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Abstract

This paper presents a discrepancy minimizing model to

address the discrete optimization problem in hashing learn-

ing. The discrete optimization introduced by binary con-

straint is an NP-hard mixed integer programming problem.

It is usually addressed by relaxing the binary variables into

continuous variables to adapt to the gradient based learn-

ing of hashing functions, especially the training of deep

neural networks. To deal with the objective discrepancy

caused by relaxation, we transform the original binary opti-

mization into differentiable optimization problem over hash

functions through series expansion. This transformation de-

couples the binary constraint and the similarity preserving

hashing function optimization. The transformed objective

is optimized in a tractable alternating optimization frame-

work with gradual discrepancy minimization. Extensive ex-

perimental results on three benchmark datasets validate the

efficacy of the proposed discrepancy minimizing hashing.

1. Introduction

Content-based image retrieval finds similar images from

the database given a query image. To measure the similarity,

images are characterized by relevant representative features,

and then the distances between features are utilized to iden-

tify relevant images or nearest neighbors. In the presence of

high dimensionality of features and large scale of database,

hashing methods have become a promising solution for sim-

ilarity search [1, 7, 9, 19, 34, 37, 39, 41, 49]. Hashing meth-

ods encode images as compact binary codes with similarity

preservation in the Hamming space. Learning based hash-

ing [13, 24, 26, 33, 38, 45, 50] mines the data properties and

the semantic affinities and shows superior performance than

data-independent hashing methods [9, 16].

In learning based hashing, the optimization of similarity
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Figure 1. Illustration of the objective discrepancy minimization

through series expansion. (a) The sign function b = sgn(x) is

usually relaxed as h = tanh(x) for gradient based optimization.

(b) The objective, e.g. f(b) = b2, is then relaxed as g1(h) = h2,

where large discrepancy is observed. (c) The discrepancy is re-

duced by considering the quantization loss |δ| = |b− h| in g2. (d)

We minimize the discrepancy through series expansion in g3.

preserving objective is a mixed integer optimization prob-

lem due to the discrete constraint of binary codes [2, 20,

21, 27, 51, 52], which is incompatible to the gradient based

training of neural networks. The key challenge of hashing

learning lies on the discrete constraint optimization. Re-

laxation on the binary code transforms the discrete opti-

mization problem into a continuous one [32, 42, 46]. The

discrepancy introduced by relaxation leads to the deviation

from the optimal binary codes and the optimal hashing func-

tions. The coupling of the solution to binary codes with

the optimization over hashing functions aggravates the op-

timization of the discrete constraint problem. Although the

quantization error is taken into consideration [10,11,25] and

direct solutions on binary codes are proposed [28, 30, 36],

the hashing functions are still learned with a separated op-

timization over continuous outputs and a post-step sign

thresholding. This may deteriorate the quality of hashing

functions and fail to generate optimal binary codes.
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In this paper, we present a discrepancy minimizing deep

hashing (DMDH) method by minimizing the discrepancy

between two objectives, the similarity preserving objective

over binary codes of training samples and the learnable ob-

jective over continuous hashing functions as shown in Fig-

ure 1, to improve the quality of learned hashing functions

and hence the performance of similarity search. Specifical-

ly, we transform the discrete objective over binary codes

to a continuous objective over hashing functions through

optimal series expansion. The discrepancy between these

two objectives is minimized such that the hashing function-

s capture the similarity preservation and the binary con-

straint. This guarantees the quality of out-of-sample exten-

sion. To minimize the discrepancy, we gradually increase

the weight of high order terms of the expanded series in the

optimization procedure. Superior experimental results on

three benchmark datasets validate the efficacy of the objec-

tive discrepancy minimization for hashing.

2. Related Work

A variety of learning based hashing approaches have

been proposed in recent years, which can be broadly cat-

egorized into unsupervised approaches and supervised ap-

proaches [43, 44].

Unsupervised hashing approaches utilize the data distri-

bution of training samples to learn hashing functions for en-

coding samples as binary codes [3, 10, 11, 25, 30, 32, 46].

