
 

 

Abstract 

 

    How to incorporate cross-modal complementarity 

sufficiently is the cornerstone question for RGB-D salient 

object detection. Previous works mainly address this issue 

by simply concatenating multi-modal features or 

combining unimodal predictions. In this paper, we answer 

this question from two perspectives: (1) We argue that if the 

complementary part can be modelled more explicitly, the 

cross-modal complement is likely to be better captured. To 

this end, we design a novel complementarity-aware fusion 

(CA-Fuse) module when adopting the Convolutional 

Neural Network (CNN). By introducing cross-modal 

residual functions and complementarity-aware 

supervisions in each CA-Fuse module, the problem of 

learning complementary information from the paired 

modality is explicitly posed as asymptotically 

approximating the residual function. (2) Exploring the 

complement across all the levels. By cascading the 

CA-Fuse module and adding level-wise supervision from 

deep to shallow densely, the cross-level complement can be 

selected and combined progressively. The proposed 

RGB-D fusion network disambiguates both cross-modal 

and cross-level fusion processes and enables more 

sufficient fusion results. The experiments on public datasets 

show the effectiveness of the proposed CA-Fuse module and 

the RGB-D salient object detection network.  

1. Introduction 

The aim of salient object detection is to identify the 

object/objects attracting human beings most in a scene [2, 

3]. Salient object detection is useful for a large range of 

computer vision and robotic vision tasks such as object 

recognition [4], image retrieval [5] and SLAM [6]. 

Traditional saliency detection models [3, 7-10] are 

performed merely on RGB images and can be categorized 

as bottom-up and top-down pipelines. Based on these two 

frameworks, various hand-crafted saliency features have 

been proposed. Recently, to overcome the lack of high-level 
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contexts and the difficulty in exploring saliency-specific 

prior knowledge, a large body of deep convolutional neural 

networks (CNNs) [11-17] have been designed for 

RGB-induced salient object detection and have achieved 

appealing performance. However, when the salient object 

and background share similar appearance, these 

RGB-induced saliency detection models may be powerless 

to discriminate the salient object from background. In this 

case, the paired depth data, which contain affluent spatial 

structure and 3D layout information, can contribute a lot of 

additional saliency cues. Also, the robustness of depth 

sensors (e.g., Microsoft Kinect or Intel RealSense) to 

lighting changes will benefit a lot in extending the 

application scenarios of saliency detection. Accordingly, it 

is practically promising to involve the paired depth data in 

saliency detection. For the RGB-D saliency detection task, 

how to fuse the RGB and depth information sufficiently is 

the key issue. Most of previous models address this problem 

by directly concatenating RGB and depth features, or 

combining unimodal predictions. Recently, regarding that 

CNNs are more powerful in learning discriminative 

representations, a number of CNNs have been proposed for 

various RGB-D computer vision tasks, such as saliency 

detection [18, 19], semantic segmentation [20-23] and 

object recognition [1, 24-26]. Although encouraging 

performance has been achieved by these networks, there is 
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Figure 1: Traditional architectures of the CNN-based RGB-D 

salient object detection networks. (a) ‘Early fusion’ scheme 

adopted in [13] and (b) ‘late fusion’ scheme adopted in [14]. 
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still large room for further improvement in several key 

aspects: 1) How to formulate the complementary 

information between two modalities clearly and fuse it in a 

sufficient way. Most of previous RGB-D fusion networks 

explore the cross-modal complementarity by a two-stream 

architecture shown in Fig. 1 (a) and Fig. 1 (b), in which 

RGB and depth data are learnt separately by each stream, 

and then shared layers are appended at an early or late point 

to learn joint representations and cooperated decisions. 

However, the complementary information from the paired 

modality has not been explicitly formulated. As a result, the 

cross-modal complement is ambiguous and unlikely to be 

well-captured. 2) How to effectively exploit the useful 

cross-modal complement in multiple layers. Most of 

RGB-D fusion networks [19, 25, 27] combine RGB and 

depth modalities by only fusing their deep CNN features 

(i.e., late fusion), while we believe that the cross-modal 

complement for saliency detection exists across multiple 

levels, which are not well-explored by previous works. 3) It 

has been widely acknowledged that the features of different 

levels, which abstracts scenes in different scales, are also 

complementary. To be more specific, the deeper features 

typically carry more global contextual information and are 

more likely to locate the salient object correctly, while the 

shallower features supply more spatial details. 

