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Abstract

This paper presents the first attempt at stereoscopic neu-

ral style transfer, which responds to the emerging demand

for 3D movies or AR/VR. We start with a careful examina-

tion of applying existing monocular style transfer methods

to left and right views of stereoscopic images separately.

This reveals that the original disparity consistency can-

not be well preserved in the final stylization results, which

causes 3D fatigue to the viewers. To address this issue, we

incorporate a new disparity loss into the widely adopted

style loss function by enforcing the bidirectional disparity

constraint in non-occluded regions. For a practical real-

time solution, we propose the first feed-forward network by

jointly training a stylization sub-network and a disparity

sub-network, and integrate them in a feature level middle

domain. Our disparity sub-network is also the first end-to-

end network for simultaneous bidirectional disparity and

occlusion mask estimation. Finally, our network is effec-

tively extended to stereoscopic videos, by considering both

temporal coherence and disparity consistency. We will show

that the proposed method clearly outperforms the baseline

algorithms both quantitatively and qualitatively.

1. Introduction

Stereoscopic 3D was on the cusp of becoming a mass

consumer media such as 3D movies, TV and games. Nowa-

days, with the development of head-mounted 3D display

(e.g., AR/VR glasses) and dual-lens smart phones, stereo-

scopic 3D is attracting increasing attention and spurring a

lot of interesting research works, such as stereoscopic in-

painting [36, 27], video stabilization [15], and panorama

[39]. Among these studies, creating stereoscopic 3D con-

tents is always intriguing.

Recently, style transfer techniques used to reproduce fa-

mous painting styles on natural images become a trending

topic in content creation. For example, the recent film “Lov-

ing Vincent” is the first animated film made entirely of oil

∗This work was done when Dongdong Chen is an intern at MSR Asia.

paintings by well-trained artists. Inspired by the power of

Convolutional Neural Network (CNN), the pioneering work

of Gatys et al. [13] presented a general solution to transfer

the style of a given artwork to any images automatically.

Many follow-up works [21, 19, 34, 12, 11] have been pro-

posed to either improve or extend it. These techniques are

also applied to many successful industrial applications (e.g.,

Prisma [1], Ostagram [2], and Microsoft Pix [3]).

However, to the best of our knowledge, there are no tech-

niques that apply style transfer to stereoscopic images or

videos. In this paper, we address the need for this emerging

3D content by proposing the first stereoscopic neural style

transfer algorithm. We start with a careful examination of

naive application of existing style transfer methods to left

and right views independently.

We found that it often fails to produce geometric consis-

tent stylized texture across the two views. As a result, it in-

duces problematic depth perception and leads to 3D fatigue

to the viewers as shown in Figure 1. Therefore, we need to

enable the method to produce stylized textures that are con-

sistent across the two views. Moreover, a fast solution is

required, especially for practical real-time 3D display (e.g.,

AR/VR glasses). Last but not least, style transfer in stereo-

scopic video as a further extension should satisfy temporal

coherence simultaneously.

In this paper, we propose the first feed-forward net-

work for fast stereoscopic style transfer. Besides the widely

adopted style loss function [13, 19], we introduce an addi-

tional disparity consistency loss, which penalizes the devia-

tions of stylization results in non-occluded regions. Specif-

ically, given the bidirectional disparity and occlusion mask,

we establish correspondences between the left and right

view, and penalize the stylization inconsistencies of the

overlapped regions which are visible in both views.

We first validate this new loss term in the optimization-

based solution [13]. As shown in Figure 1, by jointly con-

sidering stylization and disparity consistency in the opti-

mization procedure, our method can produce much more

consistent stylization results for the two views. We further

incorporate this new disparity loss into a feedforward deep

network that we designed for stereoscopic stylization.
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(a) (b) (d) (e)(c)
Figure 1. (a) Given a stereoscopic image pair and a style image, when the left and right view are stylized separately (first row), the left

stylization result (b) will be inconsistent with that of the right view (c) in spatially corresponding areas (d).This will lead to undesirable

vertical disparities and incorrect horizontal disparities, subsequently causing 3D visual fatigue in anaglyph images (e) . In contrast, by

introducing a new disparity consistency constraint, our method (second row) can produce consistent stylization results for the two views.