Weiss et al. [46] proposed Spectral Hashing (SH) to gen-

erate binary codes by solving eigenvectors of the graph

Laplacian. Liu et al. [32] proposed Anchor Graph Hashing

(AGH) to exploit the neighborhood structure in a tractable

graph based hashing method. Liong et al. [25] proposed

Deep Hashing (DH) by utilizing a multi-layer neural net-

work as hashing functions to preserve the nonlinear neigh-

borhood relationship. Gong et al. [10] proposed ITerative

Quantization (ITQ) to balance the variance of PCA results,

as a post-step to reduce the quantization loss from real-value

features to binary codes. Liu et al. [30] proposed Discrete

Graph Hashing (DGH) by introducing a tractable alternat-

ing optimization method for similarity preservation in a dis-

crete code space. Due to the absence of the label informa-

tion, the performance of unsupervised hashing approaches

is usually surpassed by supervised hashing approaches.

Supervised hashing approaches learn hashing functions

on the base of both the label information and the data repre-

sentation [5,12,15,18,22,23,31,36,42,48]. Wang et al. [42]

proposed Semi-Supervised Hashing (SSH) to sequentially

update hashing functions by leveraging both labelled and

unlabelled data. Liu et al. [31] proposed Supervised Hash-

ing with Kernels (KSH) to train hashing functions in ker-

nel formulation and measure the similarity with code inner

product. Lin et al. [23] proposed Two Step Hashing (TSH)

to decouple the optimization of binary codes and the opti-

mization of hashing functions. Kulis et al. [18] proposed

Binary Reconstructive Embedding (BRE) to learn hashing

functions through coordinate-descent to minimize the re-

construction error. Shen et al. [36] proposed Supervised

Discrete Hashing (SDH) to solve the discrete optimization

directly with cyclic coordinate descent in conjunction with

classification. While these approaches take handcrafted fea-

tures as input, deep learning based hashing demonstrates

retrieval performance breakthrough with the aid of convo-

lutional neural networks [2, 20,21,27,29, 47, 51, 52]. Xia et

al. [47] proposed CNNH to learn hash codes and convolu-

tional neural network based hashing functions in two sepa-

rated stages. Lai et al. [20] proposed DNNH to simultane-

ously learn the image feature representation and the hash-

ing coding in a joint optimizing process. Liu et al. [27]

proposed DSH by utilizing a regularizer to encourage the

real-valued outputs of neural networks to be close to bi-

nary values. Cao et al. [2] proposed HashNet by gradu-

ally approximating the non-smooth sign activation with a

smoothed activation by a continuation method.

3. Approach

3.1. General Relaxation Framework

Let X = {x1,x2, . . . ,xn} denote a set of n training

points, where data points represent either images in the raw

RGB space Ω or extracted real value features in R
d. We aim

to learn a mapping Ψ from X to B = {b1, bx, . . . , bn} ∈
{−1, 1}n×l, where l denotes the length of binary codes. We

are interested in constructing binary codes such that some

notion of similarity is preserved between data points. Thus,

we can formulate hashing learning problem as

{Ψ,B} = argmin
Ψ,B

L(B), (1)

s.t. B ∈ {−1, 1}n×l

where L (B) is the predefined loss related to similarity p-

reservation. Given the binary similarity function over the

training set S : X × X 7→ {±1}, the hashing learning is

conducted under the guidance of the similarity function in

the supervised manner with difference minimization, such

as similarity-similarity difference minimization [31].

The main bottleneck of optimizing the problem in (1) lies

on the discrete constraint on B, which makes it intractable

to directly optimize the binary codes. Currently, the sign

function b = sgn(h) is adopted to convert the continuous

result h as a binary output b. Since the sign function is in-

differentiable at zero and with zero gradient for a non-zero

input, it is improper to directly employ the gradient-based

methods. Most approaches in the literature relax the opti-

mization problem with signed magnitude relaxation [10,42]

or by approximating the sign function with the sigmoid or

tanh function [2, 20]. This leads to the relaxed optimization
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problem

{Φ, B̃} = argmin
Φ,B̃

L̃(B̃), (2)

where Φ is the mapping from X to the relaxed B̃. In

the case of tanh relaxation, L̃(·) is same as L(·) and B̃ =
tanh(H) with B = sgn(H). To obtain feasible gradients,

such nonlinear relaxation would ineluctably slow down or

suppress the convergence of the training model. In the case

of signed magnitude relaxation, B̃ is the signed magnitude

relaxed form of B with B = sgn(B̃). We denote B̃ as H .

