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Abstract

With the rise of misinformation spread via social media

channels, enabled by the increasing automation and real-

ism of image manipulation tools, image forensics is an in-

creasingly relevant problem. Classic image forensic meth-

ods leverage low-level cues such as metadata, sensor noise

fingerprints, and others that are easily fooled when the im-

age is re-encoded upon upload to facebook, etc. This ne-

cessitates the use of higher-level physical and semantic cues

that, once hard to estimate reliably in the wild, have become

more effective due to the increasing power of computer vi-

sion. In particular, we detect manipulations introduced by

artificial blurring of the image, which creates inconsistent

photometric relationships between image intensity and var-

ious cues. We achieve 98% accuracy on the most challeng-

ing cases in a new dataset of blur manipulations, where the

blur is geometrically correct and consistent with the scene’s

physical arrangement. Such manipulations are now easi-

ly generated, for instance, by smartphone cameras having

hardware to measure depth, e.g. ‘Portrait Mode’ of the i-

Phone7Plus. We also demonstrate good performance on

a challenge dataset evaluating a wider range of manipula-

tions in imagery representing ‘in the wild’ conditions.

1. Introduction

Image forensics is a long-standing problem whose ob-

jective is to detect manipulations which call into question

the veracity of the image content. Manipulating images is

now easier than ever, given the computer vision powered

advance of software packages such as PhotoShop, and the

forensic task is harder than ever due to sheer volume of im-

ages created and shared on modern platforms. A false de-

tection rate that would have been acceptable in a previous

era is now completely unworkable, for example, when ap-

plied to the 30 billion images shared via Instagram.

Artificial blur can be used to obscure important detail-

s and, unlike metadata edits or other forensic cues, both

motion and optical blur are naturally-occurring phenome-

na. Indeed, as shown by the recent popularity of Portrait

Mode-type features, blur is a desirable feature of high qual-

ity images. Shallow depth of field (DoF), in which non-

subject parts of the image are blurred, is a signature element

in professional photography and film editing. DoF effect-

s are known to improve photorealism, mediate monocular

depth perception [21, 22], and improve the salience of fo-

cused objects. Shallow DoF with smooth Bokeh and correct

blur in out-of-focus regions has long required high-end Dig-

ital Single-Lens Reflex (DSLR) cameras with high quality

lenses, while small aperture mobile phone cameras sharply

image all parts of the scene. Not surprisingly, then, enabling

shallow DoF effects have been identified as a key objective

of computational photography teams at Google [2] and else-

where. Software and mobile phone apps such as PhotoShop

[1], FabFocus [4], Depth Effects [3], etc. provide the shal-

low DoF effect, but require a lot of user effort and don’t

enforce 3D geometric consistency. To address this, recen-

t smartphones - such as the iPhone7Plus, Google Pixel 2,

and HuaweiHonor8 - use 3D sensing hardware and/or al-

gorithms which automates the production of shallow DoF

images that are geometrically correct.

Though these manipulations are geometrically consis-

tent and visually persuasive, there are still detectable differ-

ences with images having genuinely shallow DoF. The key

commonality of these manipulation methods is that they ap-

ply the local blur in software, where the blur kernel doubles

as a de-noising filter. As a result, these manipulations in-
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troduce photometric inconsistencies in noise levels, which

are the primary cue for our detection. In addition, we use

JPEG double quantization and demosaicing cues to detect

more general focus manipulations. In this paper, we present

a photo forensic method to distinguish images having a nat-

urally shallow DoF from manipulated ones, by integrating

a number of cues under a fusion of two deep convolution

networks with small receptive fields for histogram classifi-

cation. Comprehensive experiments show that our learning-

based approach outperforms existing solutions on both a

newly-collected dataset of Portrait Mode-type imagery and

a public challenge dataset including a wider range of manip-

ulations in imagery representing ‘in the wild’ conditions.

2. Related Work

Our primary contribution is to the field of image foren-

sics, which is a longstanding research area reviewed com-

prehensively by Qureshi and Deriche [24]. Within foren-

sics, blur has been used as a cue to detect splicing opera-

tions, where the spliced-in object(s) may be inconsistent-

ly blurred with respect to other parts of the image, or may

have boundaries which are implausible. Chen et al. [12]

recently introduced a method that detects such implausi-

ble boundaries by classifying edge patches from an image,

but that method’s dependence on pixel-wise statistics near

edges leads to problems on compressed ‘in the wild’ im-

agery. Earlier, Bahrami et al. [6, 7] partially automated the

forensic task by segmenting and labeling of image region-

s based on local blur; the ultimate classification of an im-

age as manipulated or authentic is left to a human observer,

though, so the method doesn’t address web-scale forensic-

s. Even if the final classification were automated, though,

segment-level labeling of the type and extent of blur would-

n’t address the geometrically correct manipulations that we

do. A recent post by Google [2] explains the Pixel 2 portrait

mode implementation in some detail, but other companies

are less forthcoming on their methods. Differences between

these implementations, like whether the de-blurring is ap-

plied before or after compression, have a significant impact

on our ability to detect focus manipulations.