Our network consists of two sub-networks. One is

the stylization sub-network StyleNet, which employs the

same architecture in [19]. The other is the disparity sub-

network DispOccNet, which can estimate bidirectional dis-

parity maps and occlusion masks directly for an input stereo

image pair. These two sub-networks are integrated in a fea-

ture level middle domain. They are first trained on each task

separately, and then jointly trained as a whole.

Our new disparity sub-network has two advantages: 1) it

enables real-time processing, when compared against some

state-of-the-art stereo matching algorithms [33, 22] that use

slow global optimization techniques; 2) it is the first end-

to-end network which estimates the bidirectional dispari-

ties and occlusion masks simultaneously, while other meth-

ods [26, 38] only estimate a single directional disparity map

in each forward and need post-processing steps to obtain the

occlusion mask. In Sec. 5.2, we will show that this bidirec-

tional design is better than the single directional design.

Our network can also be easily extended to stereoscopic

3D videos by integrating the sub-networks used in [10]. In

this way, the final stylization results can keep not only the

horizontal spatial consistency at each time step, but also the

temporal coherence between adjacent time steps. This work

may inspire film creators to think about automatically turn-

ing 3D movies or TVs into famous artistic styles.

In our experiments, we show that our method outper-

forms the baseline both quantitatively and qualitatively. In

summary, this paper consists of four main contributions:

• We propose the first stereoscopic style transfer algo-

rithm by incorporating a new disparity consistency

constraint into the original style loss function.

• We propose the first feed-forward network for fast

stereoscopic style transfer, which combines styliza-

tion, bidirectional disparities and occlusion masks es-

timation into an end-to-end system.

• Our disparity sub-network is the first end-to-end net-

work which simultaneously estimates bidirectional

disparity maps and occlusion masks.

• We further extend our method to stereoscopic videos

by integrating additional sub-networks to consider

both disparity consistency and temporal coherency.

In the remainder of this paper, we will first summarize

some related works. In our method, we validate our new

disparity constraint using a baseline optimization-based

method, and then introduce our feed-forward network for

fast stereoscopic style transfer, and extend it to stereoscopic

videos. Experiments will show the evaluation and compari-

son with other ablation analysis of our method. Finally, we

conclude with further discussion.

2. Related Work

With the increasing popularity and great business poten-

tial of 3D movies or AR/VR techniques, stereoscopic im-

age/video processing techniques have drawn much atten-

tion. Some interesting stereoscopic topics include image

inpainting [36], object copy and paste [25], image retarget-

ing [9, 5], image warping [28] and video stabilization [15].

In this work, we introduce a new topic which turns stereo-

scopic images or videos into synthetic artworks.

In the past, re-drawing an image in a particular style re-

quired a well-trained artist to do lots of time-consuming

manual work. This motivated the development of a plenty

of Non-photorealistic Rendering (NPR) algorithms to make

the process automatic, such that everyone can be an artist.

However, they are usually confined to the specific artistic

styles (e.g., oil paintings and sketches). Gatys et al. [14]

were the first to study how to use CNNs to reproduce fa-

mous styles on natural images. They leverage CNNs to
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characterize the visual content and style, and then recom-

bine both for the transferring styles, which is general to var-

ious artistic styles.

To further improve the quality, many domain priors or

schemes are used, including face constraints [31], MRF pri-

ors [21], or user guidances [8]. To accelerate the rendering

process, a feed-forward generative network [19, 34, 12, 11]

can be directly learnt instead, which were successfully de-

ployed popular apps (e.g., Prisma[1], Microsoft Pix [3]).

However, the algorithms described above are designed only

for monocular images. When they are independently ap-

plied to stereoscopic views, they inevitably introduce spa-

tial inconsistency, causing visual discomfort (3D fatigue).