Then, the loss function L̃(·) usually inherits from the origi-

nal loss function L(·) in addition to some form of quantiza-

tion loss between B and H , Q(B,H). The objective can

be reformulated as

{Φ,H,B} = argmin
Φ,H,B

(L(H) +Q (B,H)) , (3)

s.t. B ∈ {−1, 1}n×l

where the quantization loss in the literature is computed as

Q (B,H) = ‖B −H‖
2
F or Q (B,H) = ‖B −HR‖

2
F

by seeking an orthogonal rotation on the continuous result.

Although L(H) is now differentiable with respect to H ,

the optimization of Q(B,H) is still an NP-complete prob-

lem. A local minimum could be obtained through the al-

ternating optimization over H , through gradient based ap-

proaches, over B, with optimal solution B = sgn(H) or

B = sgn(HR) elementwise, over R, if any, as a classic

Orthogonal Procrustes problem solved based on SVD. The

binary codes of query samples are computed by applying

the hash function sgn (Φ (x)).

3.2. Hashing by Discrepancy Minimization

Optimal Expansion: The relaxation of the objective func-

tion (1) transforms the optimization problem over discrete

variables B to an optimization problem over continuous

variables H . Discrepancy between the objective functions

is observed by simply replacing the variables B with con-

tinuous form H in the loss function L(·), even with the

quantization loss taken into account. Since the desired op-

timal binary codes and hashing functions are expected to

minimize the original objective function over B, the op-

timality of the results is questionable by solving the dis-

crepant objective function. In order to diminish the discrep-

ancy introduced by relaxation, we propose to expand the

original objective function at H by the Taylor series

L (B) = L (H +∆)

= L (H) +

n×l
∑

i=1

∂L (H)

∂~hi

~∆i

+
1

2

n×l
∑

i=1

n×l
∑

j=1

∂2L (H)

∂~hi∂~hj

~∆i
~∆j + . . . , (4)

where ∆ = B − H are regarded as the increments of

variables, vec(·) denotes the column-wise concatenation,
~hi = (vec(H))i and ~∆i = (vec(∆))i are the i-th elements

of vec(H) and vec(∆), respectively, and the ellipsis repre-

sents the higher order terms. By omitting the terms higher

than first order, (4) is reduced to the linear approximation,

which is similar to (3). One step further, (2) could be de-

rived by even omitting the first order term in (4). While the

increments ∆ are small, (3) or (2) can be a good approxi-

mation of the original objective function. However, we can

hardly optimize the objective with gradient based approach-

es, since the gradients tend to be zero for almost all non-zero

inputs. Otherwise, the approximation would deteriorate the

retrieval performance. While existing methods control the

sharpness of the nonlinear activation function to alleviate

this dilemma by introducing an additional coefficient [2],

the discrepancy between the objectives before and after re-

laxation still exists and the value of the coefficient requires

careful design. Through expansion by Taylor series, we can

resolve such dilemma.

Learning Model: Given a binary similarity function S :
X × X 7→ {±1}, where sij = S(i, j) indicates samples

xi and xj are similar or dissimilar. We aim to mapping

samples into the Hamming space as binary codes through

the learned hashing functions. We are interested in con-

structing binary codes such that the similarity relationship

between samples is preserved in the Hamming space. That

is, Hamming distance is small for the similar pair and vice

versa. To this end, we define the specific form of L over a

pair of samples (bi, bj) and their similarity indicator sij as

L (bi, bj , sij) = sij ‖bi − bj‖
2
, (5)

s.t. bi, bj ∈ {+1,−1}l

where ‖ · ‖ denotes the L2 norm. In the context of super-

vised hashing, the similarity function is consistent with the

semantic labelling. That is, sij = 1 if and only if samples

xi and xj are assigned with the same label, and vice versa.