Another important consideration is how the spatially-

variant blur is applied, for which there is extensive past

research. Classic methods simulate blur by spatially con-

volving (filtering) neighbor pixels within a synthetic blur

kernel. Starting from iterative filtering [26], algorithms

in this vein have evolved to more sophisticated solution-

s including pre-blurring [25, 14, 15], anisotropic diffusion

[10, 23], separable Gaussian filters [25, 30], etc. To miti-

gate visual artifacts around edges, multiple layer approach-

es have become increasingly popular. Inspired by an earlier

object-space grouping method [27], more recent approach-

es [16, 17, 9, 8, 18] decompose a pinhole image into sev-

eral sub-images according to the depth of pixels; each sub-

image is then separately filtered via either single layer s-

cattering [16, 17], Fast Fourier Transforms [9, 8], or cus-

tomized pyramidal processing [18].

3. Primary Cue: Image Noise

Regardless of how the local blurring is implemented, the

key difference between optical blur and portrait mode-type

processing can be found in image noise. Fig. 1 shows the

digital camera imaging process, along with a description of

various noise sources. When blur happens optically, before

photons reach the sensor, only small signal-dependent noise

impacts are observed. When blur is applied algorithmical-

ly to an already digitized image, however, the smoothing or

filtering operation also implicitly de-noises the image. S-

ince the amount of denoising is proportional to the amount

of local smoothing or blurring, and since we are interest-

ed in spatially non-uniform blurring operations, differences

in the amount of algorithmic local blur can be detected via

inconsistencies between the local intensity and noise level.

Two regions of the image having approximately the same

intensity should also have approximately the same level of

noise. If one region is blurred more than the other, or one is

blurred while the other is not, an inconsistency is introduced

between the intensities and local noise levels.

For our noise analysis, we extend the combined noise

models of [29, 19]. Ideally, a pixel produces a number of

electrons Enum proportional to the average irradiance from

the object being imaged. However, shot noise NS is a result

of the quantum nature of light and captures the uncertainty

in the number of electrons stored at a collection site; NS

can be modeled as Poisson noise. Additionally, site-to-site

non-uniformities called fixed pattern noise K are a multi-

plicative factor impacting the number of electrons; K can

be characterized as having mean 1 and a small spatial vari-

ance σ2
K over all of the collection sites. Thermal energy

in silicon generates free electrons which contributes dark

current to the image; this is modeled as an additive factor

NDC , modeled as Gaussian noise. The on-chip output am-

plifier sequentially transforms the charge collected at each

site into a measurable voltage with a scale A, and the am-

plifier generates zero mean read-out noise NR with variance

σ2
R. De-mosaicing is applied in color cameras to interpolate

two of the 3 colors at each pixel, and introduces an error

which is sometimes modeled as noise. After this, the cam-

era response function (CRF) f(·) maps this voltage via a

non-linear transform to improve perceptual image quality.

Lastly, the analog-to-digital converter (ADC) approximates

the analog voltage as an integer multiple of a quantization

step q. The quantization noise can be modeled as the addi-

tion of a noise source NQ.

With these noise sources in mind, we can describe a dig-
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Figure 1. Digital camera imaging pipeline, showing the various sources of noise in a captured image.

itized 2D image as:

D(x, y) =

f
(

(K(x, y)Enum(x, y) +NDC(x, y)

+NS(x, y) +NR(x, y))A
)

+NQ(x, y) (1)

The variance of the noise is given by

σ2
N (x, y) =

f ′2
(

A2
(

K(x, y)Enum(x, y) + E[NDC(x, y)]

+ σ2
R

)

)

+
q2

12
(2)

where E[·] is the expectation function. This equation tells

us two things which are typically overlooked in the more

simplistic model of noise as an additive Gaussian source:

1. The noise variance’s relationship with intensity reveals

the shape of the CRF’s derivative f ′.

2. Noise has a signal-dependent aspect to it, as evidenced

by the Enum term in (2).

