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Abstract

We investigate the problem of Language-Based Image

Editing (LBIE). Given a source image and a natural

language description, we want to generate a target image

by editing the source image based on the description.

We propose a generic modeling framework for two sub-

tasks of LBIE: language-based image segmentation and

image colorization. The framework uses recurrent atten-

tive models to fuse image and language features. Instead

of using a fixed step size, we introduce for each region

of the image a termination gate to dynamically deter-

mine after each inference step whether to continue extrapo-

lating additional information from the textual description.

The effectiveness of the framework is validated on three

datasets. First, we introduce a synthetic dataset, called

CoSaL, to evaluate the end-to-end performance of our LBIE

system. Second, we show that the framework leads to

state-of-the-art performance on image segmentation on the

ReferIt dataset. Third, we present the first language-based

colorization result on the Oxford-102 Flowers dataset.

1. Introduction

In this work, we aim to develop an automatic Language-

Based Image Editing (LBIE) system. Given a source image,

which can be a sketch, a grayscale image or a natural image,

the system will automatically generate a target image by

editing the source image following natural language instruc-

tions provided by users. Such a system has a wide range

of applications from Computer-Aided Design (CAD) to

Virtual Reality (VR). As illustrated in Figure 1, a fashion

designer presents a sketch of a pair of new shoes (i.e., the

source image) to a customer, who can provide modifica-

tions on the style and color in verbal description, which can

then be taken by the LBIE system to change the original

design. The final output (i.e., the target image) is the revised

and enriched design that meets the customers requirement.

Figure 2 showcases the use of LBIE for VR. While most

VR systems still use button-controlled or touchscreen inter-

Figure 1. In an interactive design interface, a sketch of shoes is

presented to a customer, who then gives a verbal instruction on

how to modify the design: “The insole of the shoes should be

brown. The vamp and the heel should be purple and shining”. The

system colorizes the sketch following the customer’s instruction.

(images from [11]).

Figure 2. The image on the left is an initial virtual environment.

The user provides a textual description: “The afternoon light

flooded the little room from the window, shining the ground in

front of a brown bookshelf made of wood. Besides the bookshelf

lies a sofa with light-colored cushions. There is a blue carpet in

front of the sofa, and a clock with dark contours above it...”. The

system modifies the virtual environment into the target image on

the right.

Figure 3. Left: sketch image. Middle: grayscale image. Right:

color image (from [18]). A language-based image editing system

will take either of the first two images as the input, and generate the

third color image following a natural language expression: “The

flower has red petals with yellow stigmas in the middle”,.

face, LBIE provides a natural user interface for future VR

systems, where users can easily modify the virtual environ-

ment via natural language instructions.

LBIE covers a broad range of tasks in image genera-

tion: shape, color, size, texture, position, etc. This paper

focuses on two basic sub-tasks: language-based segmenta-

tion and colorization for shapes and colors. As shown in

18721



Figure 3, given a grayscale image and the expression “The

flower has red petals with yellow stigmas in the middle”,

the segmentation model will identify regions of the image

as “petals”, “stigmas”, and the colorization model will paint

each pixel with the suggested color. In this intertwined task

of segmentation and colorization, the distribution of target

images can be multi-modal in the sense that each pixel

will have a definitive ground truth on segmentation, but not

necessarily on color. For example, the pixels on petals in

Figure 3 should be red based on the textual description,

but the specific numeric values of the red color in the RGB

space is not uniquely specified. The system is required to

colorize the petals based on real-world knowledge. Another

uncertainty lies in the fact that the input description might

not cover every detail of the image. The regions that are

not described, such as the leaves in the given example,

need to be rendered based on common sense knowledge.

In summary, we aim to generate images that not only are

consistent with the natural language expressions, but also

align with common sense.

Language-based image segmentation has been studied

previously in [9]. However, our task is far more challenging

because the textual description often contains multiple

sentences (as in Figure 2), while in [9] most of the expres-

sions are simple phrases. To the best of our knowledge,

language-based colorization has not been studied system-

atically before. In most previous work, images are gener-

ated either solely based on natural language expressions

[21],[32] or based on another image [11],[3],[33]. Instead,

we want to generate a target image based on both the natural

language expression and the source image. Related tasks

will be discussed in detail in Section 2.