Consequently, the issue of how to combine cross-level 

features should also be involved. 

In our view, addressing these problems will enable the 

multi-modal fusion network to capture cross-modal and 

cross-level complement more sufficiently. To this end, in 

this work, we propose a progressively 

complementarity-aware fusion network (shown in Fig. 2). In 

this network, the complementarity-aware fusion 

(‘CA-Fuse’) module (see Fig. 3 (c)) is appended on the side 

of each CNN level and cascaded from deeper to shallower 

successively. In this way, multi-modal features from each 

level are selected and combined. Meanwhile, cross-level 

features and predictions are also chosen and fused 

progressively to make joint decisions. As shown in Fig. 3 

(c), in the CA-Fuse module, the complementary features can 

be selected and incorporated with the paired modality 

adaptively via cross-modal residual connections and 

complementarity-aware supervisions. Introducing such a 

module recasts the problem of learning complementary 

information from the paired modality into asymptotically 

approximating the cross-modal residual function (see 

section 3.2 for details). Compared to directly concatenating 

multi-modal features, the proposed CA-Fuse module 

formulates the cross-modal complementarity explicitly, thus 

allowing more efficient multi-modal fusion. Besides, it also 

disambiguates the level-specific complementarity by 

cascading the CA-Fuse module successively with level-wise 

intermediate supervisions. Hence, the multi-modal fusion 

process will be complementarity-aware in terms of both 

cross-modal and cross-level views, resulting in sufficient 

multi-modal multi-level fusion. To our best knowledge, 

previous works mainly adopt residual connections to reuse 

features of preceding layers flexibly inside unimodal 

network streams [21, 28-30], while in this work, the residual 

connection is introduced in a cross-modal way in multiple 

levels for fusing RGB-D image pairs.  

In summary, the proposed RGB-D salient object 

detection network enjoys several distinguished benefits: 

1) The cross-modal complementarity can be explicitly 

Figure 2: The architecture of the proposed progressively complementarity-aware fusion network for RGB-D salient object detection.

Pooling layers are omitted for simplification. The 1×1 convolutional layers between neighboring CA-Fuse blocks are used for feature 

combination and dimensionality reduction (detailed parameters are shown in Table 1). Follow the practice in [1], we encode the depth 

image into 3-channel HHA representations. 
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encouraged, thus being explored more sufficiently and 

efficiently;  

2) The cross-level complementarity will be exploited 

progressively from deep to shallow and the predictions will 

be enhanced in a coarse-to-fine manner;  

3) The network does not rely on any pre-training process 

for each modality or post-processing stage. It is able to 

capture and fuse cross-modal and cross-level 

complementary information sufficiently to locate the salient 

object and meanwhile highlight its details in an end-to-end 

manner (only 0.06s testing time for each RGB-D pair).  

2. Related work  

  Previous RGB-D salient object detection models 

[31-41] fuse RGB and depth information by three main 

modes: serializing RGB and depth as undifferentiated 

4-channel input (‘input fusion’), combining handcrafted 

RGB and depth saliency features (‘feature fusion’), or 

performing unimodal predictions separately and then make 

joint decisions (‘result fusion’).  

    For example, Peng et al. [39] serialize a RGB-D pair as 

4-channel input and feed it to a multiple-stage saliency 

inference model. Song et al. [38] use the 4-channel data to 

compute multi-scale saliency values. For the design of 

saliency features in the depth modality, Ju et al. [34] 

measure depth-induced saliency by evaluating the 

anisotropic center-surround difference. Feng et al. [37] 

leverage the angular density and size in depth distributions 

to quantify saliency. Result fusion methods include 

summation [35, 42], multiplication [31] and designed rules 

[33]. However, due to the lack of cross-modal interactions 

in the feature-extraction stage, the result fusion scheme is 

insufficient to leverage underlying cooperative information 

during the unimodal prediction course.  

