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Abstract

People detection methods are highly sensitive to occlu-

sions between pedestrians, which are extremely frequent

in many situations where cameras have to be mounted

at a limited height. The reduction of camera prices al-

lows for the generalization of static multi-camera set-ups.

Using joint visual information from multiple synchronized

cameras gives the opportunity to improve detection perfor-

mance.

In this paper, we present a new large-scale and high-

resolution dataset. It has been captured with seven static

cameras in a public open area, and unscripted dense groups

of pedestrians standing and walking. Together with the

camera frames, we provide an accurate joint (extrinsic and

intrinsic) calibration, as well as 7 series of 400 annotated

frames for detection at a rate of 2 frames per second. This

results in over 40 000 bounding boxes delimiting every per-

son present in the area of interest, for a total of more than

300 individuals.

We provide a series of benchmark results using baseline

algorithms published over the recent months for multi-view

detection with deep neural networks, and trajectory estima-

tion using a non-Markovian model.

1. Introduction

Pedestrian detection is an important computer vision

problem with numerous applications in security, surveil-

lance, robotics, autonomous driving, and crowdsourcing.

The variation of pedestrians appearance greatly increases

the difficulty of this problem. With the availability of

large-scale monocular datasets of annotated pedestrians and

the advances in detection algorithms, the accuracy of the

pedestrian detectors has improved significantly in the past

few years. Moreover, modern detection algorithms us-

ing deep learning allow us to learn discriminative features

which are transferable across datasets. Impressively, re-

cently developed deep learning based monocular detectors

are approaching human-level performance [49] on common

benchmark datasets [17].

However, many situations of practical interest require

detection in highly crowded and cluttered scenes. Severe

occlusions make monocular pedestrian detection insuffi-

cient in these scenarios. Luckily, in real-world applica-

tions, image feeds from multiple cameras with overlapping

fields of view are often available. Most commonly, the cam-

eras are positioned slightly above the average human height.

Hence designing pedestrian detectors by exploiting multiple

views and the geometry of the scene will provide reliable

detection estimates in crowded scenes.

Surprisingly, to nowadays standards, there is no large

scale and good quality public dataset that replicate this

setup. The most frequently used one, PETS 2009 [21] is

only in the order of several hundreds of frames long. The

provided camera calibration is inaccurate which makes it

difficult to exploit geometrical constraints jointly. More-

over, it is recorded in a so-called actor set-up, meaning

that throughout the sequence, a very limited total number

of different individuals actually appear. All other standard

datasets are either much shorter and scarcely crowded [22,

48, 7], have a very constrained scenario [3] or use non-

overlapping cameras [40].

The lack of such a dataset seriously limits the develop-

ment of multi-camera detection methods. Recent improve-
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ments made by the community call for a more realistic

and challenging benchmark that could be used to compare

multi-camera detection methods. For example, [12] shows

that utilizing the multi-camera input for deep learning based

detectors improves both the accuracy and the classification

confidence. However, these methods are severely limited

by the lack of a large-scale dataset to train on without over-

fitting. As a direct consequence, most of the existing joint

methods use ad-hoc techniques to combine information ex-

tracted using pre-trained monocular detectors.

To help in accelerating the research on methods tak-

ing advantage of the multi-camera set-ups, we introduce a

large-scale person dataset acquired with seven static cam-

eras, with overlapping fields of view. It captures a realistic

unscripted scenario where pedestrians often occlude each

other. We provide a very precise joint (extrinsic and intrin-

sic) calibration and synchronization of sequences from the

7 views as well as 7 series of 400 annotated frames for de-

tection at a rate of 2 frames per second. This results in over

40 000 bounding boxes delimiting every person present in

the area of interest, for a total of more than 300 individuals.

The annotations of the individual tracks are provided both

as 3D locations on the ground plane and 2D bounding-boxes

projected in each of the 7 views. Although our dataset is de-

signed to benchmark 3D multi-camera detection, it can also

be used for monocular detection. In the monocular case,

the size of our dataset increases seven-fold which makes it

comparable to the widely used Caltech-USA dataset [15].

Compared to the latter, our dataset has much higher image

resolution.

We make the source code of our web-based annotation

platform public in order to encourage other researchers to

collect and annotate other multi-camera datasets. Finally,

we also provide annotations for evaluating camera calibra-

tion methods.