An important corollary to this is that different levels of noise

in regions of an image having different intensities is not per

se an indicator of manipulation, though it has been taken as

one in past work [20]. We show in our experiments that,

while the noise inconsistency cue from [20] has some pre-

dictive power in detecting manipulations, a proper account-

ing for signal-dependent noise via its relationship with im-

age intensity significantly improves detection performance.

Measuring noise in an image is, of course, ill-posed, and

is equivalent to the long-standing image de-noising prob-

lem. For this reason, we leverage three different approxima-

tions of local noise, measured over approximately-uniform

image regions: intensity variance, intensity gradient magni-

tude, and the noise feature of [20] (abbreviated NOI). Each

of these is related to the image intensity of the correspond-

ing region via a 2D histogram. This step translates subtle

statistical relationships in the image to shape features in the

2D histograms which can be classified by a neural network.

As we show in the experiments, our detection performance

on histogram features significantly improves on that of pop-

ular approaches applied directly to the pixels of the image.

(a) (b) (c) (d)

Figure 2. 4 Different Bayer CFA patterns.

4. Additional Photo Forensic Cues

One of the key challenges in forensic analysis of images

‘in the wild’ is that compression and other post-processing

may overwhelm subtle forgery cues. Indeed, noise features

are inherently sensitive to compression which, like blur, s-

mooths the image. In order to improve detection perfor-

mance in such challenging cases, we incorporate addition-

al forensic cues which improve our method’s robustness.

Some manipulation methods operate on a JPEG image, i.e.

after all steps of the pipeline; others operate on raw images,

and apply steps like the CRF after the manipulation. Some

require user intervention to determine the amount of local

blurring; others, including portrait modes, use hardware to

measure depth, and obviate the need for user intervention.

As such, there are a range of different cues that can reveal

manipulations in a subset of the data.

4.1. Demosaicing Artifacts

At a sensor pixel which only records one of the red,

green, or blue channels of the image, the remaining two

colors must be interpolated from neighboring pixels which

measure them. Forensic researchers have shown that the

differences between the de-mosaicing algorithm, and the d-

ifferences between the physical color filter array bonded to

the sensor, can be detected from the image. Since focus ma-

nipulations are applied on the demosaiced images, the local

smoothing operations will alter these subtle Color Filter Ar-

ray (CFA) demosaicing artifacts. In particular, the lack of

CFA artifacts or the detection of weak, spatially-varying C-

FA artifacts indicates the presence of global or local tam-

pering, respectively.

Following the method of [13], we consider the demosaic-

ing scheme fd being bilinear interpolation. We divide the

image into W × W sub-blocks, and only compute the de-

mosaicing feature at the non-smooth blocks of pixels. De-

note each non-smooth block as Bi, where i = 1, . . . ,mB ,

and mB is the number of non-smooth blocks in the im-

age. We use the four different Bayer pattern CFA arrange-

ments shown in Fig. 2, and assess the error between the
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Figure 3. Feature maps and histogram for authentic and manipulated images. On the first row are the authentic image with feature maps;

the second row shows the corresponding maps for the manipulated image. We show scatter plots relating the features to intensity in the

third row, where blue sample points correspond to the authentic image, and red corresponds to a manipulated DoF image (which was taken

with an iPhone).

image’s pixel values and re-interpolated intensities assum-

ing each of the four patterns. The re-interpolation error of

i-th sub block for the k-th CFA pattern θk is defined as:

B̂i,k = fd(Bi, θk) and k = 1, . . . , 4. The MSE error ma-

trix E
(2)
i (k, c), c ∈ R,G,B between the blocks B and B̂ is

computed in non-smooth regions all over the image. There-

fore we define the metric to estimate the uniformity of nor-

malized green channel column vector as

F = median

( 4
∑

l=1

|100×
E

(2)
i (k, 2)

∑3
l=1 E

(2)
i (l, 2)

− 25|

)

E
(2)
i (k, c) = 100×

Ei(k, 2)
∑3

l=1 Ei(l, 2)

Ei(k, c) =
1

W ×W

W
∑

x=1

W
∑

y=1

(

Bi(x, y, c)− B̂i,k(x, y, c)
)2

(3)

4.2. JPEG Artifact

In some portrait mode implementations, such as the i-

Phone, the option to save both an original and a portrait

mode image of the same scene suggests that post-processing

is applied after JPEG compression. Importantly, both the o-

riginal JPEG image and the processed version are saved in

the JPEG format without resizing. Hence, Discrete Cosine

Transform (DCT) coefficients representing unmodified ar-

eas will undergo two consecutive JPEG compressions and

exhibit double quantization (DQ) artifacts, used extensive-

ly in the forensics literature. DCT coefficients of locally-

blurred areas, on the other hand, will result from non-

consecutive compressions and will present weaker artifacts.