Generally, stereoscopic 3D techniques consider the dis-

parity consistency in the objective function. Stereoscopic

style transfer is not an exception. The first step is to esti-

mate a high quality disparity map from the two input views,

which is still an active research topic. Traditional meth-

ods often use sophisticated global optimization techniques

and MRF formulations, such as [17, 37, 35]. Recently,

some CNN-based methods have been explored. Zbontar et

al. [38] adopted a Siamese network for computing matching

distances between image patches. Mayer et al. [26] synthe-

sized a large dataset and trained an end-to-end network for

disparity estimation. However, it can only obtain a single

directional disparity map in each forward and need post-

processing steps to obtain the occlusion mask. Our disparity

sub-network adopts a similar network architecture but with

a different loss function. It can simultaneously estimate the

bidirectional disparity maps and occlusion masks, which is

essential to high-quality stereo image/video editing. To the

best of our knowledge, it is the first end-to-end network for

bidirectional disparities and occlusion masks estimation.

The most related work to ours is video style transfer.

Previous methods [4, 29, 10, 16, 18, 30] all incorporated

a new temporal consistency constraint in the loss function

to avoid flickering artifacts. Analogous to the temporal con-

sistency, stereoscopic style transfer requires spatial consis-

tency between the left and right view. Different from se-

quential processing in video style transfer, two views should

be processed symmetrically in stereoscopic style transfer. It

is crucial to avoid the structure discontinuity near the oc-

clusion boundary as shown in Figure 2. Our style transfer

network is naturally extended to stereoscopic videos by con-

sidering both spatial consistency and temporal consistency

at the same time.

3. Disparity Loss for Spatial Consistency

Since previous neural style transfer methods only tackle

monocular views, the naive extension fails to preserve spa-

tial consistency between the left and right view images, as

shown in in Figure 1. How to enforce spatial consistent

constraint across two views is worth exploring. Video style

Figure 2. Comparison results of stylizing left and right view se-

quentially (top row) or jointly (middle row) with the disparity con-

sistency constraint. The former method will often generate texture

discontinuity near occlusion mask boundary. Bottom row is the

right view occlusion mask and enlarged stylization patches.

transfer is also confronted by similar consistency preserva-

tion problem, but in the temporal axis.

To reduce inconsistency, some methods [10, 29, 30] use

the stylization results of previous frames to constrain that of

the current frame. By analogy, we can firstly stylize the left

view, and then use it to constrain the stylization of the right

view with disparity consistency, or vice versa. In this way,

we can obtain spatially consistent results in visible overlap-

ping regions, but the continuity of stylization patterns near

the occlusion boundary is often damaged, as shown in Fig-

ure 2. The underlying reason is that the left stylization result

is fixed during the optimization procedure of the right view.

To avoid it, we should regard the left and right view in a

symmetric way and jointly process them.

Therefore, we add a new term by enforcing symmet-

ric bidirectional disparity constraint, to the stylization loss

function, and jointly optimize left and right views. We first

validate the new loss in the optimization-based style trans-

fer framework [13], which is formulated as an energy min-

imization problem. In the next section, we will further in-

corporate the proposed loss to our feed-forward network.

Given a stereoscopic image pair Il, Ir and a style im-

age S, the left and right view stylization results Ol, Or are

iteratively optimized via gradient descent. The objective

loss function Ltotal consists of three components: content

loss Lv
cont, style loss Lv

sty and disparity loss Lv
disp, where

v ∈ {l, r} represents the left or right view, i.e.,

Ltotal =
∑

v∈{l,r}

(

αLv
cont(Ov, Iv) + βLv

sty(Ov, S)

+γLv
disp(Ov, Dv,Mv)

)

.

(1)
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Both the content loss and style loss are similar to [19]:

Lv
cont(Ov, Iv) =

∑

i∈{lc}
‖F i(Ov)− F i(Iv)‖

2,

Lv
sty(Ov, S) =

∑

i∈{ls}
‖G(F i(Ov))−G(F i(S))‖2,

(2)

where F i and G are feature maps and Gram matrix com-

puted from the layer i of a pre-trained VGG-19 net-

work [32]. {lc}, {ls} are VGG-19 layers used for content

representation and style representation, respectively.