This paper is organized as follows: in Section 2 we make

a review of multi-camera person datasets and related meth-

ods. Section 3 enumerates details of the new dataset, in-

cluding our camera calibration procedure. We benchmark

several state-of-the-art multi-camera detection methods in

Section 4 and finally in Section 5 we present potential fu-

ture research directions.

2. Related work

2.1. Datasets

In Table 1 we list the commonly used pedestrian datasets

with a focus on the multi-camera ones. For a more exhaus-

tive listing of the monocular datasets, we refer the reader to

[16, chap. 2.4]. As overlapping we refer to multi-camera

datasets whose camera’s fields of view strictly overlap. The

DukeMTMC [40] dataset does not belong to this category,

as only 2 of its camera’s fields of view slightly overlap.

The most widely used dataset with an overlapping cam-

era set-up is the PETS 2009 S2.L1 [21] sequence. In part

due to the presence of a slope in the scene, the provided cal-

ibration poses large homography mapping deterioration and

inconsistencies when projecting 3D points across the views

(as noted also in [38, p. 10], [23, p. 10], [12, p. 3]). Be-

sides being a small scale dataset, the PETS 2009 S2.L1 is

acquired in an actor set-up. Hence it does not allow for good

generalization and fair benchmarking of appearance-based

methods.

The three sequences shot at the EPFL campus [22]: Lab-

oratory, Terrace and Passageway, as well as SALSA [3] and

Campus [48] are overlapping multi-camera datasets as well.

However, they have a small number of total identities and

are relatively sparsely crowded. As we can see from Table

1, Laboratory, Terrace and Passageway are of small size and

low image quality. In SALSA [3], a cocktail party of 30
minutes is recorded, where the people are static most of the

time, making this dataset less challenging for tracking. Fi-

nally, Campus does not provide the annotations of the 3D
locations of the people.

The EPFL-RLC [12] dataset demonstrates improved

joint-calibration accuracy and synchronization compared to

PETS. However, rather than providing a complete ground-

truth, this dataset represents a collection of a balanced set

of positive and negative multi-view annotations and is used

for classification of a position as occupied by a pedestrian

or not. Full ground-truth annotations are provided solely

for a small subset of the last 300 of the total 8000 frames,

originally used for testing [12]. Moreover, in comparison

to ours, it is acquired with only three cameras which have a

much more limited field of view. This results in a ∼10-fold

smaller number of detections per frame on average.

Hence, WILDTRACK improves upon other multi-

camera person datasets thanks to: (i) the high precision

calibration and synchronisation between the cameras (see

§ 3.2), (ii) the large number of annotations that allows for

developing deep learning based multi-view detectors. With

regard to the state-of-the-art monocular datasets [15]: (i) it

exceeds the total number of annotations; and (ii) the re-

gions of interest (ROIs) are of significantly larger resolu-

tion.

2.2. Methods

Probabilistic Occupancy Map method (POM) [22] is a

generative model which estimates the probabilities of oc-

cupancy on the ground plane by exploiting the geometri-

cal constraints from multiple views. POM is formulated in

the framework of mean-field inference which naturally han-

dles the occlusions. To leverage time consistency it can be

combined with a convex max-cost flow optimization [6] for

tracking.

In [2], multi-view detection is re-casted as a linear in-

5031



Table 1. Commonly used person datasets with a focus on the multi-camera ones. FPS, pos and imp stand for frames per second, positive

images and image pairs, respectively. Where applicable, with ’+’ we denote the pre-defined splits to train and test data. See § 2.1.

Dataset Resolution C
am

er
as

FPS
M

ob
ile

/S
ta

tic

O
ve

rla
pp

in
g

V
id

eo

IDs Annotations Size/Duration

INRIA [13] high n/a n/a n/a n/a No - 1200+566 614+288 pos.

ETH [19, 20] (5 seq.) 640×480 1‡ 15 M n/a Yes - 2853 (∼4fps) & 10398 (15fps) 4203 frames

TUD-Brussels [46]
7720×576;

640×480;
1 1 M n/a Yes - 1776+1326 (pos.) 1092+508 pos.imp.

Daimler [18] 640×480 1∗ n/a M n/a No n/a 2400+1600 -

Daimler-stereo [29] 640×480 1∗‡ 15 M n/a Yes - 3915 15600+56500
Caltech-USA [15] 640×480 1 30 M n/a Yes - ∼2·104(10fps)+1·103(1fps) ∼10 hours

KITTI [24] 1392×512 4†‡ 10 M n/a Yes - 194+195 imp. 7 min.

