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Abstract

This paper addresses the problem of transparent object

matting. Existing image matting approaches for transpar-

ent objects often require tedious capturing procedures and

long processing time, which limit their practical use. In

this paper, we first formulate transparent object matting as

a refractive flow estimation problem. We then propose a

deep learning framework, called TOM-Net, for learning

the refractive flow. Our framework comprises two parts,

namely a multi-scale encoder-decoder network for produc-

ing a coarse prediction, and a residual network for refine-

ment. At test time, TOM-Net takes a single image as in-

put, and outputs a matte (consisting of an object mask,

an attenuation mask and a refractive flow field) in a fast

feed-forward pass. As no off-the-shelf dataset is available

for transparent object matting, we create a large-scale syn-

thetic dataset consisting of 178K images of transparent ob-

jects rendered in front of images sampled from the Microsoft

COCO dataset. We also collect a real dataset consisting

of 876 samples using 14 transparent objects and 60 back-

ground images. Promising experimental results have been

achieved on both synthetic and real data, which clearly

demonstrate the effectiveness of our approach.

1. Introduction

Image matting refers to the process of extracting the

foreground matte of an image by locating the region of the

foreground object and estimating the opacity of each pixel

inside the foreground region. The foreground object can

then be composited onto a new background image using the

matting equation [20]

C = F + (1− α)B, α ∈ [0, 1], (1)

where C denotes the composited color, F the foreground

color, B the background color, and α the opacity.

Image matting has been widely used in image editing and

film production. However, most of the existing methods are
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Figure 1. Given an image of a transparent object as input, our

model can estimate the environment matte (consisting of an object

mask, an attenuation mask and a refractive flow field) in a feed-

forward pass. The transparent object can then be composited onto

new background images with the extracted matte.

tailored for opaque objects, and cannot handle transparent

objects whose appearances depend on how light is refracted

from the background.

To model the effect of refraction, Zongker et al. [26] in-

troduced environment matting as

C = F + (1− α)B +Φ, α ∈ [0, 1], (2)

where Φ is the contribution of environment light caused by

refraction or reflection at the foreground object. Besides

estimating the foreground shape, environment matting also

describes how objects interact with the background.

Many efforts [3, 22, 15, 25, 7, 5] have been devoted to

improving the seminal work of [26]. The resulting meth-

ods often require either a huge number of input images to

achieve a higher accuracy, or specially designed patterns to

reduce the number of required images. They are in general

all very computational expensive.

In this paper, we focus on environment matting for trans-

parent objects. It is highly ill-posed, if not impossible,

to estimate an accurate environment matte for transparent

objects from a single image with an arbitrary background.

Given the huge solution space, there may exist multiple ob-

jects and backgrounds that can produce the same refractive

effect. In order to make the problem more tractable, we sim-

plify our problem to estimating an environment matte that
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can produce visually realistic refractive effect from a sin-

gle image, instead of estimating a highly accurate refractive

flow. We define the environment matte in our model as a

triple consisting of an object mask, an attenuation mask and

a refractive flow field. Realistic refractive effect can then

be obtained by compositing the transparent object onto new

background images (see Fig. 1).

Inspired by the great successes of convolutional neural

networks (CNNs) in high-level computer vision tasks, we

propose a convolutional neural network, called TOM-Net,

for simultaneous learning of an object mask, an attenuation

mask and a refractive flow field from a single image with an

arbitrary background. The key contributions of this paper

can be summarized as follows:

• We introduce a simple and efficient model for trans-

parent object matting as simultaneous estimation of an

object mask, an attenuation mask and a refractive flow

field.

• We propose a convolutional neural network, TOM-

Net, to learn an environment matte of a transparent ob-

ject from a single image. To the best of our knowledge,

TOM-Net is the first CNN that is capable of learning

transparent object matting.

• We create a large-scale synthetic dataset and a real

dataset as a benchmark for learning transparent object

matting. Our TOM-Net has produced promising re-

sults on both the synthetic and real datasets.