Thus, many more pairs are observed to be dissimilar rather

than similar [35]. To compensate the imbalance of positive

and negative pairs, we modified the loss function in (5) by

introducing a weighted similarity measurement,

L (bi, bj , ŝij) = ŝij ‖bi − bj‖
2
, (6)

s.t. bi, bj ∈ {+1,−1}l

where

ŝij =

{

β, ifsij = 1

β − 1, ifsij = −1
(7)

is the weighted similarity measurement. The parameter β

allows the different weighting on the positive and negative

pairs. To make the objective reasonable, we set 0 < β <

1, which ensures positive coefficients for similar pairs and
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negative coefficients for dissimilar pairs. In the case of β =
0.5, (6) falls back to (5) with a scaling factor of 0.5.

By summing the loss defined in (5) over all sample pairs,

we can reach our objective as

argmin
B

L
(

B, Ŝ
)

=
n
∑

i=1

n
∑

j=1

ŝij ‖bi − bj‖
2
, (8)

s.t. bi, bj ∈ {+1,−1}l

where Ŝ(i, j) = ŝij . Rewriting this loss function in the

matrix form, we can have

argmin
B

L(B) = tr
(

B
T
D̂B

)

, (9)

s.t. B ∈ {−1, 1}n×l

where tr(·) is the trace of a matrix and D̂ = D− Ŝ. D is a

diagonal matrix with Di,i =
∑

j Ŝi,j .

Discrepancy Minimization: We propose to solve the opti-

mization problem over binary variables B in (9) by trans-

forming it into optimization problem over continuous vari-

ables H ∈ R
n×l through optimal expansion. Specifically,

we expand loss function L(B) in (9) at point H by the se-

ries in (4),

tr
(

B
T
D̂B

)

= tr
(

H
T
D̂H

)

+ tr
(

∆T
(

D̂
T + D̂

)

H

)

+ tr
(

∆T
D̂∆

)

, (10)

where H is the output of the differentiable mapping Φ

and the hashing function Ψ is constructed by sgn(Φ). We

are interested in optimizing the objective when the last t-

wo terms in the expansion are negligible. The minimization

of the discrepancy between mappings Φ and Ψ is critical

since we are learning Φ on the training samples and ap-

plying Ψ on the query samples. Note that by approximat-

ing the last two terms with a linear function over ∆, it re-

duces to the quantization loss in the literature. To minimize

the objective discrepancy, we enlarge the coefficients of the

last two terms in (10) to enforce tr
(

H
T
D̂H

)

approach-

ing tr
(

B
T
D̂B

)

. Combining (9) and (10), we formulate

the final optimization problem as

argmin
H,∆

L(H,∆) = tr
(

H
T
D̂H

)

+ λ1tr
(

∆T
(

D̂
T + D̂

)

H

)

+ λ2tr
(

∆T
D̂∆

)

, (11)

s.t. (H +∆) ∈ {−1, 1}n×l

Algorithm 1: DMDH

Input: Training set X and parameters λ1, λ2.

Output: H and Φ.

Initialize H .

for iteration = 1, 2, . . . , R do

Update H by using the gradients in (13).

Iteratively update ∆ according to (16).

Enlarge parameters λ1 and λ2.

end

Return: H and Φ.

where λ1 and λ2 weight the effects of different terms.

To solve the optimization problem in (11), we begin with

an initialized value of H (setting λ1 and λ2 as 0) and alter-

nately update H and ∆. In each iteration, H are first up-

dated with fixed ∆, and then ∆ are updated to minimize the

objective function given H . We gradually enlarge λ1 and

λ2 after each iteration to minimize the objective discrepan-

cy. The overall description of the optimization is presented

in Algorithm 1.