APIDIS [14] 1600×1200 7 22 S Yes Yes 12 86870 (25fps) 1 min.

PETS 2009 [21]
768×576;

720×576;
7 7 S Yes Yes 19 4650 (7fps) 795 frames

DukeMTMC [40] 1920×1080 8 60 S No Yes ∼2000
4077132 (60fps);

9668 trajectories.
85 min.

Laboratory [22] 320×240 4 25 S Yes Yes 6 476 (1fps) 2.5 min.

Terrace [22] 320×240 4 25 S Yes Yes 9 1023 (1fps) 3.5 min.

Passageway [22] 320×240 4 25 S Yes Yes 13 226 (1fps) 20 min.

Campus [48] 1920×1080 4 25 S Yes Yes 25 240 (1fps) 4×4 min.

SALSA [3] 1024×768 4 15 S Yes Yes 18 1200 (0.3fps) 60 min.

EPFL-RLC [12] 1920×1080 3 60 S Yes Yes - ∼3×2044a.+300frames 8000 frames

WILDTRACK (ours) 1920×1080 7 60 S Yes Yes 313 ∼7×9518 (2fps) ∼60 min.
* No color channels.
†
2 color and 2 grayscale cameras.

‡ Stereo camera(s).

verse problem. Their model is regularized by enforcing a

sparsity constraint on the occupancy vector. It uses a dic-

tionary whose atoms approximate multi-view silhouettes.

To alleviate the need for the time demanding Lasso-based

[11] computations, a regression model is derived by [25].

This model solely comprises of Boolean arithmetic and sus-

tains the sparsity assumption of [2]. In addition, the iterative

method of [2] is replaced with a greedy algorithm based on

set covering.

In [38] the occlusions are modeled explicitly per view

by a separate Bayesian Network. A multi-view network is

then constructed by combining them, based on the ground

locations and the geometrical constraints.

Considering crowd analysis, in [23] the multi-view im-

age generation is modeled with a stochastic generative pro-

cess of random crowd configurations and then maximum a

posteriori (MAP) estimate is used to find the best fit with

respect to the image observations.

The Deep Multi-camera Detection (DeepMCD) [12]

method which integrates CNN features demonstrated state-

of-the-art results and showed that the accuracy and the con-

fidence of a CNN classifier increase as more views are used.

To mitigate the data requirement problem and improve

generalization, the authors first used the larger monocular

dataset Caltech [15] to train a base network. The multi-

view CNN architecture is adapted so as to use the weights

from the base network and produces joint estimates by pro-

cessing the multi-view streams in parallel. To increase the

sharpness and the localization accuracy, [12] also proposes

two particular schemes of multi-view hard negative mining

to train such a model.

The Deep-Occlusion Reasoning method [5] uses a joint

CNN-CRF architecture and Mean-Fields inference to pro-

duce a Probabilistic Occupancy Map (POM) as in [22]

while leveraging discriminative features extracted by a

CNN. It introduces a Higher Order CRF, where unary po-

tentials are produced by ROI pooling CNN [39]. Higher-

order potentials are computed as a measure of the consis-

tency between pixel labels produced by a fully convolu-

tional network and a generative model which accounts for

geometry and occlusions.

Tracking multiple objects in multiple overlapping cam-

eras, as well as tracking in a single view, mostly follows

the tracking-by-detection paradigm [4]. However, due to

the scarcity of datasets with multiple overlapping cameras,

tracking multiple objects in multiple overlapping cameras

has received relatively little attention compared to track-

ing from a single view. For example, 3DMOT2015 bench-

mark [31] for 3D tracking lists only a couple methods that

exceed a simple linear programming baseline that was pro-

posed with the benchmark. [32] models the motion of peo-

ple using social forces, and solves a linear program to es-
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Figure 1. Synchronized corresponding frames from the seven views. Four GoPro Hero 3 and three GoPro Hero 4 were used, frames of

which are shown in the top and bottom row, respectively.

timate the tracks over the whole sequences. [30] uses joint

probabilistic data association for online tracking. The ap-

proach of [7] can be used both for regularizing detections

and tracking. It formulates tracking as a problem of finding

K-Shortest paths in a graph of detections.