2. Related Work

In this section, we briefly review representative works

on environment matting and recent works on CNN based

image mating.

Environment matting Zongker et al. [26] introduced the

concept of environment matting, and assumed each fore-

ground pixel being originated from a single rectangular re-

gion of the background. They obtained the environment

matte by identifying the corresponding background region

for each foreground pixel using three monitors and multi-

ple images. Chuang et al. [3] extended [26] in two ways.

First, they replaced the single rectangular supporting area

for a foreground pixel with multiple 2D oriented Gaussian

strips. This makes it possible for their method to model

the effects of color dispersion, multiple mapping and glossy

reflection. Second, they simplified the environment mat-

ting equation by assuming the object colorless and specu-

lar transparent. This allows them to achieve real time envi-

ronment matting (RTEM). The environment matte was then

extracted with one image taken in front of a pre-designed

pattern. However, RTEM requires background images to

segment the transparent objects, and depends on a time-

consuming off-line processing. Wexler et al. [22] intro-

duced a probabilistic model based method which assumes

each background point has a probability to make contribu-

tion towards the color of a certain foreground point. Their

approach does not require pre-designed patterns during data

acquisition, but it still needs multiple images and can only

model thin transparent objects. Peers and Dutré [15] used

a large number of wavelet basis backgrounds to obtain the

environment matte, and their method can also model the ef-

fect of diffuse reflection. Based on the fact that a signal can

be decomposed uniquely in the frequency domain, Zhu and

Yang [25] proposed a frequency-based approach to extract

an accurate environment matte. They used Fourier analy-

sis to solve the decomposition problem. Both [15] and [25]

require a large number of images to extract the matte (e.g.,

[15] needs 2,400 images and [25] needs 4,096 images for an

image of size 1024 × 1024), making them not very practi-

cal. Recently, compressive sensing theory has been applied

to environment matting to reduce the number of images re-

quired. Duan et al. [6] applied this theory in the spatial

domain and Qian et al. [16] applied it in the frequency do-

main. However, the number of images needed is still in the

order of hundreds. In contrast, our work can estimate an en-

vironment matte from a single image in a fast feed-forward

computation without the need for pre-designed patterns or

additional background images.

Yeung et al. [24] proposed an interactive way to esti-

mate an environment matte given an image containing a

transparent object. Their method requires users to manu-

ally mark the foreground and background in the image, and

models the refractive effect using a thin-plate-spline trans-

formation. Their method does not produce an accurate en-

vironment matte, but instead a visually pleasing refractive

effect. Our method shares the same spirit, but does not in-

volve any human interaction.

CNN based image matting Although the potential of

CNN on transparent object matting has not yet been ex-

plored, some existing works have adopted CNNs for solving

the general image matting problem. Shen et al. [18] intro-

duced a CNN for image matting of color portrait images.

Cho et al. [2] proposed a network to predict a better alpha

matte by taking the matting results of the traditional method

and normalized color image as input. Xu et al. [23] intro-

duced a deep learning framework that can estimate an alpha

matte from an image and its trimap. However, none of these

methods can be applied directly to the task of transparent

object matting as object opacity alone is not sufficient to

model the refractive effect.

3. Matting Formulation

As a transparent object may have multiple optical prop-

erties (e.g., color attenuation, translucency and reflection),

estimating an accurate environment matte for a generic

transparent object from a single image is very challenging.

Following the work of [3], we cast environment matting to

a refractive flow estimation problem by assuming that each
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Figure 2. TOM-Net architecture. The left subnetwork is the CoarseNet and the right subnetwork is the RefineNet. (Best viewed in color.)

foreground pixel only originates from one point in the back-

ground due to refraction. Compared to the seminal work of

[26], which models each foreground pixel as a linear com-

bination of a patch in the background, our formulation is

more tractable and can be easily encoded using a CNN.