A unique challenge in language-based image editing is

the complexity of natural language expressions and their

correlation with the source images. As shown in Figure 2,

the description usually consists of multiple sentences, each

referring to multiple objects in the source image. When

human edits the source image based on a textual descrip-

tion, we often keep in mind which sentences are related

to which region/object in the image, and go back to the

description multiple times while editing that region. This

behavior of “going back” often varies from region to region,

depending on the complexity of the description for that

region. An investigation of this problem is carried out on

CoSaL, which is a synthetic dataset described in Section 4.

Our goal is to design a generic framework for the two

sub-tasks in language-based image editing. A diagram of

our model is shown in Figure 4. Inspired by the obser-

vation aforementioned, we introduce a recurrent attentive

fusion module in our framework. The fusion module takes

as input the image features that encode the source image via

a convolutional neural network, and the textual features that

encode the natural language expression via an LSTM, and

outputs the fused features to be upsampled by a deconvolu-

tional network into the target image. In the fusion module,

recurrent attentive models are employed to extract distinct

textual features based on the spatial features from different

regions of an image. A termination gate is introduced for

each region to control the number of steps it interacts with

the textual features. The Gumbel-Softmax reparametriza-

tion trick [12] is used for end-to-end training of the entire

network. Details of the models and the training process are

described in Section 3.

Our contributions are summarized as follows:

• We define a new task of language-based image editing

(LBIE).

• We present a generic modeling framework based on

recurrent attentive models for two sub-tasks of LBIE:

language-based image segmentation and colorization.

• We introduce a synthetic dataset CoSaL designed

specifically for the LBIE task.

• We achieve new state-of-the-art performance on

language-based image segmentation on the ReferIt

dataset.

• We present the first language-based colorization result

on the Oxford-102 Flowers dataset, with human eval-

uations validating the performance of our model.

2. Related Work

While the task of language-based image editing has

not been studied, the community has taken significant

steps in several related areas, including Language Based

object detection and Segmentation (LBS) [9],[10], Image-

to-Image Translation (IIT) [11], Generating Images from

Text (GIT) [20], [32], Image Captioning (IC) [13], [25],

[30], Visual Question Answering (VQA) [2], [31], Machine

Reading Comprehension (MRC) [8], etc. We summarize

the types of inputs and outputs for these related tasks in

Table 1.

Inputs Outputs

Text Image Text Image

MRC YES NO YES NO

VQA YES YES YES NO

IIT NO YES NO YES

IC NO YES YES NO

GIT YES NO NO YES

LBS YES YES NO YES

LBIE YES YES NO YES
Table 1. The types of inputs and outputs for related tasks

Recurrent attentive models

Recurrent attentive models have been applied to visual

question answering (VQA) to fuse language and image
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Figure 4. A high-level diagram of our model, composed of a convolutional image encoder, an LSTM text encoder, a fusion module, a

deconvolutional upsampling layer, with an optional convolutional discriminator.

features [31]. The stacked attention network proposed in

[31] identifies the image regions that are relevant to the

question via multiple attention layers, which can progres-

sively filter out noises and pinpoint the regions relevant to

the answer. In image generation, a sequential variational

auto-encoder framework, such as DRAW[7], has shown

substantial improvement over standard variational auto-

encoders (VAE) [15]. Similar ideas have also been explored

for machine reading comprehension, where models can take

multiple iterations to infer an answer based on the given

query and document [4], [27], [26], [29], [16]. In [23] and

[22], a novel neural network architecture called ReasoNet is

proposed for reading comprehension. ReasoNet performs

multi-step inference where the number of steps is deter-

mined by a termination gate according to the difficulty of

the problem. ReasoNet is trained using policy gradient

methods.

Segmentation from language expressions

The task of language-based image segmentation is first

proposed in [9]. Given an image and a natural language

description, the system will identify the regions of the

image that correspond to the visual entities described in the

text. The authors in [9] proposed an end-to-end approach

that uses three neural networks: a convolutional network to

encode source images, an LSTM network to encode natural

language descriptions, and a fully convolutional classifica-

tion and upsampling network for pixel-wise segmentation.