    Recently, CNNs are adopted in RGB-D saliency 

detection to learn more discriminative RGB-D features. Qu 

et al. [18] combine the hand-designed low-level saliency 

features from RGB and depth modalities as the joint input 

and train a CNN from scratch to generate RGB-D 

hyper-features. However, owing to the loss of information 

 
Figure 3: The architectures of different multi-modal fusion modules. See section 3.2 for more details. 
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in the feature-crafting process and the limited training data, 

we argue that it may be hard to make full use of CNNs via 

learning a CNN from scratch to fuse the handcrafted 

RGB-D features. In contrast, Han et al. [19] use a 

two-stream late fusion architecture to fuse RGB-D deep 

features. The network is trained in a stage-wise manner and 

achieves encouraging performance. Nonetheless, in its 

multi-modal fusion stage, it still follows the paradigm of 

direct feature concatenation without any explicit 

formulation on the cross-modal complementarity. Besides, 

this method only focuses on fusing the high-level 

representations, while the complementary information in 

the shallower layers are ignored.  

    As for other RGB-D tasks, existing networks are 

designed with modeling the RGB-D correlation in the 

decision-making stage [22, 25, 27] or combining RGB-D 

features in a certain point [21, 23, 26] (i.e., early or late). 

However, none of these networks formulate the cross-modal 

complementarity explicitly in each level as done in this 

work.   

3. Progressively Complementarity-aware 

Fusion Network  

3.1. The overall architecture 

The proposed CA-Fuse module can be incorporated in 

any basic network, e,g., the VGG-Net [43] and Res-Net 

[28]. Here we adopt the VGG-16 net as the trunk 

architecture for both RGB and depth streams for comparing 

fairly with previous works. The original VGG-16 net 

includes 5 convolutional blocks. To achieve global 

contextual reasoning, we append a 13×13 convolutional 

layer after the Conv5_3 layer as the 6-th convolutional 

block. Considering that the Conv1 block maybe too shallow 

to make reliable predictions, we will not incorporate the 

predictions of the Conv1 block.   

3.2. The CA-Fuse module 

To fuse multi-level features, the most straightforward 

method is to concatenate the features from different levels 

hierarchically (e.g., Fig. 3 (a)). However, it is cumbersome 

and ambiguous to fuse multi-level features by only 

minimizing the final prediction loss without any additional 

guidance. As a result, the characteristics of different levels 

may be unable to be well explored. Draw inspiration from 

unimodal networks [44] and [45], in which deep 

supervisions are introduced to facilitate convergence and 

generate hierarchical representations, we consider that an 

effective solution is to introduce intermediate supervisions 

on top of each multi-modal fusion level (Fig. 3 (b)). The 

added intermediate supervision can act as instruction to 

encourage multi-modal fusion in each level timely, thus 

reducing the multi-level fusion uncertainty. 

    Although this strategy is able to ease the multi-level 

multi-modal fusion process effectively, the multi-modal 

fusion component in each level still does not go beyond the 

traditional direct concatenation scheme, which in our view, 

is unlikely to sufficiently capture the cross-modal 

complementary information. To address this problem, we 

further tailor a complementarity-aware fusion (CA-Fuse) 