In [26], the per-pixel environment matting is obtained

through leveraging color information from multiple back-

ground images. Given a set of pre-designed background

patterns, matting is formulated as

C = F + (1− α)B +

m
∑

i=1

RiM(Ti,Ai), (3)

where F , B and α denote the foreground color, background

color and weight, respectively. The last term in (3) accounts

for the environment light accumulated from m pre-designed

background images (m = 3 in [26]). Ri is a factor describ-

ing the contribution of light emanating from the i-th back-

ground image Ti. M(Ti,Ai) denotes the average color of

a rectangular region Ai on the background image Ti.

To obtain an environment matte, the transparent object

is placed in front of the monitor(s), and multiple pictures

of the object are captured with the monitor(s) displaying

different background patterns1. Generally, a surface point

receives light from multiple directions, especially for a dif-

fuse surface. When it comes to a (perfectly) transparent

object, however, a surface point will only receive light from

one direction as determined by the law of refraction. Con-

sider a single background image as the only light source,

the problem can be modeled as

C = F + (1− α)B +RM(T, P ), (4)

where M(T, P ) is a bilinear sampling operation at location

P on the background image T. Further, by assuming a col-

orless transparent object, we have F = 0 and R becomes a

1For an image of size 512 × 512, 18 pictures and around 20 minutes

processing time are needed.

light attenuation index ρ (a scalar value). The formulation

in (4) can be simplified to

C = (1− α)B + ρM(T, P ), (5)

where ρ ∈ [0, 1] denotes the attenuation index.

Here, we use refractive flow to model the refractive effect

of a transparent object. The refractive flow of a foreground

pixel is defined as the offset between the foreground pixel

and its refraction correspondence on the background image.

We further introduce a binary foreground mask to define

the object region in the image. The matting equation can

now be rewritten as

C = (1−m)B +mρM(T, P ), (6)

where m ∈ {0, 1} denotes background (m = 0) or fore-

ground (m = 1). The matte can then be estimated by solv-

ing m, ρ and P for each pixel in the input image containing

the transparent object2.

4. Learning Transparent Object Matting

In this section, we present a two-stage deep learning

framework, called TOM-Net, for learning transparent ob-

ject matting (see Fig. 2). The first stage, denoted as

CoarseNet, is a multi-scale encoder-decoder network that

takes a single image as input, and predicts an object mask,

an attenuation mask and a refractive flow field simultane-

ously. CoarseNet is capable of predicting a robust object

mask. However, the estimated attenuation mask and refrac-

tive flow field lack local structural details. To overcome this

problem, we introduce the second stage of TOM-Net, de-

noted as RefineNet, to achieve a sharper attenuation mask

and a more detailed refractive flow field. RefineNet is a

residual network [10] that takes both the input image and

the output of CoarseNet as input. After training, our TOM-

Net can predict an environment matte from a single image

in a fast feed-forward pass.

2For each observed pixel, we have 7 unknowns (3 for B, 2 for P , 1 for

m and 1 for ρ).
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4.1. Encoder­Decoder for Coarse Prediction

The first stage of our TOM-Net (i.e., CoarseNet) is based

on mirror-link CNN introduced in [19]. Mirror-link CNN

was proposed to learn non-lambertian object intrinsic de-

composition. Its output consists of an albedo map, a shading

map and a specular map. It shares a similar output structure

with our transparent object matting task (i.e., three output

branches sharing the same spatial dimensionality). There-

fore, it is reasonable for us to adapt mirror-link CNN for our

CoarseNet.

The mirror-link CNN adapted for our CoarseNet con-

sists of one shared encoder and three distinct decoders. The

encoder contains six down-sampling convolutional blocks,

leading to a down-sampling factor of 64 in the bottleneck

layer. Features in the encoder layers are connected to the

decoder layers having the same spatial dimensions through

skip connections [17]. Cross-links [19] are introduced to

make different decoders share the same input in each layer,

so that decoders can better utilize the correlation between

different predictions.

Learning with multi-scale loss has been proved to be

helpful in dense prediction tasks (e.g., [8, 9]). Since we

formulate the problem of transparent object matting as re-

fractive flow estimation, which is a dense prediction task,

we augment our mirror-link CNN with multi-scale loss sim-

ilar to [9]. We use four different scales in our model, where

the first scale starts from the decoder features with a down-

sampling factor of 8 and the largest scale has the same spa-

tial dimensions as the input.