The new term of disparity loss enforces the stylization

result at one view to be as close as possible to the warped

result from the other view in the visible and overlapping

regions (i.e., non-occludded regions). It is defined as:

Lv
disp(Ov, Dv,Mv) = (1−Mv)⊙ ‖Ov −

←−
W(Ov∗ , Dv)‖

2

(3)

where v∗ is the opposite view of v (if v is the left, then v∗

is the right).
←−
W(Ov∗ , Dv) is the backward warping func-

tion that warps Ov∗ using the disparity map Dv via bilinear

interpolation, namely
←−
W(Ov∗ , Dv)(p) = Ov∗(p+Dv(p)).

Mv is the occlusion mask, where Mv(p) = 0 for pixel p

visible in both views and Mv(p) = 1 for pixel p occluded in

the opposite view. Given the left and right disparity map, the

occlusion mask M can be obtained by a forward-backward

consistency check, which is also used in [29].

Note that the loss Ldisp is symmetric for both views,

and relies on the bidirectional disparities and occlusion

masks. As shown in Figure 1, compared to the baseline (i.e.,

processing each view independently), our method achieves

more consistent results and can avoid 3D visual fatigue in

final anaglyph images. Jointly optimizing the left and right

view in a symmetric way can further avoid the discontinuity

near the occlusion boundary as shown in Figure 2, .

4. Stereroscopic Style Transfer Network

In this section, we propose a feed-forward network for

fast stereoscopic style transfer. The whole network consists

of two sub-networks: the StyleNet which is similar to ex-

isting style transfer networks [10, 11, 12, 16], and the Dis-

pOccNet which simultaneously estimates bidirectional dis-

parity maps and occlusion masks. we integrate these two

sub-networks in a feature level middle domain, making the

left view and right view completely symmetric.

StyleNet. We use the default style network structure

firstly proposed by [19] and used extensively in the other

works [10, 11, 12, 16]. The architecture basically follows an

image auto-encoder, which consists of several strided con-

volution layers (encoding the image into feature space), five

residual blocks, and fractionally strided convolution layers

(decoding feature to the image). In our implementation, we

follow the same designing as [10], where the layers before

the third residual block (inclusive) are regarded as the en-

coder, and the remaining layers are regarded as the decoder.

DispOccNet. Recently, Mayer et al. [26] introduced an

end-to-end convolution network called DispNet for dispar-

ity estimation. However, it can only predict single direc-

tional disparity map Dl(l → r) in their original design.

Here, we use the similar network structure, but add three

more branches in the expanding part for each resolution

(1/64,...,1/2). These three branches are used to regress dis-

parity Dr and bidirectional occlusion masks Ml,Mr. The

loss function for each resolution is:

L =
∑

v∈{l,r}

Ld(M
g
v , Dv, D

g
v) + λLo(Wv,Mv,M

g
v ),

Ld(M
g
v , Dv, D

g
v) = (1−Mg

v )⊙ ‖Dv −Dg
v‖,

Lo(Wv,Mv,M
g
v ) = −

1

n

∑

i

Wv(i)[M
g
v (i)log(Mv(i))

+ (1−Mg
v (i))log(1−Mv(i))],

(4)

where the superscript g denotes the ground truth. Different

from the original loss in [26], we remove the disparity devi-

ation penalty in occluded regions in Ld, where the disparity

values are undefined in real scenarios. Wv is a pixel-wise

class balance weight map, where values in occluded regions

are the ratio of non-occluded and occlusion pixel number
#non occ

#occ
, while values in non-occluded regions are 1. Note

that the ground truth of Dv,Mv at each resolution are bilin-

early interpolated from that of the original image resolution.

The losses for each resolution are summed. Please refer to

the supplementary material for details of the sub-network.