We follow the work of [11], and use Bayesian inference

to assign to each DCT coefficient a probability of being dou-

bly quantized. Accumulated over each 8×8 block of pixels,

the DQ probability map allows us to distinguish original ar-

eas (having high DQ probability) from tampered areas (hav-

ing low DQ probability). The probability of a block being

tampered can be estimated as

p = 1/

(

∏

i|mi 6=0

(

R(mi)− L(mi)
)

∗ kg(mi) + 1

)

R(m) = Q1

(

⌈

Q2

Q1

(

m−
b

Q2
−

1

2

)⌉

−
1

2

)

L(m) = Q1

(

⌊

Q2

Q1

(

m−
b

Q2
+

1

2

)⌋

+
1

2

)

(4)

where m is the value of the DCT coefficient. kg(·) is a

Gaussian kernel with standard deviation σe/Q2. Q1, Q2

are the quantization steps used in the first and second com-

pression, respectively. b is the bias. m is the unquantized

DCT coefficient.

5. Focus Manipulation Detection

To summarize the analysis above, we adopt 5 types of

features: color variance (VAR), image gradient (GRAD),

double quantization (ADQ) [11], color filter artifacts (CFA)

[13] and noise inconsistencies (NOI) [20] for refocusing de-

tection. Each of these features is computed densely at each

location in the image, and Fig. 3 illustrates the magnitude of

these features in a feature map for an authentic image (top

row) and a portrait mode image (middle row). Though there
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Figure 4. Manipulated refocusing image detection pipeline. The

example shown is an iPhone7plus portrait mode image.

are notable differences between the feature maps in these

two rows, there is no clear indication of a manipulation ex-

cept, perhaps, the ADQ feature. And, as mentioned above,

the ADQ cue is fragile because it depends on whether blur-

ring is applied after an initial compression.

As mentioned in Sec. 3, the noise cues are signal-

dependent in the sense that blurring introduces an incon-

sistency between intensity and noise levels. To illustrate

this, Fig. 3’s third row shows scatter plots of the relation-

ship between intensity (on the horizontal axis) and the var-

ious features (on the vertical axis). In these plots, particu-

larly the columns related to noise (Variance, Gradient, and

NOI), the distinction between the statistics of the authen-

tic image (blue symbols) and the manipulated image (red

symbols) becomes quite clear. Noise is reduced in most of

the image, though the un-modified foreground region (the

red bowl) maintains relatively higher noise because it is not

blurred. Note also that the noise levels across the manipulat-

ed image are actually more consistent than in the authentic

image, showing that previous noise-based forensics [20] are

ineffective.

5.1. Overall Approach

Fig. 4 shows our forgery detection pipeline, which in-

corporates the 5 features previously discussed. In order to

capture the relationship between individual features and the

underlying image intensity, we employ an intensity v.s. fea-

ture bivariate histogram – which we call the focus manip-

ulation inconsistency histogram (FMIH). We use FMIH for

all five features for defocus forgery image detection, each

of which is analyzed by a neural network called FMIHNet.

These 5 classification results are combined by a majority

voting scheme to determine a final classification label.

First we extract VAR, GRAD, ADQ, CFA and NOI fea-

tures for each input image, shown in the first five columns of

the second row of Fig. 4. Next, we partition the input image

Figure 7. Network architecture analysis. Accuracy changing with

different number of layers.

into superpixels and, for each superpixel isp, we compute

the mean F (isp) of each feature measure and its mean in-

tensity. Finally, we generate the FMIH for each of the five

figures, shown in the five columns of the third row of Fig. 4.

Note that the FMIH are flipped vertically with respect to the

scatter plots shown in Fig. 3. An comparison of the FMIH

extracted features from the same scene captured with differ-

ent cameras is shown in Fig. 5.

5.2. Network Architectures

We have designed a FMIHNet, illustrated in Fig. 6, for

the 5 histogram features. Our network is a VGG [28] style

network consisting of convolutional (CONV) layers with s-

mall receptive fields (3×3). During training, the input to our

FMIHNet is a fixed-size 101 × 101 FMIH. The FMIHNet

is a fusion of two relatively deep sub-networks: FMIHNet1

with 20 CONV layers for VAR and CFA features, and FMI-

HNet2 with 30 CONV layers for GRAD, ADQ and NOI

features. The CONV stride is fixed to 1 pixel; the spatial

padding of the input features is set to 24 pixels to preserve

the spatial resolution. Spatial pooling is carried out by five

max-pooling layers, performed over a 2 × 2 pixel window,

with stride 2. A stack of CONV layers are followed by one

Fully-Connected (FC) layer, performs 2-way classification.