In contrast to the recent two stage framework for image

matting [23], our TOM-Net has a shared encoder and three

parallel decoders to accommodate different outputs. Also,

we augment our CoarseNet with multi-scale loss and cross-

link. Moreover, TOM-Net is trained from scratch while the

encoder in [23] is initialized with the pre-trained VGG16.

4.2. Loss Function for Coarse Stage

CoarseNet takes a single image as input and predicts the

environment matte as a triple consisting of an object mask,

an attenuation mask and a refractive flow field. The learn-

ing of CoarseNet is supervised by the ground-truth matte

using an object mask segmentation loss Lms, attenuation

regression loss Lar, and refractive flow regression loss Lfr.

Besides, the predicted matte is expected to render an image

as close to the input image as possible when applied to the

ground-truth background. Hence, in addition to the super-

vision of the matte, we also take image reconstruction loss

Lir into account. Note that the ground-truth background is

only used to calculate the reconstruction error during train-

ing but not needed during testing. CoarseNet can therefore

be trained by minimizing

Lc = αc
msLms + αc

arLar + αc
frLfr + αc

irLir, (7)

where αc
ms, α

c
ar, α

c
fr, α

c
ir are weights for the corresponding

loss terms.

Object mask segmentation loss Object mask segmenta-

tion is simply a spatial binary classification problem. The

output of the object mask decoder has a dimension of

2×H×W , where H and W denote the height and width of

the input. We normalize the output with softmax and com-

pute the loss using the binary cross-entropy function

Lms = −
1

HW

∑

ij

(M̃ij log(Pij)+(1−M̃ij) log(1−Pij)),

(8)

where M̃ij ∈ {0, 1} and Pij ∈ [0, 1] represent ground truth

and normalized foreground probability of the pixel at (i, j),
respectively.

Attenuation regression loss The predicted attenuation

mask has a dimension of 1 × H × W . The value of this

mask is in the range of [0, 1], where 0 indicates no light can

pass and 1 indicates the light will not be attenuated. We

adopt a mean square error (MSE) loss

Lar =
1

HW

∑

ij

(Aij − Ãij)
2, (9)

where Aij is the predicted attenuation index and Ãij the

ground truth at (i, j).

Refractive flow regression loss The predicted refractive

flow field has a dimension of 2 × H × W , where we have

one channel for the horizontal displacement and another for

the vertical displacement. We normalize the refractive flow

with tanh activation and multiply it by the width of the

input, such that the output is constrained in the range of

[−W,W ]. We adopt an average end-point error (EPE) loss

Lfr =
1

HW

∑

ij

√

(F x
ij − F̃ x

ij)
2 + (F y

ij − F̃ y
ij)

2, (10)

where (F x, F y) and (F̃ x, F̃ y) denote the predicted flow

and the ground truth, respectively.

Image reconstruction loss We use MSE loss to measure

the dissimilarity between the reconstructed image and the

input image. Denoting the reconstructed image by I and

the ground-truth image (i.e., the input image) by Ĩ , the re-

construction loss is given by

Lir =
1

HW

∑

ij

‖Iij − Ĩij‖
2

2
. (11)

Implementation details In all experiments, we empiri-

cally set αc
ms = 0.1, αc

ar = 1, αc
fr = 0.01, and αc

ir =

1. The loss weights for different scales are 1

2(4−s) , where

s ∈ {1, 2, 3, 4} denotes the scale. CoarseNet contains 8M
parameters and it takes about 2.5 days to train with Adam

optimizer [12] on a single GPU. We first train the CoarseNet

from scratch until convergence and then train the RefineNet.
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4.3. Residual Learning for Matte Refinement

As the attenuation mask and the refractive flow field pre-

dicted by the CoarseNet lack structural details, a refinement

stage is needed to produce a detailed matte. Observing that

residual learning is particularly suitable for tasks whose in-

put and output are largely similar [11, 14], we propose a

residual network, denoted as RefineNet, to refine the matte

predicted by the CoarseNet.