H-step: By fixing ∆, we have the objective as

argmin
H

L(H) = tr
(

H
T
D̂H

)

+ λ1tr
(

∆T
(

D̂
T + D̂

)

H

)

. (12)

Since H are continuous, we can update them by the s-

tochastic gradient descent method. The gradients of the ob-

jective function in (12) over H are computed as

∂L

∂H
=

(

D̂
T + D̂

)

H + λ1

(

D̂
T + D̂

)

∆. (13)

∆-step: By fixing H , we have the objective over ∆ as

argmin
∆

L(∆) = λ1tr
(

∆T
(

D̂
T + D̂

)

H

)

+ λ2tr
(

∆T
D̂∆

)

. (14)

s.t. (H +∆) ∈ {−1, 1}n×l

We have to take effort to deal with the discrete constrained

optimization problem. Nevertheless, without considering

the discrete constraint, we have the gradient with respect to

∆ as

∂L

∂∆
= λ1

(

D̂
T + D̂

)

H + λ2

(

D̂
T + D̂

)

∆. (15)

We can iteratively update ∆ by

∆(i+1) = −sgn

(

∂L

∂∆

∣

∣

∣

∣

∆=∆(i)

)

−H, (16)

where ∆(i) and ∆(i+1) are the values of ∆ at iterations i and

i+1. The sgn(·) operator is applied on the matrix element-

wise. Note that although the solution over ∆ can be applied
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Table 1. The comparison of the retrieval performance among all hashing methods in terms of mean average precision over three datasets

with bit lengths of 16, 32, 48, and 64.

Methods
CIFAR-10 NUS-WIDE ImageNet

16 32 48 64 16 32 48 64 16 32 48 64

LSH [9] 0.1314 0.1582 0.1723 0.1785 0.4132 0.4827 0.4933 0.5113 0.1110 0.2355 0.3011 0.3419

SH [46] 0.1126 0.1325 0.1113 0.1466 0.4792 0.4912 0.4986 0.5253 0.2088 0.3327 0.3915 0.4110

ITQ [10] 0.2312 0.2432 0.2482 0.2531 0.5573 0.5932 0.6128 0.6166 0.3115 0.4632 0.5223 0.5446

KSH [31] 0.3216 0.3285 0.3371 0.4412 0.4061 0.4182 0.4072 0.3888 0.1620 0.2818 0.3422 0.3934

ITQ-CCA [10] 0.3142 0.3612 0.3662 0.3921 0.5091 0.5443 0.5382 0.6616 0.2546 0.4276 0.5428 0.5527

FastH [22] 0.4532 0.4577 0.4672 0.4854 0.5222 0.6002 0.6472 0.6528 0.2328 0.4337 0.5277 0.5576

SDH [36] 0.4122 0.4301 0.4392 0.4465 0.5342 0.6282 0.6221 0.6335 0.2729 0.4521 0.5329 0.5893

CNNH [47] 0.5373 0.5421 0.5765 0.5780 0.6221 0.6233 0.6321 0.6372 0.2888 0.4472 0.5328 0.5436

DNNH [20] 0.5978 0.6031 0.6087 0.6166 0.6771 0.7023 0.7128 0.7200 0.2887 0.4623 0.5422 0.5586

DPSH [21] 0.6367 0.6412 0.6573 0.6676 0.7015 0.7126 0.7418 0.7423 0.3226 0.5436 0.6217 0.6534

DSH [27] 0.6792 0.6465 0.6624 0.6713 0.7181 0.7221 0.7521 0.7531 0.3428 0.5500 0.6329 0.6645

HashNet [2] 0.6857 0.6923 0.7183 0.7187 0.7331 0.7551 0.7622 0.7762 0.5016 0.6219 0.6613 0.6824

DMDH 0.7037 0.7191 0.7319 0.7373 0.7511 0.7812 0.7886 0.7892 0.5128 0.6123 0.6727 0.6916

for B, the obtained binary codes become inferior due to the

coupling of similarity preservation and discrete constraint.

4. Experiments

4.1. Datasets and Experimental Settings

The experiments are conducted on three benchmark

datasets: CIFAR-10 [40], NUS-WIDE [4], ImageNet [6].

