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Abstract

In this paper, we address video-based person re-

identification with competitive snippet-similarity aggrega-

tion and co-attentive snippet embedding. Our approach

divides long person sequences into multiple short video

snippets and aggregates the top-ranked snippet similari-

ties for sequence-similarity estimation. With this strategy,

the intra-person visual variation of each sample could be

minimized for similarity estimation, while the diverse ap-

pearance and temporal information are maintained. The

snippet similarities are estimated by a deep neural network

with a novel temporal co-attention for snippet embedding.

The attention weights are obtained based on a query fea-

ture, which is learned from the whole probe snippet by an

LSTM network, making the resulting embeddings less af-

fected by noisy frames. The gallery snippet shares the same

query feature with the probe snippet. Thus the embedding of

gallery snippet can present more relevant features to com-

pare with the probe snippet, yielding more accurate snippet

similarity. Extensive ablation studies verify the effective-

ness of competitive snippet-similarity aggregation as well

as the temporal co-attentive embedding. Our method signif-

icantly outperforms the current state-of-the-art approaches

on multiple datasets.

1. Introduction

Person re-identification (Re-ID) is a useful technology

for intelligent video surveillance systems. Previous ap-

proaches mostly focus on image-based setting, where the

trajectories of one person captured by different cameras

are associated by comparing his/her still images. With the

emergence of video-based benchmarks [27, 8, 34] and the

growth of computational resource, researchers have started

to utilize video data for the task. Video data contain much

richer information about pedestrian appearance and also

†H. Li and X. Wang are the co-corresponding authors.
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Figure 1: Illustration of the overall framework of our proposed

approach. The long person sequences are divided into short snip-

pets. Snippet similarities are robustly estimated by a deep neural

network with a co-attentive mechanism. The sequence similarity

competitively aggregates snippet-similarity scores.

convey motion clues that implicitly reflect persons’ body

layouts. Both are beneficial and should be exploited for

more robust re-identification.

For efficient Re-ID over a large-scale dataset, it requires

learning a non-linear function to convert images/videos

into a lower dimensional feature space. For video data, a

straightforward solution is to embed the whole sequence

into a single vector. However, as a person in one se-

quence may show great visual variation, a single vector

cannot represent the diverse appearance of the person and

will inevitably lose important details for identification. To

solve this problem, we divide the sequence into multiple

video snippets, embed each snippet separately, and perform

snippet-similarity estimation and aggregation as in Fig. 1.

To obtain the similarity between two long sequences,

the proposed competitive snippet-similarity aggregation
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scheme first breaks a long sequence into short snippets,

then aggregates the top-ranked snippet-similarity scores for

sequence-similarity estimation. With this scheme, the intra-

sample visual variation could be minimized while the di-

verse appearance and temporal information of the sequence

are maintained. The competitive aggregation scheme im-

plicitly associates the snippets in one sequence with their

most relevant snippets in the other one, yielding more accu-

rate inter-sequence similarity.

The snippet similarity is estimated by a deep neural net-

work with a co-attentive mechanism for snippet embedding.

We employ multiple attention masks for different feature di-

mensions to softly select the features from different frames.

The attention weights are obtained based on a query fea-

ture, which is learned from the whole probe snippet by an

LSTM network. As it considers the overall snippet informa-

tion, the resulting snippet embeddings are less affected by

noisy frames caused by occlusion or low-quality detection.

To better search the target person, the gallery snippets adopt

the same query feature with the probe snippet, making the

gallery snippet embeddings present more relevant features

for snippet-similarity estimation.

Our main contributions are summarized as follows. (1)

we propose a competitive similarity aggregation scheme

with short snippet-based representations. It reduces the

intra-person appearance variation for snippet-similarity

estimation and aggregates diverse and reliable snippet-

similarities to estimate the similarity between two se-

quences. (2) We propose a novel temporal co-attentive

embedding for snippet-similarity estimation. It utilized a

global query feature for the two compared images, which

not only alleviates the influence of noisy frames but also

guides more relevant feature embeddings for similarity es-

timation. (3) Our ablation studies validate the effective-

ness of the proposed snippet competitive similarity aggrega-

tion and temporal co-attentive embedding. The final results

surpass the previously best-published ones on three public

benchmarks.