We concatenate the input image and the output of the

CoarseNet to form the input of the RefineNet. As the object

mask predicted by the CoarseNet is already plausible, the

RefineNet only outputs an attenuation mask and a refractive

flow field. The parameters of the CoarseNet are fixed when

training the refinement stage.

Loss for the refinement stage The overall loss for the

refinement stage is

Lr = αr
arLar + αr

frLfr, (12)

where Lar is the refinement attenuation regression loss,

Lfr the refinement flow regression loss, and αr
ar, αr

fr their

weights. The definitions of these two losses are identical

to those defined in the first stage. We found that adding the

image reconstruction loss in the refinement stage did reduce

the image reconstruction error during training, but was not

helpful in reserving sharp edges of the refractive flow field

(e.g., mouth of a glass), which is essential to maintain the

details of an object. Therefore, we remove the image recon-

struction loss here. The tanh activation for refractive flow

is also omitted in this stage to encourage the network to

focus on boundary regions that may have larger prediction

errors.

Implementation details We set αr
ar = 1, αr

fr = 1 for

the refinement. RefineNet contains 1M parameters and it

takes about 2 days to train with Adam optimizer. RefineNet

is randomly initialized during training.

5. Dataset for Learning and Evaluation

As no off-the-shelf dataset for transparent object mat-

ting is available, and it is very tedious and difficult to pro-

duce a large real dataset with ground-truth object masks,

attenuation masks and refractive flow fields, we created a

large-scale synthetic dataset by using POV-Ray [1] to ren-

der images of synthetic transparent objects. Besides, we

also collected a real dataset for evaluation. We will show

that our TOM-Net trained on the synthetic dataset can gen-

eralize well to real world objects, demonstrating its good

transferability.

5.1. Synthetic Dataset

We used a large number of background images and

3D models to render our training samples. We randomly

changed the pose of the models, as well as the viewpoint

and focal length of the camera in the rendering process to

avoid overfitting to a fixed setting.

Backgrounds Images We employed two types of back-

ground images, namely scene images and synthetic pat-

terns. For scene images, we randomly sampled images from

the Microsoft COCO [13] dataset3. The background images

for the training set are sampled from COCO Train2014 and

Test2015, while that for the validation set are from COCO

Val2014, giving rise to 100K scene images in total. For syn-

thetic patterns, we rendered 40K patterns of size 512× 512
using POV-Ray built-in textures.

Transparent Objects We divided common transparent

objects into four categories, namely glass, glass with wa-

ter, lens, and complex shape (see Fig. 4 for examples). We

constructed parametric 3D models for the first three cate-

gories, and generated a large number of models using ran-

dom parameters. For complex shapes, we constructed para-

metric 3D models for basic shapes like sweeping-spheres

and squashed surface of revolution (SOR) parts, and com-

posed a larger number of models using these basic shapes.

We generated 178K 3D models in total, with each model as-

signed a random refractive index λ ∈ [1.3, 1.5]. The distri-

bution of these models in four categories is shown in Tab. 1

(first two rows).

Table 1. Statistics of the introduced datasets.

Type Glass Glass & Water Lens Complex Total

Synthetic Train 52K 26K 20K 80K 178K

Synthetic Val 250 250 200 200 900

Real Test 470 103 61 242 876

Ground-truth Matte Generation We obtained the

ground-truth object mask of a model by rendering it in front

of a black background image and setting its color to white.

Similarly, we obtained the ground-truth attenuation mask

of a model by simply rendering it in front of a white back-

ground image. Finally, we obtained the ground-truth refrac-

tive flow field (see Fig. 4) of a model by rendering it in front

of a sequence of Gray-coded patterns.