CIFAR-10 consists of 60,000 manually labelled color im-

ages with the size of 32× 32. They are evenly divided into

10 categories. We follow the official split of the dataset

to construct the training set, 5,000 images from each cat-

egory, and the test set, 1,000 images from each catego-

ry. The images from the training set are also used as the

database. NUS-WIDE is a set of 269,648 images collected

from Flickr. This is a multi-label dataset, namely, each im-

age is associated with one or multiple labels from a given

81 concepts. To ensure sufficient samples in each category,

we select the images associated with the 21 most frequent

concepts, at least 5,000 images per concept and a total of

195,834 images. We randomly sample 5,000 images to for-

m the test set and use the remaining images as the database,

10,000 out of which are selected for training. ImageNet

is a large scale single labelled image benchmark for visu-

al recognition with over 1.2M images covering 1,000 cat-

egories. Following the settings in [2], we select 100 cate-

gories and use images associated with them in the provided

training set and the validation set as the database and the

test set, respectively. To train hashing methods, we sam-

ple 100 images from each of the 100 selected categories to

construct the training set.

As in previous work [2, 27], the ground truth similari-

ty relationship between images is defined according to the

labels. We define the ground truth of semantically similar

neighbors as images from the same category. For multiple

labelled dataset, NUS-WIDE, we define the ground truth se-

mantic neighbors as images sharing at least one label. Note

that the data imbalance, different numbers of positive and

negative neighbors, is observed in these datasets under the

definition of semantic similarity.

We evaluate the retrieval performance of generated bi-

nary codes with three main metrics: mean average preci-

sion (MAP), precision at top N returned results (P@N),

and Hamming lookup precision within Hamming radius r

(HLP@r). The mean average precision provides an over-

all evaluation of the retrieval performance, which could

be further demonstrated by the precision-recall curve. We

show the results of MAP@5000 and MAP@1000 for NUS-

WIDE and ImageNet datasets, respectively. We choose to

evaluate the performance over binary codes with lengths of

16, 32, 48, and 64 bits.

In our implementation of DMDH, we utilize the AlexNet

network structure [17] and implement it in the Caffe [14]

framework. We initialize the network parameters from the

pre-trained model on ImageNet [6]. In the training phase,

we set the batch size as 256, momentum as 0.9, and weight

decay as 0.005. The learning rate is set to an initial value

of 10−4 with 40% decrease every 10,000 iterations. We

gradually increase the values of λ1 and λ2 from 0.6 and

1.2 by a scaling factor of 1 + #iter × 5× 10−4 every 200

iterations. For parameter tuning, we evenly split the training

set into ten parts to cross validate the parameters.

4.2. Results and Analysis

Comparison with the State-of-the-art: We compare the

proposed DMDH with ten state-of-the-art hashing meth-

ods, including unsupervised hashing: LSH [9], SH [46],

ITQ [10], supervised hashing: KSH [31], ITQ-CCA [10],

FastH [22], SDH [36], and deep learning based hashing:

CNNH [47], DNNH [20], DPSH [21], DSH [27], Hash-
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(a) precision-recall (b) P@N (c) HLP@(r==2)

Figure 2. The experimental results on the CIFAR-10 dataset for different deep learning based hashing methods.

(a) precision-recall (b) P@N (c) HLP@(r=2)

Figure 3. The experimental results on the NUS-WIDE dataset for different deep learning based hashing methods.

Net [2]. We report their results by running the source codes

provided by their respective authors to train the models by

ourselves, except for DNNH due to the inaccessibility of

the source code. We directly use the images as input for

all the deep learning based hashing methods, including the

proposed DMDH. The images are resized to fit the input

of the adopted model. For conventional hashing methods,

both unsupervised and supervised hashing, we extract the

outputs of the layer ‘fc7’ in the deep model [8] as input fea-

tures.