One of the key differences between their approach and

ours is the way of integrating image and text features. In [9],

for each region in the image, the extracted spatial features

are concatenated with the same textual features. Inspired by

the alignment model of [13], in our approach, each spatial

feature is aligned with different textual features based on

attention models. Our approach yields superior segmenta-

tion results than that of [9] on a benchmark dataset.

Conditional GANs in image generation

Generative adversarial networks (GANs) [6] have been

widely used for image generation. Conditional GANs [17]

are often employed when there are constraints that a gener-

ated image needs to satisfy. For example, deep convolu-

tional conditional GANs [19] have been used to synthe-

size images based on textual descriptions [21] [32]. [11]

proposed the use of conditional GANs for image-to-image

translation. Different from these tasks, LBIE takes both

image and text as input, presenting an additional challenge

of fusing the features of the source image and the textual

description.

3. The Framework

Overview The proposed modeling framework, as shown

in 4, is based on neural networks, and is generic to both

the language-based image segmentation and colorization

tasks. The framework is composed of a convolutional image

encoder, an LSTM text encoder, a fusion network that

generates a fusion feature map by integrating image and text

features, a deconvolutional network that generates pixel-

wise outputs (the target image) by upsampling the fusion

feature map, and an optional convolutional discriminator

used for training colorization models.

Image encoder The image encoder is a multi-layer

convolutional neural network (CNN). Given a source image

of size H × W , the CNN encoder produces a M × N
spatial feature map, with each position on the feature map

containing a D-dimensional feature vector (D channels),

V = {vi : i = 1, . . . ,M ×N}, vi ∈ R
D.
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Language encoder The language encoder is a recurrent

Long Short-Term Memory (LSTM) network. Given a

natural language expression of length L, we first embed

each word into a vector through a word embedding matrix,

then use LSTM to produce for each word a contextual

vector that encodes its contextual information such as word

order and word-word dependencies. The resulting language

feature map is U = {ui : i = 1, . . . , L}, ui ∈ R
K .

Recurrent attentive fusion module The fusion network

fuses text information in U into the M × N image feature

map V , and outputs an M × N fusion feature map, with

each position (image region) containing an editing feature

vector, O = {oi : i = 1, . . . ,M ×N}, oi ∈ R
D.

The fusion network is devised to mimic the human image

editing process. For each region in the source image vi, the

fusion network reads the language feature map U repeat-

edly with attention on different parts each time until enough

editing information is collected to generate the target image

region. The number of steps varies from region to region.

Internal state The internal state at time step t is

denoted as St = {sti, i = 1, . . . ,M×N}, which is a spatial

feature map, with each poition (image region) containing a

vector representation of the editing information state. The

initial state is the spatial feature map from the source image,

S0 = V . The sequence of internal states is modeled by

Convolutional Gated Recurrent Units (C-GRUs) which will

be described below.

Attention The attention at time step t is denoted as

Û t = {ût
i, i = 1, . . . ,M × N}, which is a spatial feature

map generated based on the current internal state St and the

language feature map U :

Û t = Attention(U, St; θa),

where Attention(.) is implemented as follows:

βij ∝ exp{sti
T
Wuj},

ût
i =

L
∑

j=1

βijuj .

C-GRUs C-GRUs update the current internal state St

by infusing the attention feature map Û t:

St+1 = C-GRUs(St, Û t; θc).

The C-GRUs(.) is implemented as follows:

z = σ(W1 ⊗ St +W2 ⊗ Û t + b1),

r = σ(W3 ⊗ St +W4 ⊗ Û t + b2),

c = ReLU(W5 ⊗ (r⊙ St) +W6 ⊗ Û t + b),

Ôt = h = (1− z)⊙ St + z⊙ c,

St+1 = W7 ⊗ h,

where ⊙ is the elementwise-product, and ⊗ is the convolu-

tional operator. Note that Ôt is the intermediate output of

the fusion feature map at time step t.

Termination gates There are M × N termination

gates, each for one image region vi in V . Each termi-

nation gate generates a binary random variable according

to the current internal state of its image region: τ ti ∼
p(·ftg(s

t
i; θtg)). If τ ti = 1, the fusion process for the image

region vi stops at t, and the editing feature vector for this

image region is set as oi = ôti. When all terminate gates are

true, the fusion process for the entire image is completed,

and the fustion network outputs the fusion feature map O.