The final layer is the soft-max layer. All hidden layers have

the rectification (ReLU) non-linearity.

There are two reasons that we use very small 3×3 recep-

tive fields: first, incorporating multiple non-linear rectifica-

tion layers instead of a single one makes the decision func-

tion more discriminative; secondly, this reduces the number

of parameters. This can be seen as imposing a regularisation

on a lager CONV layer by forcing it to have a decomposi-

tion through the 3× 3 filters.

Because most of the values in our FMIH are zeros (i.e.,

most cells in the 2D histogram are empty), and because

we only have two output classes (authentic and manipulat-

ed), more FC layers seem to degrade the training perfor-

mance. Fig. 7 shows how the accuracy rate changes with

different numbers of layers: TNet1 has 11 CONV layers

and 3 max-pooling layers, TNet2 has 20 CONV layers and

4 max-pooling layers, TNet3 has 14 CONV layers and 6

max-pooling layers.
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Figure 5. Extracted FMIHs for the 5 feature measures with images captured using Canon60D, iPhone7Plus and HuaweiMate9 cameras.

Figure 6. Network architecture: FMIHNet1 for Var and CFA features; FMIHNet2 for Grad, ADQ and NOI features.

6. Experiments

Having introduced a new method to detect focus ma-

nipulations, this section will provide quantitative evidence

for several claims that we have made throughout the paper.

First, we will demonstrate that our method can accurately

identify manipulated images even if they are geometrically

correct. Here, we also show that our method is more ac-

curate than both past forensic methods [11, 13, 20] and the

modern vision baseline of CNN classification applied di-

rectly to the image pixels. Second, having claimed that the

photometric relationship of noise cues with the image inten-

sity is important, we will show that our FMIH histograms

are a more useful representation of these cues. Third, we

show that our method generalizes from the specific portrait

mode manipulations to a wider range of image edits in a s-

tandard forensics dataset. Having done so, we can provide

a comparison to the method of [12] on that dataset, showing

improved performance compared to one of the most recent

forensic methods.
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6.1. Datasets

To demonstrate our performance on the hard cases of ge-

ometrically correct focus manipulations, we have built a fo-

cus manipulation dataset (FMD) of images captured with a

Canon 60D DSLR and two smartphones having dual lens

camera-enabled portrait modes: the iPhone7Plus and the

Huawei Mate9. Images from the DSLR represent real shal-

low DoF images, having been taken with focal lengths in

the range 17-70mm and f numbers in the range F/2.8-F/5.6.

The iPhone was used to capture aligned pairs of authentic

and manipulated images using portrait mode. The Mate9

was also used to capture authentic/manipulated image pairs,

but these are only approximately aligned due to its inabil-

ity to save the image both before and after portrait mode

editing.

We use 1320 such images for training and 840 images

for testing. The training set consists of 660 authentic im-

ages (220 from each of the three cameras) and 660 manip-

ulated images (330 from each of iPhone7Plus and Huawei

Mate9). The test set consists of 420 authentic images (140

from each of the three cameras) and 420 manipulated im-

ages (140 from each of iPhone7Plus and HuaweiMate9).

In order to test a wider range of manipulations, we also

test with the NIST NC2017 [5] dataset. This dataset in-

cludes manipulations such as global and local blurring op-

erations, some of which are manually generated and some

of which are auto-generated. NC2017 data is more repre-

sentative of ‘in the wild’ images, which have variable com-

pression, resizing and source cameras. We sample from this

dataset training and testing sets having 1000 images, 500 of

which are authentic and 500 of which are manipulated.

6.2. Experiments with FMD

Fig. 5 shows five sample images from FMD, and illus-

trates the perceptual realism of the manipulated images. De-

spite this, it’s well known that modern deep learning meth-

ods can perform quite well given nothing but an image’s

pixels. The first row of Table. 1 quantifies this performance,

and shows that a range of CNN models (AlexNet, CaffeNet,

VGG16, VGG19) have classification accuracies in the range

of 76-78%. Since our method uses five different feature

maps which can easily be interpreted as images, the remain-

ing rows of Table. 1 show the classification accuracies of

the same CNN models applied to these feature maps. The

accuracies are slightly lower than for the image-based clas-

sification.