Middle Domain Integration. Since the left and right

view are completely symmetric, we also consider the

StyleNet and DispOccNet in a symmetric way. In fact, for

a stereoscopic image pair, the overlapping regions visible

in both views can be defined in a intermediate symmetric

middle domain [6, 23]. If we know the occlusion mask for

each view, we can stylize the overlapping regions and oc-

cluded regions respectively, then compose the image based

on the occlusion mask. In this way, the final stylization re-

sults would naturally satisfy disparity consistency.

Image level composition often suffers from flow or dis-

parity errors, and produces blurring and ghosting artifacts.

As demonstrated in [10], feature level composition, fol-

lowed by a decoder back to the image space, is more tol-

erant to errors. Therefore, we integrate the StyleNet and

DispOccNet in a new feature level middle domain H. The

overall Network architecture is shown in Figure 3.

Network Overview. Specifically, We first encode Il, Ir
into feature maps Fl, Fr with the encoder of the StyleNet
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Figure 3. The overall network structure for fast stereoscopic image style transfer. It consists of two sub-networks: StyleNet and DispOccNet,

which are integrated in the feature level middle domain H.

and predict the bidirectional disparity maps and occlusion

masks Dl, Dr,Ml,Mr with the DispOccNet, which are bi-

linearly resized to match the resolution of Fl, Fr. Then for

each view v, we warp Fv and the halved Dv to the mid-

dle domain using a forward warping function, which al-

lows warping from each view to the middle domain with-

out knowing the middle view disparity. The warped two

views are combined, generating the middle disparity Dh,

feature map Fh, and hole mask Mh. Similar to [23], the

value Dh(p) of a point p is defined as the symmetric shift

distance to the correspondence point in the left and right

view (left: p −Dh(p), right: p +Dh(p)). The hole masks

generated in the left and right view forward warping are

combined as Mh, and the corresponding pixel values in Fh

are excluded in the following warping, i.e.,

Dl :=
Dl

2
, Dr :=

Dr

2
,

Dh =
−
−→
W(Dl, Dl,Ml) +

−→
W(Dr, Dr,Mr)

2

Fh =

−→
W(Fl, Dl,Ml) +

−→
W(Fr, Dr,Mr)

2
,

(5)

where
−→
W(x, y,m) is the forward warping function that

warps x using the disparity map y guided by the occlusion

mask m. Namely, if z =
−→
W(x, y), then

z(p) =

∑

q wq × x(q + y(q))
∑

q wq

, ∀q : q + y(q) ∈ N 8(p)

(6)

whereN 8(p) denotes the eight-neighborhood of p, wq is the

bilinear interpolation weight, making z both differentiable

to x and y. All the occluded pixels q in m are excluded in

the forward warping procedure, which avoids the “many-to-

one” mapping problem.

Next, we further forward warp Fh back to the original

left and right view, and fuse them with Fl, Fh based on

Ml,Mr respectively, i.e.,

F ′
l =
−→
W(Fh,−Dh,Mh), F ′

r =
−→
W(Fh, Dh,Mh)

F o
v = Mv ⊙ Fv + (1−Mv)⊙ F ′

v, v ∈ {l, r}
(7)

F௩௧ ′
M

��௧−1, ��௧ ���,௧−1��௧−1, ��௧
��௨,௧

���,௧ ���,௧
��௨,௧

�௩௧−1, �௩௧
�௧�௩�,௧−1

∆�௧

�௩௨,௧
Flow

warp

F௩௧
F௩௧ ′

F௩௧
fuse

Mask

Temporal Temporal

Stereo

���,௧−1F௩௧
Temporal

diff

warp : backward warp

Figure 4. The overall structure for stereoscopic video style transfer.

The left part is the simplified working flow for Temporal network.

The right part is the recurrent formulation for combining the above

Stereo network and the left additional Temporal network.

Finally, the fused feature maps F o
l , F

o
r are fed into the de-

coder to obtain the final stylization results Ol, Or.