We define ζζζ = (ζ1, ζ2, . . . , ζM×N ), where ζi =
(τ1i , τ

2
i , . . . , τ

T
i ), a categorical distribution with p(ζi =

et) = βt
i , where

βt
i = ftg(s

t
i; θtg)

∏

k<t

(1− ftg(s
k
i ; θtg)).

the probability of stopping the fusion process at the i-th
image region of the feature map at time t.

Inference Algorithm 1 describes the stochastic infer-

ence process of the fusion network. The state sequence

S(1:T ) is hidden and dynamic, chained through attention

and C-GRU in a recurrent fashion. The fusion network

outputs for each image region vi an editing feature vector

oi at the ti-th step, where ti is controlled by the ith termi-

nation gate, which varies from region to region.

Algorithm 1 Stochastic Inference of the Fusion Network

Require: V ∈ R
D×(M×N): Spatial feature map of image.

Require: U ∈ R
K×L: Language feature map of expres-

sion.

Ensure: Fusion feature map O ∈ R
D×(M×N).

function FUSION(V, U )

Initialize S0 = V .

for all t = 0 to tmax − 1 do

Û t = Attention(U, St; θa)
St+1, Ôt = C-GRUs(St, Û t; θc)
Sample τττ t+1 ∼ p(·|ftg(S

t+1; θtg))
if τ t+1

i = 1 and τ si = 0 for s ≤ t then

Set Oi = Ôt+1
i .

end if

end for

for all i = 1 to M ×N do

if τi = 0 then

Set oi = ôtmax−1
i

end if

end for

end function

Image decoder The image decoder is a multi-layer

deconvolutional network. It takes as input the M×N fusion

feature map O produced by the fusion module, and unsam-

ples from O to produce a H × W × De editing map E of

the same size as the target image, where De is the number of

classes in segmentation and 2 (ab channels) in colorization.
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Discriminator The discriminator Dφ(E) takes in a

generated image and its corresponding language description

and outputs the probability of the image being realistic. The

discriminator uses a convolutional neural network to extract

features from the image, as in [21], and uses an LSTM to

encode language. The language features are extracted using

the attention mechanism and aligned to features extracted

from each region of the image respectively. Parameters of

the LSTM and the attention map are not shared with those

of the previous language encoder.

Loss and training Denote the loss as L(θ) =
Eζζζ [l(E(ζζζ, θ), Y )], where the expectation is taken over the

categorical variables ζζζ generated by termination gates, and

lθ(ζζζ) = l(E(ζζζ, θ), Y ) is the loss of output at ζζζ, and Y is

the target image (i.e., the class labels in segmentation or the

ab channels in colorization). Denote the probability mass

function of ζζζ by pθ(ζζζ). Because the sample space is of

exponential size TM×N , it is intractable to sum over the

entire sample space. A naive approach to approximation is

to subsample the loss and update parameters via the gradient

of Monte Carlo estimate of loss:

∇θL(θ) = ∇θEζζζ [lθ(ζζζ)]

= ∇θEζζζ [lθ(ζζζ)]

=
∑

ζζζ

pθ(ζζζ)
(

lθ(ζζζ)∇θ log pθ(ζζζ)
)

+∇θlθ(ζζζ)
)

≈
1

|S|

∑

ζζζ∈S

lθ(ζζζ)∇θ log pθ(ζζζ) +∇θlθ(ζζζ),

where S is a subset of ζζζ sampled from the distributon pθ(ζζζ).
The above update is called a REINFORCE-type algorithm

[28]. In experiments, we found that the above Monte Carlo

estimate suffers from high variance. To resolve this issue,

we employ the Gumbel-Softmax reparameterization trick

[12], which replaces every ζi ∈ {0, 1}T sampled from

Cat(β1, β2, . . . , βT ) by another random variable zi gener-

ated from Gumbel-Softmax distribution:

zti =
exp((log βt

i + εti)/λ)
∑T

k=1 exp((log β
t
i + εti)/λ)

,

where λ is a temperature annealed via a fixed schedule and

the auxiliary random variables ε1i , . . . , ε
T
i are i.i.d. samples

drawn from Gumbel(0, 1) independent of the parameters βi:

εti = − log(− log ut
i), u

t
i ∼ Unif(0, 1).