Data Augmentation To improve the diversity of the train-

ing data and narrow the gap between real and synthetic data,

extensive data augmentation was carried out on-the-fly. For

an image with a size of 512× 512, we randomly performed

color (brightness, contrast and saturation) augmentation (in

a range of [-0.2, 0.2]), image scaling (in a range of [0.875,

1.05]), noise perturbation (in a range of [-0.05, 0.05]), and

horizontal/vertical flipping. Besides, we also blurred the

object boundary to make the synthetic data visually more

natural. A patch with a size of 448 × 448 was then ran-

domly cropped from an augmented image and used as input

3Other large-scale datasets like ImageNet [4] can also be used.
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Table 2. Ablation study results. F, A, I, and M are short for flow,

attenuation, image reconstruction, and object mask, respectively.

(The first value for EPE is measured on the whole image and the

second measured within the object region. A-MSE and I-MSE are

computed on the whole image.)
ID Model Variants F-EPE A-MSE I-MSE M-IoU

0 Background 6.5 / 41.0 1.58 0.87 0.15
1 CoarseNet - (Lc

fr) 3.9 / 26.5 0.24 0.23 0.98
2 CoarseNet - (Lc

ir) 2.3 / 15.7 0.25 0.22 0.98
3 CoarseNet - (multi-scale) 2.4 / 16.6 0.69 0.25 0.94
4 CoarseNet - (cross-link) 2.5 / 17.2 0.30 0.21 0.97
5 CoarseNet 2.2 / 15.4 0.28 0.18 0.97

6 CoarseNet + RefineNet 2.0 / 13.7 0.25 0.19 0.97

MSE (·10−2)

↓ better

↑ better

to train CoarseNet. To speed up the training and save mem-

ory, a smaller patch with a size of 384 × 384 was used to

train TOM-Net after the training of CoarseNet.

5.2. Real Dataset

To validate the transferability of TOM-Net, we introduce

a real dataset, which was collected using 14 objects4 and 60

background images, resulting in a dataset of 876 images.

The data distribution is summarized in Tab. 1 (last row).

During the data capturing process, the objects were placed

under different poses, with the distances between the cam-

era, object and background uncontrolled. Fig. 5 (second

column) shows some sample images from the real dataset.

Note that we do not have the ground-truth matte for the real

dataset. We instead captured images of the backgrounds

without the transparent objects to facilitate evaluation.

6. Experiments and Results

In this section, we present experimental results and anal-

ysis. Currently, it is non-trivial to have a fair compar-

ison with the previous methods, since none of the them

can compute the matte from a single image of a transpar-

ent object, and there exists no common datasets and mea-

surements for evaluation. We performed ablation study

for TOM-Net, and evaluated our approach on both syn-

thetic and real data. In addition, a user study was con-

ducted to validate the realism of TOM-Net composites. Our

code, model and datasets will be made available online:

https://guanyingc.github.io/TOM-Net.

6.1. Ablation Study for Network Structure

We quantitatively analyzed different components of

TOM-Net using synthetic dataset5. In particular, we veri-

fied the effectiveness of image reconstruction loss (Lc
ir), re-

fractive flow regression loss (Lc
fr), multi-scale loss, cross-

link, and RefineNet, where the first four components were

evaluated by removing each of them from CoarseNet. Each

variant was trained separately. RefineNet was evaluated by

4The objects consist of 7 glasses, 1 lens and 6 complex objects. Glasses

with water are implicitly included.
5Complex shape is excluded in experiments here to speed up training.

Input Coarse Flow Refined Flow Coarse Att. Refined Att.

Figure 3. Visualization of the effectiveness of the refinement stage

on real data. After refinement, the refractive flow and attenuation

mask have more clear structural details (e.g., glass mouth).

adding it to a trained CoarseNet and was trained while fix-

ing the parameters of CoarseNet. Besides, we included a

naive baseline, denoted as Background, by considering a

zero matte case (i.e., whole image as object mask, no atten-

uation, and no refractive flow) where the reconstructed im-

age is the same as the background image. We evaluated end-

point error (EPE) for refractive flow fields, intersection over

union (IoU) for object masks, mean square error (MSE) for

attenuation masks and image reconstruction results, respec-

tively. The results are summarized in Tab. 2. Background

was outperformed by all TOM-Net variants with a large

margin for all the evaluation metrics, which clearly shows

that TOM-Net can successfully learn the matte. Removing

each component from CoarseNet, the overall performance

decreased, although some metrics slightly increased due to

learning trade-offs, demonstrating these four components

are essential for TOM-Net. By introducing RefineNet, the

refractive flow performance was boosted, which verified the

effectiveness of RefineNet (see Fig. 3).