4.1. Extension to Stereoscopic Videos

To extend our network for stereoscopic videos, similar to

[10, 30], we incorporate one more temporal coherence term

for each view v into our objective function, i.e.,

Lcohe =
∑

v∈{l,r}

(1−M t
v)⊙ ‖O

t
v −W

t
t−1(O

t−1
v )‖2

(8)

whereWt
t−1(.) is the function to warp Ot−1

v to time step t

using the ground truth backward flow as defined in [10].

Inspired by [10], we further add an additional flow sub-

network and mask sub-network (together referred to as the

“Temporal network”) into the original network. We show

the basic working flow in the left part of Figure 4. For a

view v, two adjacent frames It−1
v , Itv are fed into the flow

sub-network to compute the feature flow wt
v , which warps

the input feature map F o,t−1
v to F t

v
′. Next the difference

∆F t
v between the new feature map F t

v computed from Itv
and F t

v
′ is fed into the mask sub-network, generating the

composition mask M . The new feature map Fu,t
v is the

linear combination of F t
v and F t

v
′ weighted by M .

We integrate the above stereoscopic image style transfer
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network (referred to as ”Stereo network”) with Temporal

network in a recurrent formulation. Specifically, for each

view v, we recursively feed the previous disparity consistent

and temporal coherent feature maps F o,t−1
v , together with

adjacent frames It−1
v , Itv , into the Temporal network, gen-

erating the temporal coherent feature map Fu,t
v . Then F

u,t
l

and Fu,t
r are further fed into the Stereo network to guarantee

disparity consistency. At this point, the output feature maps

F
o,t
l , F o,t

r are both temporal coherent and disparity consis-

tent and fed to the decoder of StyleNet to get the stylization

results. Note that for t = 1, F
u,1
l , Fu,1

r are just the output

feature maps of encoder of the StyleNet.

5. Experiments

5.1. Implementation Details

For fast stereoscopic image style transfer, the overall net-

work contains two sub-networks: the StyleNet and the Dis-

pOccNet. In our implementation, these two sub-networks

are first pretrained separately, then jointly trained. For the

StyleNet, we adopt the pretrained models released by [19]

directly, which is trained on Microsoft COCO dataset[24].

To pretrain DispOccNet, we adopt the same training strat-

egy in [26] with the synthetic dataset FlyingThings3D,

which contains 21818 training and 4248 test stereo image

pairs. During training, we use the bidirectional consistency

check to obtain the ground truth occlusion mask as in [29].

These two sub-networks are jointly trained with a batch

size of 1 (image pair) for 80k iterations. The Adam op-

timization method [20] is adopted with an initial learning

rate 0.0001, which is decayed by 0.1 at 60k iterations. Be-

cause the style loss is around 107 times larger than the dis-

parity loss, the corresponding gradient of DispOccNet com-

ing from StyleNet is scaled with 10−7 to balance. By de-

fault, γ = 500 is used for all the styles, and α, β remain

unchanged as the pretrained style models.

For stereoscopic video style transfer, we add an addi-

tional Temporal network (one flow sub-network and one

mask sub-network) to the above Stereo network. In our de-

fault implementation, the additional Temporal network is

trained using the same method as [10], and directly inte-

grated with a well-trained Stereo network in a recurrent for-

mulation as show in Figure 4.

5.2. Evaluation and Analysis of the DispOccNet

To evaluate the performance of our DispOccNet, we test

our model on the MPI Sintel stereo dataset [7] and Fly-

ingThings3D test dataset, respectively. To fully understand

the effects of each modification, we further train two vari-

ant networks. The DispOccNet-SD only regresses single di-

rectional disparity and occlusion mask rather than bidirec-

tional. The DispOccNet-OL is trained with the original loss

function in [26] without removing the penalty for occluded

Method MPI Sintel clean FlyingThings3D Time

DispNet[26] 4.48 1.76 0.064s

DispOccNet* 4.16 1.68 0.07s

DispOccNet-SD 4.66 1.69 0.067s

DispOccNet-OL 5.43 1.99 0.07s

Table 1. Non-occluded endpoint errors for DispOccNet and its

variants. The test time is for a 960x540 image on GTX TitanX.