Define z(εεε, θ) = (z1, z2, . . . , zMN ). The loss can be

rewritten as L(θ) = Eεεε[lθ(zzz(εεε, θ))], and the update is

approximated by taking the gradient of Monte Carlo esti-

mates of the loss obtained from sampling εεε.

We use two different losses for segmentation and

colorization, respectively.

Segmentation In segmentation, we assume there is a

unique answer for each pixel on whether or not it is being

referred in the stage of segmentation. The response map E

is of size H × W × De, which produces a log probability

for each class for each pixel. We use a pixel-wise softmax

cross-entropy loss during training:

l(E, Y ) = Cross-Entropy(Softmax(E), Y ).

Colorization In colorization, the high-level goal is to

generate realistic images under the constraint of natural

language expressions and input scene representations, we

introduce a mixture of GAN loss and L1 loss for optimiza-

tion as in [11]. A discriminator Dφ parametrized by φ is

introduced for constructing the GAN loss.

The response map E is the predicted ab color channels.

It is combined with the grayscale source image to produce a

generated color image E′. The generator loss is a GAN loss

taking E′ as input, and L1 loss between the ab channels of

the target image Y and the response map E:

l(E, Y ) = log(1−Dφ(E)) + γ‖E − Y ‖1 (γ = 0.01).

The discriminator Dφ is trained by first generating a

sample E via Algorithm 1, combined with the grayscale

source image to produce E′, and optimize the following loss

over φ:
log(Dφ(E

′)) + log(1−Dφ(Y )).

The generator loss and the discriminator loss are opti-

mized alternatively in the training stage.

4. Experiments

We conducted three experiments to validate the perfor-

mance of the proposed framework. A new synthetic dataset

CoSaL (Colorizing Shapes with Artificial Language) was

introduced to test the capability of understanding multi-

sentence descriptions and associating the inferred textual

features with visual features. Our framework also yielded

state-of-the-art performance on the benchmark dataset

ReferIt [14] for image segmentation. A third experiment

was carried out on the Oxford-102 Flowers dataset [18], for

the language-based colorization task. All experiments were

coded in TensorFlow. Codes for reproducing the key results

are available online1.

4.1. Experiments on CoSaL

Dataset Each image in the CoSaL dataset consists of nine

shapes, paired with a textual description of the image. The

task is defined as: given a black-white image and its corre-

sponding description, colorize the nine shapes following the

textual description. Figure 5 shows an example. It requires

sophisticated coreference resolution, multi-step inference

and logical reasoning to accomplish the task.

The dataset was created as follows: first, we divide a

white-background image into 3 × 3 regions. Each region

contains a shape randomly sampled from a set of S shapes

(e.g., squares, fat rectangles, tall rectangles, circles, fat

1https://github.com/Jianbo-Lab/LBIE
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ellipses, tall ellipses, diamonds, etc.) Each shape is then

filled with one of C color choices, chosen at random. The

position and the size of each shape are generated by uniform

random variables. As illustrated in Figure 5, the difficulty

of this task increases with the number of color choices. In

our experiments, we specify C = 3.

The descriptive sentences for each image can be divided

into two categories: direct descriptions and relational

descriptions. The former prescribes the color of a certain

shape (e.g., Diamond is red), and the latter depicts one

shape conditional of another (e.g., The shape left to

Diamond is blue). To understand direct descriptions, the

model needs to associate a specified shape with its textual

features. Relational description adds another degree of

difficulty, which requires advanced inference capability of

relational/multi-step reasoning. The ratio of direct descrip-

tions to relational descriptions varies among different

images, and all the colors and shapes in each image are

uniquely determined by the description. In our experiment,

we randomly generated 50, 000 images with corresponding

descriptions for training purpose, and 10, 000 images with

descriptions for testing.

Figure 5. Right: ground truth image. Left: illustration of which

sentences are attended to at each time step. Red, yellow and green

represent the first, second and third time step, respectively.

Number of direct descriptions

T Attention 4 6 8

1 No 0.2107 0.2499 0.3186

1 Yes 0.4030 0.5220 0.7097

4 Yes 0.5033 0.5313 0.7017
Table 2. The average IoU of two models, without attention at

T = 1 and with attention at T = 1, 4. Performance varies among

datasets with different ratios of direct to relational descriptions.