In Sec. 3, we claimed that a proper accounting for signal-

dependent noise via our FMIH histograms improves upon

the performance of the underlying features, and this is seen

by comparing the image- and feature map-based classifica-

tion performance of Table. 1 with the FMIH-based classi-

fication performanc shown in Table. 2. Using FMIH, even

the relatively simple SVMs and LeNet CNNs deliver clas-

sification accuracies in the 80-90% range. Our FMIHNet

Table 1. Image Classification Accuracy on FMD

Data AlexNet CaffeNet VGG16 VGG19

Image 0.760 0.782 0.771 0.784

VAR map 0.688 0.725 0.714 0.726

GRAD map 0.733 0.767 0.740 0.769

ADQ map 0.735 0.759 0.736 0.740

CFA map 0.761 0.788 0.777 0.785

NOI map 0.707 0.765 0.745 0.760

Table 3. Image Classification Accuracy on NC2017

Data AlexNet CaffeNet VGG16 VGG19

Image 0.497 0.555 0.532 0.567

VAR map 0.483 0.501 0.558 0.504

GRAD map 0.498 0.519 0.504 0.514

ADQ map 0.517 0.502 0.538 0.502

CFA map 0.556 0.559 0.564 0.553

NOI map 0.665 0.609 0.650 0.667

architecture produces significantly better results than these,

with our method’s voting output having a classification ac-

curacy of 98%. Fig. 8 (a) shows these results in the form

of a Receiver Operator Characteristic (ROC) curve, which

confirms (1) that the approaches using our FMIH feature

representation out-perform the image- or feature map-based

approaches and (2) that our network architecture and voting

method out-performs other classifiers.

6.3. Experiments with NC2017

As mentioned previously, we train and test with the

NC2017 data to represent ‘in the wild’ images and a wider

range of manipulations, not all of which create defocus in-

consistencies. Unlike our FMD dataset, the results in Ta-

ble. 3 show that modern CNN architectures don’t perform

any better than random when operating on image inputs,

and that their accuracy is less than 67% when classifying

the various feature maps. Though some of these manipu-

lations lack the visual realism of the portrait mode images,

this dataset is in some ways more challenging.

A related challenge is that, while representing a wider

range of manipulations, our NC2017 training set has fewer

examples. As shown in Fig. 4, the FMIHNet classification

accuracy (after voting) is only 63% when trained exclusive-

ly on NC2017 data. This is similar to the 62.3% accuracy

that we achieve when the network is trained exclusively on

the FMD data, which creates a dataset mismatch. Our best

NC2017 result, of 77%, is obtained by training our method

on the combination of FMD and NC2017 training data. The

ROC curves on NC2017 are shown in Fig. 8 (b), where we

also include results from [12]’s very recent blur manipula-

tion detector. Our FMIHNet trained on FMD+NC2017 (the

red curve) outperforms the other methods on this challeng-

ing dataset.
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Table 2. FMIH Classification Accuracy on FMD

Data SVM AlexNet CaffeNet VGG16 VGG19 LeNet FMIHNet

VAR 0.829 0.480 0.480 0.475 0.512 0.635 0.850

GRAD 0.909 0.503 0.500 0.481 0.486 0.846 0.954

ADQ 0.909 0.496 0.520 0.503 0.511 0.844 0.946

CFA 0.882 0.510 0.520 0.481 0.510 0.871 0.919

NOI 0.858 0.497 0.506 0.520 0.530 0.779 0.967

Vote 0.942 — — — — 0.888 0.982

(a) FMD (b) NC2017

Figure 8. ROC curves for our experiments with (a) our Focus Manipulation Dataset (FMD) and (b) the NIST NC2017 dataset. For both, our

method (represented by the red curve) out-performs alternative approaches. The relative ordering of the other curves in (a) demonstrates

the benefit of using our FMIH feature representation over using the image or feature maps. The IGH comparison in (b) shows that we

out-perform the most recent related work in the area of blur forensics.