Some of the recently proposed approaches, such as [35]

or [42] can be applied for multiple object tracking in

3D. [35] learns weights of the Recurrent Neural Network

(RNN) to predict the motion of objects for data associa-

tion. [42] learns several RNNs to combine motion, appear-

ance, and social information throughout time for data asso-

ciation. While both of these approaches could be trained

for 3D scenes, combining the appearance information from

multiple cameras for [42] is non-trivial. Training the model

of [35] requires a lot more annotated data than what is cur-

rently available for 3D tracking. A recently proposed ap-

proach of [34] can be used as a post-processing step to im-

prove the results of other tracking approaches by learning

the patterns of human motion in specific scenes and modi-

fying the tracks to follow such patterns.

3. The dataset

3.1. Hardware and data acquisition

Hardware. The dataset was recorded using seven stati-

cally positioned HD cameras. In particular, we used four

GoPro Hero 3 and three GoPro Hero 4 cameras (Fig. 1).

All the seven sequences are of resolution 1920×1080 pix-

els and were recorded with a frame rate of 60 frames per

second (fps). The synchronization between the seven se-

quences was obtained with ∼50 ms accuracy (the precision

of which can be observed in Fig. 4).

Camera placement and layout. The camera layout is

highly overlapping as shown in Fig. 1, and the cameras are

positioned above the humans’ average height. In Fig. 2 we

illustrate from a top view perspective the amount of overlap

between the fields of view of the cameras, where the darker

the shading, the higher the number of cameras that capture

that area. To obtain this illustration, we considered points

on the ground plane and counted the number of cameras for

which a given point is in their field of view. The circles in

Fig. 2 denote the position of the cameras.

Data acquisition. The data acquisition took place in front

of the main building of the university ETH Zurich in

Switzerland, during nice weather conditions.

3.2. Calibration of the cameras

To calibrate the cameras we used the Pinhole camera

model [45], due to its widespread usage and support in mul-

tiple libraries, including OpenCV [9]. Primarily, we ob-

tained the intrinsic and the extrinsic parameters, and for the

latter, we used points on the ground whose distance was

measured by hand.

We put a major focus on providing jointly optimal 3D
reconstruction between the cameras. To this end, we manu-

ally annotated precisely |D| = 1398 3D points by mark-

ing corresponding 2D points across the seven views and

throughout multiple frames; which we used to perform Bun-

dle adjustment [44] as we explain below.

Let I and E denote the intrinsic and the extrinsic parame-

ters of all of the cameras, respectively. Given a dataset D of

corresponding projections across the views, more precisely:

D = {pi}, where pi = {p1i . . . p
C
i }, with pci ∈ R2 and C

denoting the number of cameras, the goal is to find projec-

tion matrices Pc whose parameters are contained in {I,E}
and the 3D points M = {mi}, mi ∈ R

3, i = 1, . . . , |D|,
such that:

I∗,E∗ = argmin
I,E,M

|D|∑

i=1

C∑

c=1

wc
i ‖pi − Pc mi‖

2, (1)

where ‖ · ‖ denotes the Euclidean image distance, and wc
i

is the indicator variable equal to 1 when the point pi is vis-

ible in view c, and equal to 0 otherwise. In other words,
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Figure 2. The overlap between the cameras’

fields of view (top view). See § 3.1.

View 1 View 2 View 3 View 4

View 5 View 6 View 7 All views
Figure 3. Percentage of examples that are occluded within certain range: x-axis–range of

normalized occlusion, y-axis percentage of examples within that range. See § 3.4.

we formulated the calibration as a non-linear least squares

problem, where the error is the squared L2 norm of the dif-

ference between the observed feature location and the pro-

jection of the corresponding 3D point on the image plane of

the camera.

In accordance with the selected model, the set {I,E} in

our implementation consists of 7×15 parameters for each

camera: 3 for rotation, 3 for translation, 2 for focal length

(x and y), 2 for the principal point, 3 for radial distortion and

2 for tangential distortion. To optimize Eq. 1, we used the

open source C++ library Ceres [1] (see App. 3 for further

details on the implementation).

We experimented with fixing one of the sets of parame-

ters and sequentially optimizing each. Nonetheless, jointly

optimizing I and E as formalised in Eq. 1 provided best

results and this final step significantly improved the joint

projection accuracy.

Fig. 4 depicts cropped regions taken from synchronized

images and of a different view. To illustrate the precision

of the camera calibration, we first manually marked a point

projections in two of the views, shown in blue color in the

left column of Fig. 4. Using the provided camera calibra-

tion, we then compute the 3D location of the point as an

intersection between the rays defined by those projections.