module (Fig. 3 (c)). In the CA-Fuse module, cross-modal 

residual connections (i.e., R1(�) and R2(�)) along with 

complementarity-aware supervisions (i.e., m

R
l  and m

D
l ) are 

introduced to encourage the determination of 

complementary information from the paired modality. More 

specifically for the m-th level, the deep features from the 

depth branch (i.e., m

D
F ) are firstly ‘selected’ by a 1×1 

mapping layer and then the desired complementary features 

1
( )m

D
FR  are added to the paired RGB branch via the 

cross-modal residual connection 
1
( )m m m

R R D
F F F= + R . The 

enhanced RGB features m

R
F  are followed by two 1×1 

convolutional layers to adapt the intermediate supervision 

and reduce the disturbance to the trunk stream during 

training. The detailed parameters of adaptation layers are 

shown in Table 1. Then a classifier is added to make 

predictions for the RGB branch ( )m m m

R R R
P Fϕ=  , where m

R
ϕ  

denotes the parameters of the adaption layers and the 

classifier. In this way, the objective that using R1(�) to 

extract complementary characteristic from the depth stream 

can be equivalently posed as approximating the residual 

function, i.e., m m

R R
F F− . This reformulation disambiguates 

the multi-modal combination, which means the solver may 

simply drives the residual mapping towards zero when 
m

R
F is sufficient to predict otherwise push R1(�) to abstract 

complementary information from m

D
F  to help m

R
F  for 

better predictions. Compared to concatenating m

R
F and m

D
F  

directly, such a preconditioning should ease the solver to 

Module 
  Adaptation layers 

Transition 

layer 

1 2   

CA-Fuse 6 - - 384, 1×1 

CA-Fuse 5 384, 1×1 384, 1×1 384, 1×1 

CA-Fuse 4 384, 3×3 384, 3×3 256, 1×1 

CA-Fuse 3 192, 3×3 192, 3×3 128, 1×1 

CA-Fuse 2 128, 3×3 128×3×3 - 

Table 1: Illustration of the parameters of the intra-level 

adaptation layers inside the CA-Fuse module and the 

transition layer between two neighboring CA-Fuse modules.    
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capture the complementary part from m

D
F . Then we add 

supervision on the RGB branch to encourage m

R
F  to be 

discriminative for saliency inference. The supervision will 

further enable informative extraction from m

D
F  to 

complement m

R
F , and consequently drive the optimization 

of the residual function R1(�). Similarly, the residual 

connection and complementarity-aware supervision are also 

introduced for the depth branch to capture complementary 

information from m

R
F .  

    The combined RGB-D features from the m+1 layer 
1m

RD
F + will be selected by a transition layer (detailed 

parameters are shown in Table 1). Then the enhanced 

features m

R
F and m

D
F  along with the selected features  

1

,

+ m

m RD
F from the m+1 layer are concatenated and fused by one 

1×1 convolutional layer to learn cooperative 

representations m

RD
F  and make integrated predictions  

 

 1

,
( , , ),ϕ +=   m m m m m

RD RD R D m RD
P F F F  (1) 

 

where m

RD
ϕ denotes the parameters of the fusion layer and 

the classifier in the joint branch. Then level-wise 

supervision (i.e., l
m 

RD) is added for learning multi-modal and 

multi-level combination. 

    However, due to the lack of global contextual reasoning 

in the shallow layers, directly minimizing the discrepancy 

between the predictions of any intermediate level and the 

ground-truth will be intractable. To encourage each level to 

learn desired level-specific representations, we propose to 

reuse the deeper features to supply high-level contexts for 

shallow layers. Inspired from the designs in [13] for 

unimodal problems, we add a backward prediction 

dense-connection (BPDC) module (shown in the right of 

Fig. 3(c)) to densely skip-connect the predictions from all 

the deeper layers (from m+1

RD
P to K

RD
P  formally, where K=6 

indicates the total number of convolutional blocks) to 

,m m

R D
P P and m

RD
P  respectively. Concretely, the predictions 

from each level will be upsampled to 112×112 by fixed 

deconvolutional kernels firstly. Then all the predictions will 

be combined by a 1×1 convolutional layer to generate 

collective predictions m

R
P , m

D
P  and m

RD
P . By this way, the 

loss function of the m-th CA-Fuse block for one paired 

training sample includes the loss of RGB, depth and joint 

branches and can be represented as  

 

 
Figure 4: Visual comparison of using different multi-modal fusion modules shown in Fig. 3. ‘GT’ represents the ground-truth mask. ‘Fig. 

3(b) - BPDC’ denotes the module in Fig. 3(b) without the BPDC component. 
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where { , , }w w wR D RD

m m m
 are the learnt weights for the 

predictions of three branches in the current m-th CA-Fuse 

block, while 
1 2 3

{ , , }w w wk k k  are the weights for the k-th 

CA-Fuse block when we skip-connect the predictions of 

deeper layers to m

R
P , m

D
P and m

RD
P respectively. δ denotes the 

sigmoid function and 
1 2 3

{ , , }λ λ λm m m  control the loss weights 

of each branch. We set all the weights 

1 2 3
1m m mλ λ λ= = = without further tuning. d measures the 

cross-entropy loss between the predicted 2D saliency 

map P ( ( , ) [0,1]∈P x y  and (x,y) is the pixel location) and 

the ground-truth mask (Y):  

 

  ( , ) log (1 ) log(1 ).= + − −Y Y Y  d P P P  (3) 

 

    We also involve a loss to encourage informative 

combination of all side outputs. Thus, the final loss function 

of the whole RGB-D salient object detection network is  

 

 
6

2 2

( , ),
= =

= +  
K

m k k

final CAR RD

m k

L l d Pw Y  (4) 

 

where w ̃k is the weight for P ̃k 

RD. By this way, the multi-modal 

features across different levels are explored and combined 

via successive cascade of CA-Fuse blocks and level-wise 

intermediate supervisions, and are reused via the 

skip-connections with each side output. As a result, the 

prediction of one CA-Fuse block incorporates the RGB-D 

features and predictions from all deeper levels. Therefore, 

we take the side output of the Conv2 CA-Fuse block as the 

final prediction, i.e., 2= final

RD RD
P P . 