2. Related Work

Person re-identification has made significant strides. The

researchers in recent years consider more realistic scenarios

where the data size is much larger [35, 34], more complex

[36, 21], and even in combination with other data modali-

ties such as attributes or text descriptors [37, 12]. In par-

ticular, the video-based Re-ID setting is closer to practical

scenarios as videos are the first-hand materials captured by

surveillance cameras. They provide abundant appearance

and motion information about persons and are promising

for more accurate person re-identification [34, 27].

Early methods on video-based person Re-ID focus on

handcrafting video representations. Wang et al. [27] com-

bined HOG3D features and optical flow energy profile to

obtain a spatiotemporal feature representation. Liu et al.

[17] further incorporated spatial pictorial structures for spa-

tially aligning person videos with different poses and view-

points. Unsupervised embeddings like Fisher Vector [5] and

Bag-of-Words [35] were adopted for encoding the low-level

color and motion features. Metric learning algorithms were

also developed for video-based Re-ID. Zhu et al. [40] and

You et al. [31] imposed set-based constraints to better dis-

tinguish intra-person variations from the inter-person ones.

Since the breakthrough of deep Convolutional Neural

Network (CNN) in image classification [10], researchers

[13, 1, 22, 24, 16, 13, 11, 2, 33, 39, 32] have exploited

the effectiveness of deep neural networks to learn more dis-

criminative image representations from large-scale datasets.

The powerful feature learning ability of CNN further facil-

itates the utilization of video data. McLaughlin et al. [19]

built a CNN to extract features from each frame and then

adopted a Recurrent Neural Network (RNN) to pass mes-

sages between different frames. Liu et al. [15] focused

on learning motion context features from adjacent frames.

Both methods adopted average/max pooling over the per-

frame representations and outputted a single feature vec-

tor for the whole video. To better distill relevant informa-

tion from the videos, very recent works introduced attention

mechanisms to video-based person re-identification. Liu et

al. [18] estimated a quality score for each frame to weaken

the influence of the noisy samples. Zhou et al. [39] com-

bined per-frame visual features and the forward propagated

RNN hidden variables to generate the attention weights. Xu

et al. [30] considered mutual influences between sequence

pairs. The temporal attention weights for one sequence was

guided by the features of the other sequence via a learned

information sharing matrix.

Our proposed approach breaks a long person sequence

into multiple short snippets, which is inspired by the success

of video segments in action recognition [26, 25]. The se-

quence similarity is competitively aggregated over the top-

ranked snippet similarities, achieving much better results

than the methods encoding the whole video into a single

feature vector [19, 15, 39, 30]. To measure the similarity be-

tween two snippets, our approach proposes to utilize a deep

neural network with a temporal co-attentive mechanism for

selecting representative frames and features from both snip-

pets. Notably, our proposed attention is based upon “scaled

dot-product attention” [23] in machine translation, which

employs a query and a set of key-value pairs to generate the

outputs. We have made two distinctive modifications over

the previous one for video snippet embedding. (i) The query

feature is learned from the whole probe snippet by an LSTM

network thus is aware of the overall appearance and motion

of the snippet. (ii) Multiple attention masks are generated,

each of which softly accumulates the one-dimensional value

features from different frames.
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Figure 2: Illustration of the proposed attention mechanism for snippet embedding. Both the probe snippet and gallery snippet adopt the

same attention mechanism, but the query feature is from the compared probe snippet.

3. Our Approach

Video-based person Re-ID is essentially a ranking prob-

lem. Given a probe person sequence, the Re-ID task re-

quires retrieving the same person’s sequences from a gallery

set and ranking them based on their similarities w.r.t. the

probe sequence. To estimate the inter-sequence similar-

ities, we break the long sequences into short snippets to

first estimate the inter-snippet similarities, , then competi-

tively aggregate the top-ranked snippet similarities (Section

3.1). The snippet similarities are estimated by a deep net-

work with a co-attentive embedding strategy, which allevi-

ates the influence of noisy frames and makes the embedding

of a gallery snippet present more relevant information to

compare with the probe snippet (Section 3.2). The overall

framework is illustrated in Fig. 1.