Metric For this task, we use average IoU over nine

shapes and the background as the evaluation metric. Specif-

ically, for each region, we compute the intersection-over-

union (IoU), which is the ratio of the total intersection area

to the total union area of predicted colors and ground truth

colors. We also compute the IoU for the background (white)

of each image. The IoU for 10 classes (9 shapes + 1 back-

ground) are computed over the entire test set and then aver-

aged.

Model Implementation A six-layer convolutional

network is implemented as the image feature extractor.

Each layer has a 3 × 3 kernel with stride 1 and output

dimension 4, 4, 8, 8, 16, 16. ReLU is used for nonlinearity

after each layer, and a max-pooling layer with a kernel of

size 2 is inserted after every two layers. Each sentence in

the textual description is encoded with bidirectional LSTMs

that share parameters. Another LSTM with attention is put

on top of the encoded sentences. The LSTMs have 16 units.

In the fusion network, the attention model has 16 units, the

GRU cells use 16 units, and the termination gate uses a

linear map on top of the hidden state of each GRU cell. Two

convolutional layers of kernel size 1 × 1 with the output

dimension of 16, 7 are put on top of the fused features as a

classifier. Then an upsampling layer is implemented on top

of it, with a single-layer deconvolutional network of kernel

size 16, stride 8 to upsample the classifier to the original

resolution. The upsampling layer is initialized with bilinear

transforms. The maximum of termination steps T vary

from 1 to 4. When T = 1, the model is reduced to simply

concatenating features extracted from the convolutional

network with the last vector from LSTM.

Results Results in Table 2 show that the model with atten-

tion and T = 4 achieves a better performance when there

are more relational descriptions in the dataset. When there

are more direct descriptions, the two models achieve similar

performance. This demonstrates the framework’s capability

of interpreting multiple-sentence descriptions and associ-

ating them with their source image.

Figure 5 illustrates how the model with T = 3 interprets

the nine sentences during each inference step. In each step,

we take the sentence with the largest attention score as the

one being attended to. Sentences in red are attended to in

the first step. Those in yellow and green are attended to in

the next two consecutive steps. We observe that the model

tends to first extract information from direct descriptions,

and then extract information from relational descriptions via

reasoning.

4.2. Experiments on ReferIt

Dataset The ReferIt dataset is composed of 19, 894
photographs of real world scenes, along with 130, 525
natural language descriptions on 96, 654 distinct objects in

those photographs [14]. The dataset contains 238 different

object categories, including animals, people, buildings,

objects and background elements (e.g., grass, sky). Both

training and development datasets include 10, 000 images.

Metric Following [9], we use two metrics for evalua-

tion: 1) overall intersection-over-union (overall IoU) of the

predicted and ground truth of each region, averaged over

the entire test set; 2) precision@threshold, the percentage

of test data whose (per image) IoU between prediction and
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Model Precision@0.5 Precision@0.6 Precision@0.7 Precision@0.8 Precision@0.9 IoU

SCRC bbox [10] 9.73% 4.43% 1.51% 0.27% 0.03% 21.72%

GroundeR bbox [5] 11.08% 6.20% 2.74% 0.78% 0.20% 20.50%

Hu, etc.[9] 34.02% 26.71% 19.32% 11.63% 3.92% 48.03%

Our model 32.53% 27.9% 18.76% 12.37% 4.37% 50.09%
Table 3. The results of previous models and our model on the ReferIt dataset.

ground truth is above the threshold. Thresholds are set to

0.5, 0.6, 0.7, 0.8, 0.9.

Model Implementation A VGG-16 model [24] is used

as the image encoder for images of size 512× 512. Textual

descriptions are encoded with an LSTM of 1, 024 units. In

the fusion network, the attention model uses 512 units and

the GRU cells 1, 024 units, on top of which is a classifier

and an upsampling layer similar to the implementation in

Section 4.1. The maximum number of inference steps is

3. ReLU is used on top of each convolutional layer. L2-

normalization is applied to the parameters of the network.

Results Table 3 shows the experimental results of our

model and the previous methods on the ReferIt dataset.