4. Experiments  

4.1. Datasets  

We conduct our experiments on three most widely-used 

public benchmark datasets. NLPR [39] consists of 1000 

image pairs, collected from indoor and outdoor scenes by 

Kinect. NJUD [34] and STEREO [46] datasets include 

2003 and 797 stereoscopic images respectively. These 

images are mainly collected from the Internet and 3D 

movies. Depth images are generated by leveraging an 

optical method. 

For fair comparison, we adopt the same training set as in 

[19], which contains 650 samples from the NLPR dataset 

and 1400 samples from the NJUD dataset. We also sample 

50 image pairs from NLPR dataset and 100 image pairs 

from the NJUD dataset as the validation set. The training 

and validation sets are augmented by flipping and cropping 

in boundaries. The remaining samples and the STEREO 

dataset are used for testing. The mean values of HHA 

channels are computed by averaging the training samples. 

4.2. Evaluation metrics  

We adopt the standard metrics Precision-Recall (PR) 

curve and F-measure scores to evaluate the proposed 

method. Concretely, the saliency map will be binaried by 

using a series of thresholds and compared to the 

ground-truth. Then we will get a succession of 

Precision-Recall pairs and the PR curve. The formulation of 

F-measure is  

Side- 

out 

NLPR NJUD STEREO 

Fig. 

3(b) 

Fig. 

3(c) 

Fig. 

3(b) 

Fig. 

3(c) 

Fig. 

3(b) 

Fig. 

3(c) 

2 0.836 0.850 0.845 0.862 0.864 0.872 

3 0.839 0.851 0.843 0.860 0.864 0.871 

4 0.838 0.846 0.837 0.854 0.863 0.869 

5 0.813 0.821 0.809 0.833 0.848 0.856 

6 0.808 0.817 0.813 0.829 0.846 0.855 

Table 2: F-measure scores on three datasets with adopting 

different multi-modal fusion modules in Fig. 3.    

 
Figure 5: Outputs of each layer without combining with deeper 

outputs to show level-specific contributions visually.  
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( )2

2

1 Precision Recall
F

Precision Recall
β

β

β

+ ⋅ ⋅
=

⋅ +
,                        (5)    

                           

where we set β2=0.3 as suggested in [47]. 

4.3. Implementation details 

We implement our experiments using the Caffe [48] 

toolbox on a PC with two 1070 GPUs. The learning rate, 

weight decay and mini-batch size are set as 1e-8, 0.0005 and 

4 respectively. Due to limited GPU memory, we set 

“iter_size” as 2 to double the mini-batch size equivalently. 

The test time for each RGB-D image pair is merely 0.06s.  

4.4. On the effectiveness of the CA-Fuse module 

We firstly investigate the effectiveness of the proposed 

CA-Fuse module. The saliency maps shown in the first row 

in Fig. 4 indicates that cascading multi-level features 

successively without intermediate level-wise supervisions 

results in ambiguous multi-level combination. The 

high-level contexts are not well incorporated into shallow 

layers. By adding intermediate supervisions (noted as ‘Fig. 