Finally, the resulting 3D point is projected in the remaining

views, displayed as red points in Fig. 4.

3.3. Annotation process

To make sure that our annotations are as precise as

possible, we made use of the accurate camera calibration.

Namely, we formulated the annotation task as adjusting the

position of a 3D cylinder on the ground, such that its projec-

tions (rectangles) across all of the views overlap the person

being marked by the annotator. In summary, we consid-

ered this approach as: (i) more time-effective, as one has to

perform one adjustment instead of marking bounding boxes

and adjusting each separately; as well as that it allows for

obtaining (ii) higher precision, since the position is jointly

adjusted. The latter follows from the fact that the best posi-

tion of a bounding box when annotating in one view is likely

to be ambiguous, and in cases of more severe occlusions, it

could also be infeasible to guess it.

To this end, we designed a new multi-camera annota-

tion tool, whose Graphical User Interface (GUI) is illus-

trated in Fig. 5. It was written using Python, Django, and

Javascript. The tool was deployed through Amazon Me-

chanical Turk [10] so that external people would be remu-

nerated to help us carry out this time-consuming procedure.

To ensure that profit is not prioritized over the accuracy

and the precision of the annotations, we were highly in-

volved in the process, and particular annotators were care-

fully selected. For details regarding how the annotation pro-

cess was carried out, and the file format of the annotations,

please refer to App. 1 and App. 2, respectively.

Figure 4. Illustration of the camera calibration precision (best

seen in color). See § 3.2.
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Figure 5. GUI of our multi-camera annotation tool (best seen in

color). The bounding boxes being adjusted (displayed in cyan

color) are zoomed-in in those views where the person is visible.

3.4. Statistics

Annotated frames. Following practices amassed in

monocular pedestrian detection with CNNs, we used frame

rate of 10 fps to extract the frames. Herein, as a frame It we

refer to a set of synchronized images from the seven views

(C=7), i.e. {I1t , . . . , I
C
t }. We provide annotations for the

first 2000 frames. However, in our observations annotating

every 5th suffices the speed of movement of the persons,

and hence interpolation can be used to further enlarge the

dataset. To summarize, this amounts to total of 400 frames

at 2 fps, or alternatively 7×400 manually annotated images.

Bellow we always list total number of annotations at 2 fps.

Multi-view annotations. There are 9518 multi-view sin-

gle person annotations in total. In Fig. 6, we illustrate an

example of a multi-view annotation of our dataset, visible

in all of the seven views at the same time. On average, each

frame It captures 23.8 people. Considering a frame rate of

2 fps, each person is seen in 30.41(47.87) frames, with a

mode of 22 frames (see App. 4).

Monocular annotations. Since a multi-view detection

may not be visible in each of the cameras’ fields of view,

the number of monocular examples is precisely 8731, 7875,

6703, 2239, 3920, 9408, 3731, respectively for each view.

This amounts to a total of 42607 detections at 2 fps.

Figure 6. An example of one positive multi view annotation.

Occlusion levels. As the annotations are obtained in 3D,

the occlusion of each pedestrian in each view can be auto-

matically obtained. Following the work of [15] in Fig. 3 we

illustrate the level of occlusions per each view separately,

by calculating the number of occluded pixels over the num-

ber of total pixels for each detection. Similarly, we calculate

such normalized occlusion levels for the multi-view exam-

ples across all of the views. As can be noticed from Fig. 3,

if multi-view samples are used, the probability that a person

will be completely occluded in all of the views simultane-

ously significantly goes down.

4. Benchmarks

In the sequel, we evaluate detection and tracking meth-

ods. In our experiments, we used a frame rate of 2 fps.

4.1. Evaluation protocol

We compute false positives (FP), false negatives (FN)

and true positives (TP) by assigning detections to ground

truth using Hungarian matching. Since we operate on the

ground plane, we impose that a detection can be assigned

to a ground truth annotation if and only if it is closer than a

distance r. Given FP, FN and TP, we calculate:

• Multiple Object Detection Accuracy (MODA) ac-

counting for the normalized missed detections and

false positives, as well as the Multiple Object Detec-

tion Precision (MODP) metric which assesses the lo-

calization precision [28].

• Precision & Recall. We estimate the empirical preci-

sion and recall, calculated by P=TP/(TP+FP ) and

R=TP/(TP+FN) respectively.