Method
Disparity loss

Time
Candy La muse Mosaic Udnie

baseline [19] 0.0624 0.0403 0.0668 0.0379 0.047s

finetuned [19] 0.0510 0.0325 0.0597 0.0317 0.047s

our method 0.0474 0.0301 0.0559 0.0285 0.07s

our method †† 0.0481 0.0284 0.0570 0.0284 0.067s

Perceptual loss

baseline [19] 531745.9 249705.4 351760.7 136927.1

our method 515511.6 250943.0 379825.3 124670.6

our method †† 529979.8 260230.5 399216.3 135765.8

Table 2. Comparison results of different methods of disparity loss

and perceptual loss on FlyingThings3D test dataset. The test time

is for 640x480 image pair on GTX TitanX.

regions. Since we only care about the disparity precision in

non-occluded regions, we use the endpoint error (EPE) in

non-occluded regions as the error measure.

As shown in Table 1, our DispOccNet is only 9.3%
slower than the original DispNet while predicts the bidirec-

tional disparity maps and occlusion masks simultaneously.

With the modified loss function and network structure, it

achieves even better disparity both on the MPI Sintel dataset

and the FlyingThings3D dataset. Compared to the variant

network DispOccNet-SD, which only trains the single di-

rectional disparity and occlusion mask, DispOccNet is also

better. We believe that feeding bidirectional disparities and

occlusion masks helps the network to learn the symmetric

property of the left and right disparities, thus learn more

meaningful intermediate feature maps.

Besides disparity, occlusion mask is also very important

for image or feature composition. In fact, there are two dif-

ferent ways to obtain the occlusion mask. The first is to

make the network learn the occlusion mask directly (such

as our method). The other is to run post bidirectional con-

sistency check after getting accurate bidirectional disparity

maps. However for the latter method, one needs 2× for-

ward time or retrains one network for bidirectional dispari-

ties similar to ours. Moreover, when the disparity map is not

sufficiently good, the occlusion mask generated by the latter

method will contain more false alarms and noises, as shown

in Figure 5. We also compare the F-score of the predicted

occlusion masks by these two methods on the FlyingTh-

ings3D test dataset, our method is much better (F-score:

0.887) than the latter method (F-score: 0.805).

5.3. Evaluation for Stereoscopic Style Transfer

Quantitative Evaluation. To validate the effectiveness of

our method, we use two different quantitative evaluation
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Figure 5. Comparison of occlusion masks: ground truth (top

left), our method (top right), and post bidirectional consistency

check(bottom left). The occlusion mask generated by post bidirec-

tional consistency check contains more false positives and noise.

metrics: 1) the perceptual loss αLcont + βLsty to repre-

sent the faithfulness to the original styles, and 2) the dis-

parity loss Ldisp to evaluate the disparity consistency. We

compare three different methods on the FlyingThings3D

test dataset for four different styles: the baseline monoc-

ular method [19], and StyleNet [19] finetuned with dispar-

ity loss but test without DispOccNet, our method (finetuned

StyleNet + DispOccNet).

As shown in Table 2, compared to the baseline method

[19], our results are more disparity consistent while keeping

the original style faithfulness (i.e., similar perceptual loss).

When testing finetuned StyleNet [19] without DispOccNet,

the disparity loss also decreases a lot. This shows that the

stability of the original style network is actually improved a

lot after joint training with the new disparity loss.

We further conduct an user study to compare our method

with the baseline method [19]. Specifically, we randomly

select 5 stereoscopic image pairs and 2 videos from the

MPI-Sintel and kitty dataset for 4 different styles then ask

20 participants to answer ”which is more stereoscopic con-

sistent?”. Our method wins 94.8% of the time while [19]

only wins 5.2% of the time.

Qualitative Evaluation. In Figure 7, we show the com-

parison results with our baseline (stylizing each view inde-

pendently) for a real street view stereoscopic image pair.

The top row with red marked boxes is the baseline results,

where the stylized textures in the corresponding regions be-

tween the left and right views are often inconsistent. When

watching these results with 3d devices, these inconsisten-

cies will make it more difficult for our eyes to focus, causing

3d fatigue. In contrast, our results are more consistent.