Table 1 shows the retrieval performance of differen-

t hashing methods in terms of mean average precision. We

can observe that our proposed DMDH delivers the best

performance. Compared with the best competitor in deep

learning based hashing methods, DMDH consistently out-

performs by around 2%. We attribute the performance im-

provement to the minimization of the objective discrepan-

cy instead of the quantization loss only. Also, we observe

that the direct consideration of quantization loss in DSH and

HashNet boosts the performance over CNNH, DNNH and

DPSH. Compared with the best conventional hashing meth-

ods, DMDH boosts the performance by a large margin. We

own the advance of the deep learning based hashing method

on deep model to the end-to-end training of deep models,

which allows the simultaneous learning of feature represen-

tation and binarization.

We also observe from the table that the performance of

all methods increases by using longer binary codes. While

most conventional unsupervised and supervised hashing

methods exhibit consistent increase over the test range of

bit lengths, the performance of deep learning based hashing

methods exhibits saturation. This indicates that deep learn-

ing based hashing methods enable the use of more compact

binary code for retrieval. While all deep learning based

methods show similar trend of saturation, DMDH obtains

a higher saturated performance. The saturation arises at dif-

ferent lengths of binary codes on different datasets. For the

simple CIFAR-10 dataset with few categories, the perfor-

mance saturates when the length of binary codes is 16 bits.

For the challenge ImageNet dataset with more categories,

the performance starts to saturate with the length of binary

codes set as 48 bits.

The precision-recall curves for deep learning based hash-

ing methods are shown for 48-bit binary codes in Fig-

ures 2(a), 3(a), and 4(a) for CIFAR-10, NUS-WIDE, and

ImageNet datasets, respectively. Here we only show the

results on the deep learning based hashing methods with

the same network model to evaluate the effectiveness of the

hashing learning. From the curves in the figures, we can

find out that DMDH delivers higher precision than state-

of-the-art deep learning based hashing methods at the same

rate of recall. This is appreciated in approximate nearest
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Figure 4. The experimental results on the ImageNet dataset for different deep learning based hashing methods.

Table 2. The retrieval performance of different variants of DMDH

on the CIFAR-10 dataset with different lengths of binary codes.

Methods
Mean average precision

16 32 48 64

DMDH 0.7037 0.7191 0.7319 0.7373

DMDH-L 0.6705 0.6955 0.7044 0.6975

DMDH-F 0.6850 0.7027 0.7108 0.7128

DMDH-LF 0.6670 0.6816 0.6845 0.6641

neighbor search because large scale image retrieval is in-

terested in high probability of finding true neighbors rather

than finding out the whole set of neighbors.

Figures 2(b), 3(b), and 4(b) show the average precision

for 48-bit binary codes with respect to different numbers

of top retrieved results on three datasets for deep learning

based hashing methods. DMDH consistently provides su-

perior precision than the compared hashing methods for the

same amount of retrieved samples. This stands for that more

semantic neighbors are retrieved, which is desirable in prac-

tical use. We present the Hamming lookup precision within

Hamming radius 2 on different lengths of binary codes for

deep learning based hashing methods on three datasets in

Figures 2(c), 3(c), and 4(c). This metric measures the pre-

cision of the retrieved results falling into the buckets within

the set Hamming radius. The peak performance is observed

at a moderate length of binary codes rather than the longest

binary codes. This is because that longer binary code makes

the data distribution in Hamming space sparse and fewer

samples fall within the set Hamming ball.

Investigation on Different Components: We study the ef-

fects of different terms in the objective and the optimization

procedure by empirically comparing different variants of D-

MDH. Specifically, we implement three variants of DMD-

H, namely DMDH-L, DMDH-F, and DMDH-LF. DMDH-

L variant preserves the first order term in (11) by assign-

ing zero coefficients to the high order terms. This is a lin-

ear approximation by merely considering the quantization

loss in the objective with a gradually increasing coefficien-
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Figure 5. The precision-recall curves on the CIFAR-10 dataset for

different variants of DMDH with 64-bit binary codes.

t. DMDH-F variant fixes the coefficients in (11) to optimal

values by regarding them as hyper-parameters. DMDH-LF

variant simultaneously preserves merely the first order term

in (11) and fixes the coefficient to a set value during opti-

mization.