We report MODP, Precision, and Recall for radius r=0.5m,

which roughly corresponds to the width of a human body.

Unless otherwise emphasized, the used metrics are al-

ways calculated in terms of the Euclidean distance between

the detection and the annotation on the ground plane in

world coordinates, or alternatively from top-view. Thus

note that such metrics are unforgiving in terms of projec-

tion errors as we measure distances on the ground plane,

which would not be the case if we evaluated overlap in the

image plane as is often done in the monocular case.

Regarding multiple object tracking, we report met-

rics which are also reported for MOTChallenge bench-

mark [31]: a set of CLEAR MOT [8] metrics, as well as

identity-aware metrics of [41]. For evaluation we used the

devkit provided with [31], and we similarly report metrics

for radius r=1m. Below we briefly review some of the re-

ported tracking metrics:

• Multiple Object Tracking Accuracy (MOTA) ac-

counts for missed detections (False Negatives (FN)),
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False Positives (FP), and Identity Switches (IDs) be-

tween current and next frame of tracking. We also re-

port Multiple Object Tracking Precision (MOTP).

• Mostly Tracked (MT), Partially Tracked (PT),

Mostly Lost (MT) trajectories, as well as the number

of Fragmentations (FM).

• IDF1 accounts for missed detections, false positives,

and identity switches throughout tracking, after find-

ing a global one-to-one assignment between ground

truth and predicted trajectories. It is calculated simi-

larly to F1 score, using the Identity Precision (IDP)

and Identity Recall (IDR) as proxies for precision and

recall.

4.2. Evaluated methods

We evaluated the following detection methods:

• POM-CNN. The multi-camera detector [22] described

in § 2.2, uses background subtraction pre-processing

and takes such segmented images as input. In its orig-

inal implementation the input is obtained using tradi-

tional algorithms [50, 36]. Hence, for a fair compari-

son reflecting the progress that has occurred since then,

we use a CNN-based background subtraction [33].

• DeepMCD (described in § 2.2), which is an end-

to-end deep learning method. We used its imple-

mentation that uses GoogLeNet [43] by: (i) testing

on the WILDTRACK dataset with the provided pre–

trained model on the PETS dataset–Pre-DeepMCD;

as well as (ii) training solely the top classifier on

the WILDTRACK dataset–TopDeepMCD. Its imple-

mentation uses monocular Non Maxima Suppression

(NMS) and the performance measures are calculated

using the first view, rather then the world coordinates.

• ResNet-DeepMCD & DenseNet-DeepMCD are our

implementations of DeepMCD in PyTorch [37], which

use ResNet-18 [26] and DenseNet-121 [27], respec-

tively. As WILDTRACK is of larger size, we omitted

the step of pre-training on the Caltech dataset. Our im-

plementation uses top-view NMS to select the final de-

tections of the candidates while prioritizing the detec-

tions with higher probability estimates, as opposite to

[12]. We use NMS threshold of 0.4 and r=0.5m. We

used 90% and 10% of the frames for training and test-

ing, respectively and grid density of 60×180. Anal-

ogously, we also train a monocular detector ResNet-

18 [26] while using samples from the training frames

from all of the views, denoted as ResNet-Monocular.

• Deep-Occlusion (see § 2.2), which is a hybrid CNN-

CRF method to use information about geometry and

calibration while leveraging on the discriminative

power of a pre-trained monocular CNNs.

• RCNN-projected. The recent work of [47] proposes

a MCMT tracking framework that relies on a power-

ful CNN for detection purposes [39]. Since the code

of [47] is not publicly available, we reimplemented

their detection methodology without the tracking com-

ponent for a fair comparison with the detection meth-

ods that operate on images acquired at the same time.

More precisely, we first run the 2D detector proposed

by [39] on each image. We then project the bottom of

the 2D bounding box onto the ground reference frame

as in [47] to get 3D ground coordinates. Finally, we

cluster all the detections from all the cameras using

3D proximity to produce the final set of detections.

For multiple object tracking, we provide results of the

following methods:

• KSP is a simple baseline approach of [7] which finds

the most likely sequence of occupancies of ground

floor locations of POM given probabilities of occu-

pancies of each location given by a detector. To do

so it solves the problem of finding the most likely tra-

jectories given the detections as finding the K-Shortest

Paths in a graph. This method does not use appearance

information for tracking, but is a suitable baseline as it

can be applied out of the box in multi-camera scenario.