We see that our framework yields a better IoU and preci-

sion than [9]. We attribute the superior performance to the

unique attention mechanism used by our fusion network. It

efficiently associates individual descriptive sentences with

different regions of the source image. There is not much

discrepancy between the two models with T = 1 and

T = 3, probably due to the fact that most textual descrip-

tions in this dataset are simple.

4.3. Experiments on Oxford­102 Flower Dataset

Dataset The Oxford-102 Flowers dataset [18] contains

8, 189 images from 102 flower categories. Each image

has five textual descriptions [21]. Following [21], [20] and

[1], we split the dataset into 82 classes for training and 20

classes for testing. The task is defined as follows: Given a

grayscale image of a flower and a description of the shapes

and colors of the flower, colorize the image according to the

description.

Model Implementation A 15-layer convolutional

network similar to [33] is used for encoding 256 × 256
images. Textual descriptions are encoded with an bidi-

rectional LSTM of 512 units. In the fusion network, the

attention model uses 128 units and the GRU cells 128
units. The image encoder is composed of 2 deconvolu-

tional layers, each followed by 2 convolutional layers,

to upsample the fusion feature map to the target image

space of 256 × 256 × 2. The maximum length of the

spatial RNN is 1. The discriminator is composed of 5

layers of convolutional networks of stride 2, with the

output dimension 256, 128, 64, 32, 31. The discriminator

score is the average of the final output. ReLU is used for

nonlinearity following each convolutional layer, except for

the last one which uses the sigmoid function.

Setup Due to the lack of available models for the task, we

compare our framework with a previous model developed

for image-to-image translation as baseline, which colorizes

images without text descriptions. We carried out two human

evaluations using Mechanical Turk to compare the perfor-

mance of our model and the baseline. For each experi-

ment, we randomly sampled 1,000 images from the test set

and then turned these images into black and white. For

each image, we generated a pair of two images using our

model and the baseline, respectively. Our model took into

account the caption in generation while the baseline did not.

Then we randomly permuted the 2,000 generated images.

In the first experiment, we presented to human annotators

the 2,000 images, together with their original captions, and

asked humans to rate the consistency between the gener-

ated images and the captions in a scale of 0 and 1, with

0 indicating no consistency and 1 indicating consistency.

In the second experiment, we presented to human anno-

tators the same 2,000 images without captions, but asked

human annotators to rate the quality of each image without

providing its original caption. The quality was rated in a

scale of 0 and 1, with 0 indicating low quality and 1 indi-

cating high quality.

Results The results of comparison are shown in Table 4.

Our model achieves better consistency with captions and

also better image quality by making use of information in

captions. The colorization results on 10 randomly-sampled

images from the test set are shown in Figure 6. As we

can see, without text input, the baseline approach often

colorizes images with the same color (in this dataset, most

images are painted with purple, red or white), while our

framework can generate flowers similar to their original

colors which are specified in texts. Figure 7 provides some

example images generated with arbitrary text description

using our model.

Our Model BaseLine Truth

Consistency 0.849 0.27 N/A

Quality 0.598 0.404 0.856
Table 4. The average rate of consistency with captions and image

quality for our model and the baseline model respectively, aver-

aged over 1, 000 images. The average quality of 1,000 truth

images from the data set is also provided for comparison.
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Figure 6. First row: original images. Second row: results from the image-to-image translation model in [11], without text input. Third row:

results from our model, taking textual descriptions into account. The textual descriptions and more examples can be found in supplementary

materials.

Figure 7. First row: original images. Remaining rows: results generated from our framework with arbitrary text input: “The flower is

white/red/orange/yellow/blue/purple in color”.

5. Conclusion and Future Work

In this paper we introduce the problem of Language-

Based Image Editing (LBIE), and propose a generic

modeling framework for two sub-tasks of LBIE: language-

based image segmentation and colorization. At the heart of

the proposed framework is a fusion module that uses recur-

rent attentive models to dynamically decide, for each region

of an image, whether to continue the text-to-image fusion

process. Our models have demonstrated superior empir-

ical results on three datasets: the ReferIt dataset for image

segmentation, the Oxford-102 Flower dataset for coloriza-

tion, and the synthetic CoSaL dataset for evaluating the

end-to-end performance of the LBIE system. In future, we

will extend the framework to other image editing subtasks

and build a dialogue-based image editing system that allows

users to edit images interactively.
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