6.2. Results on Synthetic Data

Quantitative results for synthetic validation dataset are

presented in Tab. 3. We compared TOM-Net against Back-

ground and CoarseNet. Here, to accelerate training con-

vergence, we first trained CoarseNet from scratch using our

synthetic dataset excluding the complex shape subset. The

trained CoarseNet was then fine-tuned using the entire train-

ing set including complex shapes, followed by training of

RefineNet on the entire training set with random initializa-

tion. Similar to previous experiments, TOM-Net outper-

formed Background with a large margin, and slightly out-

performed CoarseNet in EPE and MSE, which implies more

local details can be learned by RefinedNet. The errors of

complex shape category are larger than that of others, be-

cause complex shapes contain more sharp regions that will

induce more errors. Although TOM-Net is not expected to

learn highly accurate refractive flow, the average EPE er-
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Table 3. Quantitative results on the synthetic validation set. (The first value for EPE is measured on the whole image and the second

measured within the object region. A-MSE and I-MSE are computed on the whole image.)
Glass Glass with Water Lens Complex Shape Average

F-EPE A-MSE I-MSE M-IoU F-EPE A-MSE I-MSE M-IoU F-EPE A-MSE I-MSE M-IoU F-EPE A-MSE I-MSE M-IoU F-EPE A-MSE I-MSE M-IoU

Background 3.6 / 30.3 1.33 0.48 0.12 6.4 / 53.2 1.54 0.68 0.12 10.3 / 39.2 1.94 1.57 0.24 6.8 / 56.8 2.50 0.85 0.11 6.8 / 44.9 1.83 0.90 0.15

CoarseNet 2.1 / 15.8 0.22 0.14 0.97 3.1 / 23.5 0.31 0.23 0.97 2.0 / 6.7 0.17 0.28 0.99 4.5 / 34.4 0.38 0.33 0.92 2.9 / 20.1 0.27 0.24 0.96

TOM-Net 1.9 / 14.7 0.21 0.14 0.97 2.9 / 21.8 0.30 0.22 0.97 1.9 / 6.6 0.15 0.29 0.99 4.1 / 31.5 0.37 0.32 0.92 2.7 / 18.6 0.26 0.24 0.96

MSE (·10−2)

↓ better

↑ better

Background Input Rec. Image Rec. Error Refractive Flow (GT / Est.) Object Mask (GT / Est.) Attenuation Mask (GT / Est.)

(a) Glass, I-MSE = 0.21 × 10
−2 F-EPE = 2.6 / 15.0 M-IoU = 0.99 A-MSE = 0.16 × 10

−2

(b) Glass with Water, I-MSE = 0.15 × 10
−2 F-EPE = 3.8 / 25.0 M-IoU = 0.97 A-MSE = 0.40 ×10

−2

(c) Lens, I-MSE = 0.079 × 10
−2 F-EPE = 1.5 / 3.7 M-IoU = 1.00 A-MSE = 0.17 × 10

−2

(d) Complex Dog, I-MSE = 0.28 × 10
−2 F-EPE = 5.05 / 40.6 M-IoU = 0.96 A-MSE = 0.16 × 10

−2

Figure 4. Qualitative results on synthetic data. The first to the fourth columns show background, input image, reconstructed image, and

reconstruction error map, respectively. Quantitative results are shown below each example. Dark region in GT flow indicates no valid flow.

(Best viewed in PDF with zoom.)