• ptrack is a recent approach of [34] which improves

the results of other tracking approaches by learning the

motion patterns of the scene and modifying the tracks

of people so as to follow those patterns. This is suit-

able for our scenario both because in our scene there

are several clearly identifiable patterns of motion, as

well as because it can handle tracking in the ground

plane. We therefore use this approach on top of the

trajectories found by KSP.

4.3. Benchmark results

Detection. The results of the enumerated methods in § 4.2

are given in Tab. 3. We observe that joint utilization

of the multiple views largely improves detection perfor-

mance. More explicit occlusion reasoning further improves

the MODA metric, even for small values of r, Fig. 7. In

Tab. 4 we list the classification results obtained when train-

ing a monocular ResNet-18 using samples extracted from

all of the seven views, as well as multi-view training. The

results indicate that even though the size of the dataset is

seven-fold larger for the monocular case, using the multiple

views increases both the accuracy and the confidence of the

classifier.

5036



Table 2. Benchmark tracking results on the WILDTRACK dataset.

Method IDF1 IDP IDR MT PT ML FP FN IDs FM MOTA MOTP

DeepOcclusion+KSP 73.2 83.8 65.0 49 79 43 1095 7503 85 92 69.6 61.5

DeepOcclusion+KSP+ptrack 78.4 84.4 73.1 72 74 25 2007 5830 103 95 72.2 60.3

Table 3. Benchmark detection results on WILDTRACK.

Method MODA MODP Precision Recall

Deep-Occlusion+KSP 0.752 - - -

Deep-Occlusion 0.741 0.538 0.95 0.80

ResNet-DeepMCD 0.678 0.642 0.85 0.82

DenseNet-DeepMCD 0.635 0.666 0.87 0.74

POM-CNN 0.232 0.305 0.75 0.55

RCNN-projected 0.113 0.184 0.68 0.43

Pre-DeepMCD 0.334* 0.528* 0.93 0.36

Top-DeepMCD 0.601* 0.642* 0.80 0.79

ResNet-View 1 -1.823 0.598 0.26 1.00

ResNet-View 2 -1.050 0.607 0.32 0.99

ResNet-View 3 -1.036 0.583 0.32 0.98

ResNet-View 4 -0.251 0.723 0.42 0.71

ResNet-View 5 0.466 0.623 0.67 0.91

ResNet-View 6 -1.841 0.591 0.26 1.00

ResNet-View 7 -0.122 0.701 0.47 0.97

* Monocular calculation of the metric, using the first view.

Table 4. Classification results (accuracy and area under ROC

curve) on the test frames of the WILDTRACK dataset using

ResNet-18 [26]. The results obtained for monocular classification

are averaged over all of the views.

Training Accuracy (%) AUC

Monocular 84.57 (1.718) 0.91 (0.028)

Multi-view 95 0.95

Tracking. Tab. 2 lists benchmark results of the tracking

methods described in § 4.2 (see App. 6 for additional re-

sults). Parameters of the methods were optimized for IDF1

metric on the same training data as the appropriate detec-

tor was trained on. As shown, the dataset presents a sig-

nificant tracking challenge, with IDF1 metric results lower

than those seen on the [31] benchmark on [40] dataset,

where each individual camera mostly observes a separate,

and somewhat simpler scene.

5. Discussion

The development of new multi-view people tracking

methods is hampered by the surprising lack of appropriate

datasets. We provide a new large scale, high-resolution,

and highly accurately calibrated multi-camera pedestrian

dataset, which is more realistic than any of the previously

published ones.

Figure 7. Benchmark of the multi-view detectors using the MODA

metric (y-axis) for different radius r (x-axis) on WILDTRACK.

Our initial benchmarks show that deep learning person

detection indeed largely benefits from a multi-camera set-

up and this motivates further work in that direction. Our

dataset will motivate and facilitate such research. While

performance of monocular pedestrian detectors saturates on

common benchmarks, our densely crowded realistic set-up,

which results in complex dynamics and constant occlusions

among persons, and the high resolution, will prove useful

for further improving monocular detection, as well as other

problem of inference such as tracking, or crowd analysis at

large.

Finally, in addition to the large number of individual de-

tections, the WILDTRACK dataset also has a large fraction

of unlabelled frames. This will be precious for unsuper-

vised methods, with the possibility to be benchmarked on

the annotated portion.
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