3(b) - BPDC’ in Fig.4), the multi-modal fusion network is 

basically able to learn level-specific predictions. Visually, 

the shallow layers are capable of identifying edge 

information and the deep layers are able to learn global 

contexts to locate the salient object. Even so, the side 

outputs of the deep layers are badly irregular while the 

predictions of the shallow layers are too messy. This failure 

can be attributed to the deficiency of the cross-level 

interaction in the training phase, which probably results in 

self-serving optimization for each level individually rather 

than the desired collective convergence. Adding the BPDC 

module can remedy this shortcoming effectively (noted as 

‘Fig. 3(b)’ in Fig. 4). With reference to the deeper side 

outputs, the shallow layers can enjoy high-level contexts 

readily and the optimization objectives for shallow layers 

are degenerated into learning complementary low-level 

features only, thus easing the learning process and affording 

more cooperative multi-level fusion. As a result, the 

cross-level complement is better captured and incorporated 

and the saliency maps are enhanced from coarse to fine 

increasingly. Nonetheless, owing to that the multi-modal 

feature fusion component is still implemented by direct 

concatenation, the ‘Fig. 3(b)’ module also fails to utilize the 

cross-modal complement sufficiently to remove confusing 

background and refine salient details. In contrast, the 

CA-Fuse module, which involves cross-modal residual 

connections and complementarity-aware supervisions, is 

more likely to capture the cooperated information and boost 

better cross-modal combination, thus generating more 

precise saliency maps (see the columns indexed as ‘Fig. 

3(c)’ in Fig. 4). The quantitative comparisons shown in 

Table 2 also demonstrate the basically step-wise accuracy 

gains by adopting the proposed CA-Fuse module. The 

F-measure score of each side output consistently 

outperforms the one generated without using the CA-Fuse 

 
Figure 6: Quantitative comparisons to other models in terms of PR curves. The results of ‘LBE’ and ‘MDSF’ on the STEREO dataset are 

unavailable. 

 
Figure 7: Quantitative comparisons to other models in terms of 

F-measure scores. 
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module. To further study the contribution of different 

layers, we visualize the individual output of each CA-Fuse 

block (i.e., m

RD
P  without combining with deeper side 

outputs) to show level-specific inference. As shown in Fig. 

5, the saliency inference scales decrease from global to local 

with the levels goes from deep to shallow. This visualization 

reveals the contribution of each layer clearly and verifies the 

effectiveness of the proposed cross-level fusion strategy. 

4.5. Comparison with state-of-the-art 

    We compare our method with LBE [37], MDSF [38], 

EGP [36], NLPR [39], ACSD [34], SRDS [35] and two 

recent RGB-D saliency detection networks DF [18] and 

CTMF [19]. Fig. 6 and Fig. 7 indicate that our model 

achieves better performance than others with a large 

margin. More specifically, both the DF and the CTMF 

models are trained in a stage-wise manner. In contrast, our 

method is an end-to-end network, which involves no 

pre-training stage and post-processing operations. 

However, benefit from more sufficient fusion of 

multi-modal and multi-level features, our method still 

achieves much better performance than the DF and CTMF 

models. We also report saliency maps detected on various 

challenging scenes to show the advantages of the proposed 

method visually. Some representative samples are shown in 

Fig. 8 such as the appearance or depth of the salient object is 

not distinctive from the background (e.g., the 1st-3rd rows 

and the 4th-5th rows, respectively). Especially in the 4th row, 

the depth distribution introduces misleading saliency cues 

(i.e., the depth of the rail is more distinctive than the train). 

In the 5th row, the depth distribution is cluttered and carries 

little discrimination. In the 6th row, the depth of the salient 

object is locally-connected with some background objects. 

Also, the 6th row includes multiple disconnected salient 

objects. And in the 7th row, the appearance of the salient 

object is intra-variant. In the 8th row, the scene is crowded in 

terms of both appearance and depth distribution. In these 

challenging cases, most of other methods are unlikely to 

locate the salient object due to the lack of high-level 

contextual reasoning or robust multi-modal fusion strategy. 

Although the CTMF method is able to obtain more correct 

and uniform saliency maps than others, the fine details of 

the salient objects are lost severely due to the deficiency of 

cross-level fusion. By contrast, the proposed network is able 

to utilize both cross-modal and cross-level complementary 

information to learn cooperatively discriminative saliency 

cues and infer precise saliency values.  

5. Conclusion 

    In this work, we propose an end-to-end RGB-D salient 

object detection network, which is complementarity-aware 

for fusing both cross-modal and cross-level features. The 

introduced cross-modal/level connections and modal/ 

level-wise supervisions explicitly encourage the capture of 

complementary information from the counterpart, thus 

reducing fusion ambiguity and increasing fusion sufficiency. 

Comprehensive experiments demonstrate the effectiveness 

of the proposed multi-modal multi-level fusion strategies, 

which may also benefit other RGB-D systems and even 

other multi-model fusion problems.  
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Figure 8: Visual comparisons to other models.  
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