3.1. Competitive Snippetsimilarity Aggregation

Let p denote a probe sequence and g denote a gallery se-

quence, we aim to estimate the similarity between p and

g. For this purpose, we generate a set of snippets from

each sequence, where each snippet has a fixed length L and

is sampled along the temporal dimension with a stride D.

Suppose the probe sequence p has F p frames, the snippets

sampled from p form the set Sp = {pn}
Np

n=1, where pn
is the nth snippet and Np is the total number of snippets.

When the frame number F p is greater than L, we will have

Np = ⌊Fp
−1−L
D

⌋ + 1 snippets by discarding the several

frames in the end. When F p is fewer than L, we will gener-

ate only one snippet by utilizing all the frames and replicate

the last frame until the snippet length achieves L.

The similarity between a probe sequence p and a gallery

sequence g is calculated based on the similarities between

the snippets from the two sequences. Denoting the similar-

ity between snippets pn and gk by m(pn, gk), where pn and

gk are two arbitrary snippets in p and g. We can totally ob-

tain Np×Ng snippet-similarity scores between all possible

snippet pairs in the snippet sets of the two sequences:

M(p, g) = {m(pn, gk)|pn ∈ Sp, gk ∈ Sg}. (1)

However, even for the sequences about one person, there

might be many visual variations due to misalignments, oc-

clusions, and different viewing angles. For two irrelevant

snippets, such as one describing the front-view of a per-

son and the other describing the back-view, the estimated

similarity is less convincing. Instead of explicitly align-

ing the sequences in the temporal dimension [17], we pro-

pose a competitive strategy to solve the problem implic-

itly. Straightforwardly, we select the top-ranked snippet-

similarity scores, i.e., the highest t% values in M(p, g), to

form the a more reliable similarity set M̂(p, g). Such se-

lection is based upon the assumption that a higher similar-

ity score indicates the compared two snippets being more

relevant. The similarity between sequences p and g is then

calculated as the average value of all scores in M̂(p, g), i.e.,

c(p, g) =
1

|M̂(p, g)|

∑

m∈M̂(p,g)

m. (2)

3.2. Coattentive Snippet Embedding

For estimating similarities for snippet pairs, we propose

a novel deep neural network with a temporal co-attentive

mechanism, which weights frame features according to
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their importance and embeds a video snippet into a single

vector. The similarity between the two snippets could then

be estimated with the embedding vectors.

Given snippet s with L frames, we employ a visual CNN

to extract the features from every frame. The feature vector

of its lth frame is denoted by ψl(s), and the features of all

the L frames are represented by the set Ψ(s) = {ψl(s)}
L
l=1.

3.2.1 Attention with Query and Key-value Features

For a video snippet s, Ψ(s) contains redundant informa-

tion as there are only minor visual changes between neigh-

boring frames. At the same time, the features of certain

frames might be the outliers because of sudden occlusion

or pedestrian mis-detection. To distill useful information

from Ψ(s), we propose a novel attention mechanism to

adaptively select the discriminative information from the

sequentially varying features. Inspired by the “scaled dot-

product attention” in [23], we produces a query feature for

the whole snippet, at the same time, generate a key-value

feature pairs for each frame in the snippet. The snippet em-

bedding is a weighted summation of all frames’ value fea-

tures, where the weights are determined based on the com-

patibilities between the query feature and the key feature

generated from that frame. Fig. 2a illustrates the flowchart

of attentive embedding.

We build a value projection and a key projection for arbi-

trary frame l, which map ψl(s) to the key feature and value

feature via linear projections, whose parameters are shared

by all the frames. We compute these projections for ψl(s),
feed the results to the corresponding batch normalization

(BN) layer for normalization, and obtain the value feature

vl(s) and the key feature kl(s). The value feature for the

lth frame vl(s) is a d′-dimensional vector, the key feature

kl(s) and the query feature q are d′e-dimensional vectors

but are further reshaped to d′×e matrix for representation

and computation convenience. Every e elements in kl(s)
and q are used to generate the weight for one element in

vl(s). The key features and value features of snippet s form

the set V(s) = {vl(s)}
L
l=1 and set K(s) = {kl(s)}

L
l=1.