In Figure 8, we show the comparison results for two ad-

jacent stereoscopic image pairs of a stereoscopic video. By

incorporating the additional Temporal network, our method

can obtain both disparity consistent and temporal coherent

stylization results (More results can be found on youtube 1).

1https://www.youtube.com/watch?v=7py0Nq8TxYs

Figure 6. Comparison with variant of [10](top row), which suf-

fers from both ghost artifacts and stylization inconsistency. The

middle row is the results with composition mask replaced by our

method, the ghost artifacts disappear but inconsistencies still exist.

By contrast, our results (bottom row) do not have these problems.

5.4. More Comparison

Single Directional vs. Bidirectional We have also de-

signed an asymmetric single directional stereoscopic image

style transfer network for feature propagation and compo-

sition. Different from the symmetric bidirectional network

structure shown in Figure 3, we directly warp the left view

feature Fl to the right view using the right disparity map Dr,

then conduct composition with Fr based on the right occlu-

sion mask Mr. As shown in Table 2, for the four test styles,

the single directional method (marked with ††) can obtain

similar stable errors, but all higher perceptual loss than our

default bidirectional design. Furthermore, by experiment,

we find it more difficult to jointly train StyleNet and Dis-

pOccNet for this asymmetric design, because the gradient

for the left and right view is very unbalanced, making Dis-

pOccNet diverge easily.

Comparison with Variant of [10] In the monocular

video style transfer method [10], a flow sub-network is uti-

lized to guarantee temporal coherence, and the composition

mask is implicitly trained with a mask sub-network. We

have also designed a similar network structure with flow

sub-network replaced by DispNet [26]. As shown Figure 6,

it suffers from both ghosting artifacts and stylization incon-

sistency. The ghosting artifacts are resulted from the un-

defined disparity in occluded regions. When the occlusion

mask is unknown, or the final composition mask is not good

enough, the incorrectly warped feature will be used in the

final composite feature, causing ghost artifacts. We also vi-

sualize the implicitly trained composition mask M , which is

clearly worse than the composition mask Ml,Mr(occlusion

mask) from our proposed DispOccNet.

For further validation, we replace the final composition
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Figure 7. Comparison with our baseline for a real street view stereoscopic image pair. The top row with red marked boxes is the baseline

results, and the bottom row with corresponding green marked boxes is our results. Obviously, our results are more disparity consistent.

Figure 8. Comparison with our baseline for two adjacent stereoscopic image pairs. The top two rows are the baseline results, and the

bottom two rows are our results. Compared to our baseline, our results can guarantee both disparity consistency and temporal coherency.

The top-rightest is the input stereoscopic image pair of time step t− 1, and the bottom-rightest is that of time step t.

mask with the occlusion mask Ml from our DispOccNet,

the ghost artifacts disappear. But inconsistencies still ex-

ist, because the original style sub-network is fixed in [10],

which is sensitive to small perturbations. By contrast, our

style sub-network is more stable after joint training with the

disparity consistency loss.

6. Conclusion

In this paper, we present the first stereoscopic style

transfer algorithm by introducing a new disparity consis-

tency loss. For a practical solution, we also propose a

feed-forward network by jointly training a stylization sub-

network and a disparity sub-network. To the best of our

knowledge, our disparity sub-network is the first end-to-end

network that enables simultaneous estimation of the bidi-

rectional disparity maps and the occlusion masks, which

can potentially be utilized by other stereoscopic techniques.

To further extend our method for stereoscopic videos, we

incorporate an additional Temporal network [10] into our

Stereo network.

Along this direction, there is much future work worth

investigating. For example, motivated by our DispOccNet,

the flow sub-network used for temporal coherence can po-

tentially also be extended to simultaneously predict the bidi-

rectional flow and occlusion masks if suitable dataset exists.

Furthermore, how to unify the flow and disparity into one

network remains an open question, and worth exploring.
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