Table 4. FMIHNet Classification Accuracy on NC2017

Train on FMD NC2017 FMD+NC2017

VAR 0.610 0.612 0.746

GRAD 0.617 0.632 0.673

ADQ 0.546 0.540 0.572

CFA 0.587 0.596 0.685

NOI 0.625 0.615 0.760

Vote 0.623 0.630 0.771

7. Conclusion

We have presented a novel framework to detect focus

manipulations, which represent an increasingly difficult and

important forensics challenge in light of the availability of

new camera hardware. Our approach exploits photomet-

ric histogram features, with a particular emphasis on noise,

whose shapes are altered by the manipulation process. We

have adopted a deep learning approach that classifies these

2D histograms separately, and then votes for a final clas-

sification. To evaluate this, we have produced a new focus

manipulation dataset with images from a Canon60D DSLR,

iPhone7Plus, and HuaweiMate9. This dataset includes ma-

nipulations, particularly from the iPhone portrait mode, that

are geometrically correct due to the use of dual lens capture

devices. Despite the challenge of detecting manipulations

which are geometrically correct, our method’s accuracy is

98%, significantly better than image-based detection with a

range of CNNs, and better than prior forensics methods. We

also show strong performance on the NIST NC2017 data,

which includes a wider range of manipulations over a range

of challenging ‘in the wild’ conditions of compression and

other nuisance factors.

Though our new FMD dataset expands the manipulation

detection problem beyond simple operations such as splic-

ing and cloning, additional data are needed to cover the

range of potential implementations of portrait mode-type

features. In particular, additional cameras are needed, as

the number of smartphones offering similar features is in-

creasing by the day. We plan to further study the effects of

image rescaling and compression on our method, and ex-

pand the types of manipulations that we can detect, through

continued evaluation of subsequent NIST datasets.

Acknowledgement

This material is based upon work supported by the U-

nited States Air Force and the Defense Advanced Research

Projects Agency under Contract No. FA8750-16-C-0190.

Any opinions, findings and conclusions or recommenda-

tions expressed in this material are those of the author(s)

and do not necessarily reflect the views of the United States

Air Force or the Defense Advanced Research Projects A-

gency.

1681



References

[1] Adobe Photoshop. http://www.adobe.com/

products/photoshop.html. 1

[2] Google Research Blog. https://

research.googleblog.com/2017/10/

portrait-mode-on-pixel-2-and-pixel-2-xl.

html. 1, 2

[3] iTune Store Depth Effect. https://itunes.apple.

com/us/app/depth-effects/id1161218656?

mt=8. 1

[4] iTune Store FabFocus. https:

//itunes.apple.com/us/app/

fabfocus-portraits-with-depth-and-bokeh/

id1080434313?mt=8. 1

[5] NIST Nimble 2017 Datasets. https:

//www.nist.gov/itl/iad/mig/

nimble-challenge-2017-evaluation. 7

[6] K. Bahrami, A. C. Kot, and J. Fan. Splicing detection in out-

of-focus blurred images. In Information Forensics and Se-

curity (WIFS), 2013 IEEE International Workshop on, pages

144–149. IEEE, 2013. 2

[7] K. Bahrami, A. C. Kot, L. Li, and H. Li. Blurred image

splicing localization by exposing blur type inconsistency.

IEEE Transactions on Information Forensics and Security,

10(5):999–1009, 2015. 2

[8] B. A. Barsky. Vision-realistic rendering: simulation of the s-

canned foveal image from wavefront data of human subjects.

In Proceedings of the 1st Symposium on Applied perception

in graphics and visualization, pages 73–81. ACM, 2004. 2

[9] B. A. Barsky, A. W. Bargteil, D. D. Garcia, and S. A. Klein.

Introducing vision-realistic rendering. In Proc. Eurographics

Rendering Workshop, pages 26–28, 2002. 2

[10] M. Bertalmio, P. Fort, and D. Sanchez-Crespo. Real-time,

accurate depth of field using anisotropic diffusion and pro-

grammable graphics cards. In 3D Data Processing, Visual-

ization and Transmission, 2004. 3DPVT 2004. Proceedings.

2nd International Symposium on, pages 767–773. IEEE,

2004. 2

[11] T. Bianchi, A. De Rosa, and A. Piva. Improved dct coef-

ficient analysis for forgery localization in jpeg images. In

Acoustics, Speech and Signal Processing (ICASSP), 2011

IEEE International Conference on, pages 2444–2447. IEEE,

2011. 4, 6

[12] C. Chen, S. McCloskey, and J. Yu. Image splicing detection

via camera response function analysis. In Computer Vision

and Pattern Recognition, 2017 IEEE Computer Society Con-

ference on. IEEE, 2017. 2, 6, 7

[13] A. E. Dirik and N. Memon. Image tamper detection based

on demosaicing artifacts. In Image Processing (ICIP), 2009

16th IEEE International Conference on, pages 1497–1500.

