34] 68.7 52.0 87.0 58.5 13.4 86.2 25.3 17.9 16.0 60.5 24.8 46.4

Bayesian SegNet [1] − 63.1

Visin et al. [36] − 58.8

FCN8 [27] 77.8 71.0 88.7 76.1 32.7 91.2 41.7 24.4 19.9 72.7 31.0 57.0

DeepLab-LFOV [7] 81.5 74.6 89.0 82.2 42.3 92.2 48.4 27.2 14.3 75.4 50.1 61.6

Dilation8 [39] 82.6 76.2 89.0 84.0 46.9 92.2 56.3 35.8 23.4 75.3 55.5 65.3

Dilation8 + FSO [25] 84.0 77.2 91.3 85.6 49.9 92.5 59.1 37.6 16.9 76.0 57.2 66.1

Tiramisu [20] 83.0 77.3 93.0 77.3 43.9 94.5 59.6 37.1 37.8 82.2 50.5 66.9

Gadde et al. [14] − 67.1

Results with our ResNet-101 Implementation

Basenet ResNet-101 (Ours) 81.2 75.1 90.3 85.2 48.3 93.9 57.7 39.9 15.9 80.5 54.8 65.7

Basenet + Spatial CRF [6] 81.6 75.7 90.4 86.8 48.1 94.0 59.1 39.2 15.7 80.7 54.7 66.0

Basenet + 2-Frame VideoGCRF 82.0 76.1 91.1 86.2 51.7 93.8 64.2 24.5 25.0 80.1 61.7 66.9

Basenet + 3-Frame VideoGCRF 82.1 76.0 91.1 86.1 52.0 93.7 64.5 24.9 24.4 79.9 61.8 67.0

Results after Cityscapes Pretraining

Basenet ResNet-101 (Ours) 85.5 77.4 90.9 88.4 62.3 95.4 64.8 62.1 33.3 85.5 60.5 73.3

Basenet + denseCRF post-processing [24] 84.3 76.1 90.5 88.9 65.1 95.4 65.4 61.5 34.1 85.8 66.2 73.9

Basenet + Spatial CRF [6] 86.0 77.8 91.2 90.8 63.6 95.9 66.5 61.2 35.3 86.9 65.8 74.6

Basenet + 2-Frame VideoGCRF 86.0 78.3 91.2 92.0 63.4 96.3 67.0 62.5 34.4 87.7 66.1 75.0

Basenet + 3-Frame VideoGCRF 86.1 78.3 91.2 92.2 63.7 96.4 67.3 63.0 34.4 87.8 66.4 75.2

Table 5: Results on CamVid dataset. We compare our results with some of the previously published methods, as well as our

own implementation of the ResNet-101 network which serves as our base network.

(a) image (b) base-net (c) spatial G-CRF (d) st-G-CRF (e) GT (a) image (b) base-net (c) spatial G-CRF (d) st-G-CRF (e) GT

Figure 6: Qualitative results on the CamVid dataset. We note that the temporal context from neighbouring frames helps

improve the prediction of the truck on the right in the first video, and helps distinguish between the road and the pavement in

the second video, overall giving us smoother predictions in both cases.

over the base-net, and with pretraining we see an improve-

ment of 1.9%. The qualitative results are shown in Fig. 6.

We notice that VideoGCRF benefits from temporal context,

yielding smoother predictions across video frames.

4. Conclusion

In this work, we propose VideoGCRF, an end-to-end

trainable Gaussian CRF for efficient spatio-temporal struc-

tured prediction. We empirically show performance im-

provements on several benchmarks thanks to an increase of

the temporal context. This additional functionality comes

at negligible computational overhead owing to efficient im-

plementation and the strategies to eliminate redundant com-

putations. In future work we want to incorporate optical

flow techniques in our framework as they provide a natu-

ral means to capture temporal correspondence. Further, we

also intend to use temporal distance between frames as an

additional term in the expression of the pairwise interac-

tions alongside dot-products of our embeddings. We would

also like to use VideoGCRF for dense regression tasks such

as depth estimation. Finally, we believe that our method

for spatio-temporal structured prediction can prove useful

in the unsupervised and semi-supervised setting.
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