Different from other temporal attention mechanisms [39,

18] that only generate a single weight for the features in a

frame, we aim to assign different weights to different el-

ements in vl(s). In this way, even if some elements in

vl(s) are contaminated, other elements can still be utilized

for similarity estimation. With kl(s) and q, we generate d′

temporal attention masks for one snippet. Specifically, let

kl,i(s) ∈ R
e and qi ∈ R

e be the ith rows of kl(s) and q,

the attention weighting value for vl,i(s) is computed based

on dot-product similarity between qi and kl,i(s) with a soft-

max non-linearization along the temporal dimension:

al,i(s,qi) =
exp(q⊤

i kl,i(s))∑L

l=1 exp(q
⊤
i kl,i(s))

. (3)

Based on Eq. (3), we obtain the attention weights al(s,q) ∈
R

d′

for the lth frame. The attentions weights for all the

frames in snippet s form the set A(s,q) = {al(s,q)}
L
l=1.

Fig. 2b illustrates the calculation.

3.2.2 Snippet Similarity with Co-attentive Embedding

To consistently embed a snippet pair, we utilize the “probe

snippet” and the “gallery snippet” to indicate snippets from

the probe sequences and the gallery sequences, respectively.

The two kinds of snippets will play different roles in simi-

larity estimation. Let pn and gk be an arbitrary probe snip-

pet and a related gallery snippet, we expect the embedding

of gallery snippet gk can present more relevant information

to the embedding of the probe snippet, in order to better

measure their similarity.

We propose a temporal co-attention scheme where the

value features in the probe snippet and gallery snippet are

attended by the same query feature. To generate the query

feature, the probe snippet pn is processed by an LSTM,

which consists of the following updating procedure:

hl+1(pn) = LSTM
(
ψl(pn),hl(pn)

)
, (4)

where the LSTM unit takes the single-frame visual features

ψl(pn) and the hidden states hl(pn) at current step as inputs

and outputs hidden states of the next step. The hidden states

at the last time step are summarization of overall appearance

and motion information, which are used as the query feature

for our attention model (Sec. 3.2.2):

q = hL(pn). (5)

To embed the probe snippet pn, we need to obtain the atten-

tion weights A(pn,q) by the compatibilities between the

query feature q and the key features in set K(pn). The

feature embedding of pn is the summation of its per-frame

value features vl(pn) weighted by the attention (Fig. 2c):

φ(pn) =

L∑

l=1

al(pn,q) ◦ vl(pn), (6)

where ◦ indicates the Hadamard product. To embed the

gallery snippet gk, the attention weights A(gk,q) are cal-

culated by the key features K(gk) and the query feature q.

As q is generated from the probe snippet pn, thus the em-

bedding of gk is dependent on pn:

φ(gk|pn) =

L∑

l=1

al(gk,q) ◦ vl(gk). (7)

The probe and the gallery snippets use the same query vec-

tor q to attend commonly interested information follow-

ing Eqs. (6) and (7), making the similarity estimation be-

tween the two snippets more dependent on the probe per-

son’s characteristics.
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Figure 3: The network structure for pairwise snippet-similarity estimation. The probe snippet and gallery snippet have different pathways

indicated by green and blue, respectively.

To estimate the snippet similarity m(pn, gk) between pn
and gk, we compute the difference vector of their feature

embeddings φ(pn) and φ(gk|pn), then perform element-

wise square operation (·)2 over the difference vector. The

resulting vector is transformed to a singular value by a fully-

connected layer f(·), and the final similarity score is nor-

malized to the range of (0, 1) by a sigmoid function σ(·):

m(pn, gk)=σ(f((φ(pn)−φ(gk|pn))
2)),

where m(pn, gk) indicates the probability of pn and gk be-

longing to a same person.

3.2.3 The Network Structure

The structure of our snippet-similarity estimation network

is illustrated in Fig. 3, which consists of a CNN module for

learning per-frame visual feature, a co-attention module for

snippet pair embedding and a similarity estimation module

to output the snippet similarity. The network is trained in an

end-to-end fashion.