We report the performance results of different variants in

Table 2 in terms of mean average precision on the CIFAR-

10 dataset. The detailed precision-recall curves with binary

codes of 64 bits are further shown in Figure 5. By mini-

mizing the discrepancy between objectives before and af-

ter relaxation rather than the quantization loss from real-

value features to binary features, DMDH outperforms its

counterpart DMDH-L. Similar results can be observed be-

tween DMDH-F and DMDH-LF. The introduce of high or-

der terms through series expansion guarantees that the op-

timized objective matches the designed objective on bina-

ry codes. The high order terms transform the quantization

loss to an objective loss excluding the linear part, which is

considered by the first order term. In our case, since the

objective is a quadratic function with respect to the bina-

ry codes, the expanded terms higher than quadratic terms

are with zero coefficients. In DMDH, the optimization is

conducted in two alternating steps to enforce the generat-

ed codes preserving the similarity and approaching the de-

sired discrete values. By gradually increasing the coeffi-

cients of the residual terms, the terms in (11) except the first
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Figure 6. The mean average precision for different β on the

CIFAR-10 dataset with 64-bit binary codes.

term, DMDH delivers higher performance than its counter-

part DMDH-F. Similar trend is observed between DMDH-L

and DMDH-LF. Simultaneously enforcing the two desired

properties over the generated codes makes it difficult to train

the neural network, slows down the convergence, and even

deteriorates the performance. With small coefficients on the

residual terms, the network is firstly trained to preserve the

similarity relationship between samples. With increasing

coefficients for the residual terms, the neural network is

trained to generate codes approaching the desired discrete

value while keeping the similarity preservation.

Investigation on Weighted Similarity Measurement: We

investigate the effect of weighted similarity measuremen-

t on dealing with the imbalance of positive and negative

pairs. The weighted similarity measurement is controlled

by parameter β in (7). By imposing large β, i.e. close to 1,

the algorithm merely utilizes the positive pairs to learn hash

codes. By imposing small β, i.e. close to 0, the algorithm

merely utilizes the negative pairs to learn hash codes. With

the definition of semantic similarity and the datasets, imbal-

ance between positive pairs and negative pairs is observed in

each training batch since the number of dissimilar samples

from different categories is large than the number of similar

samples from the same category. Figure 6 shows the varia-

tion of performance in terms of mean average precision with

respect to β on the CIFAR-10 dataset with length of binary

codes set as 64 bits. With the increase of β, the retrieval

performance firstly ascends and then declines. Asymmetric

similarity measurement shows promising performance en-

hancement over the symmetric counterpart.

Encoding Time: The encoding time, time cost to generate

the binary code for a query sample, is an important fac-

tor to evaluate the practical retrieval system. Since the in-

put query samples are originally raw images, we take into

consideration both the time cost for feature extraction and

the time cost for hashing encoding for conventional hashing

methods. We report both the feature extraction time for con-

ventional hashing methods and the encoding time for deep

DMDH

CNNH

DNNH

DSH

HashNet

ITQ

ITQ-CCA

SDH

Feature extration

10
1

10
2

10
3

10
4

Encoding time ( s)

Figure 7. The encoding times of different hashing methods on the

CIFAR-10 dataset with 64-bit binary codes.

learning based hashing methods on GPU and the hashing

encoding time of conventional hashing methods on CPU.

The encoding times of involved hashing methods are pre-

sented in Figure 7 in logarithmic scale on the CIFAR-10

dataset with 64-bit binary codes. The computing platform

is equipped with a 4.0 GHz Intel CPU, 32 GB RAM, and N-

VIDIA GTX 1080Ti. The encoding time basically depends

on the adopted neural network model rather than the hash-

ing method. Thus the time varies little with different lengths

of binary codes.

5. Conclusion

In this work, we have proposed to learn to hash by min-

imizing the objective discrepancy. We transform the dis-

crete optimization problem into a differentiable optimiza-

tion problem over hashing functions through series expan-

sion with discrepancy minimization. We solve the trans-

formed optimization problem in a tractable alternating op-

timization framework. We conduct extensive experiments

to validate the superiority of the proposed DMDH through

comparison with the state-of-the-art hashing methods.
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