Table 4. Quantitative results on real data.
Glass G & W Lens Cplx Avg

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Background 22.05 0.894 20.75 0.886 18.60 0.860 16.85 0.816 19.56 0.864

CoarseNet 25.09 0.921 23.53 0.911 21.13 0.895 17.89 0.835 21.91 0.891

TOM-Net 25.06 0.920 23.53 0.911 20.89 0.893 17.88 0.835 21.84 0.890

rors (2.7/18.6)6 are very small compared with the dimen-

sionality of the input image (448 × 448). In this sense,

our predicted flow is capable of producing visually plausi-

ble refractive effect (see Fig. 4). Although the background

images and objects in the validation set never appear in the

training set, TOM-Net can still predict robust matte. The

pleasing results of the complex shapes also demonstrate that

our model can generalize well from basic shapes to complex

shapes.

6.3. Results on Real Data

We evaluated TOM-Net on our collected real dataset,

which consists of 876 images of real objects. Due to the

absence of ground-truth matte, evaluation on the absolute

6The first value is measured on the whole image and the second mea-

sured within the object region.

Table 5. User study results.

Glass G & W Lens Cplx All

P C N P C N P C N P C N P C N

Photographs 522 275 31 163 97 16 74 48 16 91 35 12 850 455 75

Composites 531 266 31 145 113 18 73 52 13 78 51 9 827 482 71

error with ground truth is not possible. Instead, we eval-

uated PSNR and SSIM metrics [21] between each pair of

photograph and reconstructed image. The results are shown

in Tab. 4. The average PSNR and SSIM are above 21.0
and 0.89. The values are a bit lower for complex shapes,

due to the opaque base of complex objects as well as the

sharp regions of the objects that might induce large errors.

After training, TOM-Net generalized well to common real

transparent objects (see Fig. 5). It is worth to note that dur-

ing training, each sample contains only one object, while

TOM-Net can predict reliable matte for images containing

multiple objects, which indicates the transferability and ro-

bustness of TOM-Net.

User Study A user study was carried out to validate the

realism of TOM-Net composites. 69 subjects participated in

our user study. At the beginning, we showed each partici-
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Figure 5. Qualitative results on real data. The PSNR and SSIM between input photographs and reconstructed images are shown right after

the error maps. The last column shows the composites on novel backgrounds given the estimated matte. (Best viewed in PDF with zoom.)

pant photographs of the transparent objects that will be seen

during the user study. The objects consisted of 3 different

glasses, 1 glass with water, 1 lens, and 1 complex shape. 40

samples, including 20 photographs7 and the corresponding

20 TOM-Net composites, were then randomly presented to

each subject. When showing each sample, we also showed

the corresponding background image to the subject for ref-

erence. We provided 3 options for each sample: (P) pho-

tograph, (C) composite, (N) not distinguishable. Tab. 5

shows the statistics of the user study. The 69 participants

produced 1380 votes for the 20 real photographs, and 1380

votes for the 20 composites, respectively. The P:C:N ratios

are 850 : 455 : 75 and 827 : 482 : 71 for photographs and

composites respectively. The per-category ratio also fol-

lows a similar trend, indicating close chance of photographs

and composites to be considered real, which further demon-

strates TOM-Net can produce realistic matte.

7glass ×12, glass & water ×4, lens ×2, and complex shape ×2.

7. Conclusion and Discussion

We have introduced a simple and efficient model for

transparent object matting, and proposed a CNN architec-

ture, called TOM-Net, that takes a single image as input and

predicts environment matte as an object mask, an attenua-

tion mask, and a refractive flow field in a fast feed-forward

pass. Besides, we created a large-scale synthetic dataset and

a real dataset as a benchmark for learning transparent object

matting. Promising results have been achieved on both syn-

thetic and real data, which clearly demonstrated the feasibil-

ity and effectiveness of the proposed approach. Since our

model assumes objects to be colorless and specular trans-

parent, TOM-Net cannot be applied to colored transpar-

ent objects, translucent objects and transparent objects with

multiple mapping (i.e., refraction and reflection happen si-

multaneously at a surface point). We consider exploring

better models and architectures to handle these scenarios as

our future work.
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