IEEE, 2009. 3, 4, 6

[14] D. Gillham. Real-time depth-of-field implemented with a

postprocessing-only technique. Shader X5: Advanced Ren-

dering Techniques, pages 163–175, 2007. 2

[15] J. Göransson and A. Karlsson. Practical post-process depth

of field. GPU Gems, 3:583–606, 2007. 2

[16] M. Kass, A. Lefohn, and J. Owens. Interactive depth of field

using simulated diffusion on a gpu. Pixar Animation Studios

Tech Report, 2:1–8, 2006. 2

[17] T. J. Kosloff and B. A. Barsky. An algorithm for rendering

generalized depth of field effects based on simulated heat d-

iffusion. In International Conference on Computational Sci-

ence and Its Applications, pages 1124–1140. Springer, 2007.

2

[18] M. Kraus and M. Strengert. Depth-of-field rendering by

pyramidal image processing. In Computer Graphics Forum,

volume 26, pages 645–654. Wiley Online Library, 2007. 2

[19] C. Liu, W. T. Freeman, R. Szeliski, and S. B. Kang. Noise

estimation from a single image. In Computer Vision and Pat-

tern Recognition, 2006 IEEE Computer Society Conference

on, volume 1, pages 901–908. IEEE, 2006. 2

[20] B. Mahdian and S. Saic. Using noise inconsistencies

for blind image forensics. Image and Vision Computing,

27(10):1497–1503, 2009. 3, 4, 5, 6

[21] J. A. Marshall, C. A. Burbeck, D. Ariely, J. P. Rolland, and

K. E. Martin. Occlusion edge blur: a cue to relative visual

depth. JOSA A, 13(4):681–688, 1996. 1

[22] G. Mather. The use of image blur as a depth cue. Perception,

26(9):1147–1158, 1997. 1

[23] J. D. Mulder and R. Van Liere. Fast perception-based depth

of field rendering. In Proceedings of the ACM symposium

on Virtual reality software and technology, pages 129–133.

ACM, 2000. 2

[24] M. A. Qureshi and M. Deriche. A bibliography of pixel-

based blind image forgery detection techniques. Signal Pro-

cessing: Image Communication, 39:46–74, 2015. 2

[25] G. Riguer, N. Tatarchuk, and J. Isidoro. Real-time depth of

field simulation. ShaderX2: Shader Programming Tips and

Tricks with DirectX, 9:529–556, 2004. 2

[26] P. Rokita. Generating depth of-field effects in virtual reality

applications. IEEE Computer Graphics and Applications,

16(2):18–21, 1996. 2

[27] C. Scofield. 2 1/2-d depth-of-field simulation for computer

animation. In Graphics Gems III, pages 36–38. Academic

Press Professional, Inc., 1992. 2

[28] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 5

[29] Y. Tsin, V. Ramesh, and T. Kanade. Statistical calibration

of ccd imaging process. In Computer Vision, 2001. ICCV

2001. Proceedings. Eighth IEEE International Conference

on, volume 1, pages 480–487. IEEE, 2001. 2

[30] T. Zhou, J. X. Chen, and M. Pullen. Accurate depth of field

simulation in real time. In Computer Graphics Forum, vol-

ume 26, pages 15–23. Wiley Online Library, 2007. 2

1682

http://www.adobe.com/products/photoshop.html
http://www.adobe.com/products/photoshop.html
https://research.googleblog.com/2017/10/portrait-mode-on-pixel-2-and-pixel-2-xl.html
https://research.googleblog.com/2017/10/portrait-mode-on-pixel-2-and-pixel-2-xl.html
https://research.googleblog.com/2017/10/portrait-mode-on-pixel-2-and-pixel-2-xl.html
https://research.googleblog.com/2017/10/portrait-mode-on-pixel-2-and-pixel-2-xl.html
https://itunes.apple.com/us/app/depth-effects/id1161218656?mt=8
https://itunes.apple.com/us/app/depth-effects/id1161218656?mt=8
https://itunes.apple.com/us/app/depth-effects/id1161218656?mt=8
https://itunes.apple.com/us/app/fabfocus-portraits-with-depth-and-bokeh/id1080434313?mt=8
https://itunes.apple.com/us/app/fabfocus-portraits-with-depth-and-bokeh/id1080434313?mt=8
https://itunes.apple.com/us/app/fabfocus-portraits-with-depth-and-bokeh/id1080434313?mt=8
https://itunes.apple.com/us/app/fabfocus-portraits-with-depth-and-bokeh/id1080434313?mt=8
https://www.nist.gov/itl/iad/mig/nimble-challenge-2017-evaluation
https://www.nist.gov/itl/iad/mig/nimble-challenge-2017-evaluation
https://www.nist.gov/itl/iad/mig/nimble-challenge-2017-evaluation