Per-frame feature learning. We employ a CNN for obtain-

ing visual features Ψ(s). The inputs to the network are the

channel-wise concatenation of single-frame RGB and opti-

cal flow maps calculated by Epicflow [20], which are with

the size of 128×64. The optical flow maps provide mo-

tion clues of the person’s part or boundary location, thus is

beneficial for identifying the person regions. We adopt the

ImageNet [4] pretrained ResNet-50 [6], whose first conv-

layer is modified to have 5 channels. A 2048-dimensional

feature vector is extracted for each image as the output of

the global average pooling layer after conv5 x [6].

Co-attentive embedding. Both value and key features are

generated by a fully connected layer followed by a BN-layer

[9] with the CNN features as their inputs. The query fea-

ture is based on the CNN features of the probe snippet by

applying LSTM for summarization. The dimensionality of

the value feature vl(s), the key feature kl(s) and the query

feature q are 128, 128× 4 and 128× 4, respectively.

Snippet-similarity estimation. The module takes the

probe snippet embedding φ(pn) and gallery snippet em-

bedding φ(gk|pn) as inputs. It then computes the element-

wise square of the difference vector, projects it by a fully-

connected layer, and finally outputs the probability of the

two snippets being the same person.

3.2.4 Training Schemes

Loss functions. As m(pn, gk) ∈ (0, 1), we can directly

adopt the binary cross entropy loss to supervise the learn-

ing of snippet-similarity estimation. Define m∗(pn, gk) =
m(pn, gk) if sequences p and g belong to the same person,

otherwise m∗(pn, gk) = 1−m(pn, gk), the loss function

can be given as:

Lveri = −
1

Nveri

∑

(pn,gk)

log
(
m∗(pn, gk)

)
, (8)

where Nveri is the number of sampled image pairs. Besides,

we build a separated branch by taking the per-frame CNN

features as input, which predicts person identities with su-

pervision of the OIM (Online Instance Matching) loss [29],

Lid = −
1

N

N∑

n=1

I∑

i=1

yi,n log

(
exp(w⊤

i xn)∑I

j=1 exp(w
⊤
j xn)

)
, (9)

where xn indicates the CNN feature of nth image. The

training set has N images belonging to I persons. If the

nth image belongs to the ith person, yi,n = 1, otherwise

yi,n = 0. wi are the coefficients associated with the fea-

ture embedding of the ith person, which is online updated

with the CNN feature of the ith person. They are obtained

by using an online updated buffer and measuring similari-

ties between the current person and all other persons in the

feature buffer with inner product.
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Network training. For network parameter training, we

adopt stochastic gradient descent (SGD) with an initial

learning rate of 10−3, which is further decayed to 10−4 after

the 20th epochs. To provide a reasonable number of positive

and negative snippet pairs in each training mini-batch, we

organize the data in the following way: the training videos

are first divided into L-frame video snippets. Each batch

contains the snippets from 32 random persons and each

person has two randomly sampled snippets from different

videos, where one snippet serves as the probe snippet and

the other serves as the gallery snippet. There are 32 positive

pairs and we randomly form 32× 3 negative pairs with the

64 snippets, so the positive-to-negative rate is 1:3.

4. Experiments

We evaluate our proposed approach on three public

datasets, iLIDS-VID [27], PRID-2011 [8] and MARS [34].

Ablation studies are conducted to investigate the effective-

ness of the snippet-based representation, the competitive

similarity aggregation and co-attentive snippet embedding

from various aspects. The final performance of our ap-

proach outperforms those by state-of-the-art approaches.

4.1. Experimental Setup

Datasets. The iLIDS-VID dataset consists of 600 video

sequences of 300 persons. Each sequence has a variable

length ranging from 23 to 192 frames. This dataset is chal-

lenging because of high clothing similarities between differ-

ent persons and the existence of occlusion. The PRID2011

dataset contains 749 persons, captured by two cameras, with

sequence lengths ranging from 5 to 675 frames. The MARS

dataset is a newly released dataset consisting of 1,261

pedestrians captured by at least 2 cameras. The bounding

boxes are generated by classic detection and tracking algo-

rithms, yielding 20,715 person sequences. Among them,

3,248 sequences are of quite poor quality due to the failure

of detection or tracking, significantly increasing the diffi-

culty of person Re-ID.

Experimental protocol and evaluation metrics. We fol-

low the standard experimental protocols for testing on the

datasets. For iLIDS-VID, the 600 video sequences of 300

persons are randomly split into 50% of persons for training

and 50% of persons for testing. For PRID2011, we follow

the experiment setup in previous methods [19, 27, 30, 39]

and only use 400 video sequences of the first 200 persons,

who appear in both cameras. The experiments on these two

datasets are repeated 10 times with different test/train splits,

and the results are averaged to ensure stable evaluation. For

MARS, the predefined 8,298 sequences of 625 persons are

used for training, while the 12,180 sequences of 636 per-

sons are used for testing, including the 3,248 low quality

sequences in the gallery set.

We use Cumulated Matching Characteristics (CMC)

curve and mean average precision (mAP) to evaluate the

performance for all the datasets. For ease of comparison,

we only report the cumulated re-identification accuracy at

selected ranks.

4.2. Analysis of Snippet Representation and Simi
larity Aggregation

We analyze the using of the snippet representation and

also competitive similarity aggregation. Our standard ver-

sion sets the snippet length L = 8, the stride D = 4, and

the score selection rate t% = 20%.

Multiple snippets versus multi-shot images. One typi-

cal way to perform video-based Re-ID is to treat the se-

quence as a set of images and perform multi-shot image

matching [18, 40, 31]. For a fair comparison, we design

two multi-shot baselines reduced from our proposed frame-

work. One handles the sequence in the form of individual

frames (Table 1a), and the other further integrates the op-

tical flow maps with RGB channels (Table 1b). Both of

them learn to embed the frames rather than the snippets.

Among the two baselines, incorporating optical flow can

boost the top-1 accuracies by 2.9%, 3.6% and 4.3% on the

three datasets, indicating that optical flow is valuable infor-

mation for re-identification. Adopting the snippet represen-

tation (Table 1f) further improves the multi-shot baseline

with optical flow by 18.7%, 6.7% and 6.4% in term of top-1

accuracy on iLIDS-VID, PRID2011 and MARS, showing

that the snippet representation is the major factor that im-

proves the multi-shot approaches.

Multiple snippets versus the complete sequence. We also

design a variant of our framework that embeds the complete

sequence (Table 1c) into a single feature vector. When test-

ing with the complete sequence, we observe that our model

trained with multiple snippets performs much better than

the model trained with the entire sequences. This is because

a person’s video sequence might show much visual varia-

tions and cannot be effectively encoded by a single feature

vector. The performance gap between this variant (Table 1

c) and our proposed approach (Table 1f) confirms our as-

sumption.

Multiple snippets versus one snippet. To demonstrate the

necessity of using multiple snippets for sequence-similarity

estimation, we evaluate the single snippet-pair similarity.

In testing, we utilize the same trained model as our stan-

dard one, but randomly sample one snippet to represent a

sequence without the score aggregation procedure. The re-

sults in Table 1d significantly drop by 16.2%, 8.4% and

4.2% on top-1 accuracies compared with our standard ver-

sion (Table 1f) for iLIDS-VID, PRID2011 and MARS, re-

spectively.

The influence of the snippet length L . To investigate how
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Tracklet Optical Network modules iLIDS-VID PRID2011 Mars

representation flow CNN CE SSE top-1 top-5 mAP top-1 top-5 mAP top-1 top-5 mAP

a. multi-shot images ✗ ✓ ✗ ✓ 63.8 88.1 68.9 82.7 94.2 85.3 75.6 90.2 63.7

b. multi-shot images ✓ ✓ ✗ ✓ 66.7 89.8 71.3 86.3 96.2 88.5 79.9 91.6 66.6

c. complete sequence ✓ ✓ ✓ ✓ 74.4 92.5 78.4 86.0 97.8 88.7 82.4 92.9 67.5

d. one snippet (L=8) ✓ ✓ ✓ ✓ 69.2 90.9 73.8 84.6 96.6 87.2 82.1 93.4 71.1

e. multiple snippets (L=8) ✗ ✓ ✓ ✓ 79.8 91.8 82.6 88.6 99.1 90.9 81.2 92.1 69.4

f. multiple snippets (L=8) ✓ ✓ ✓ ✓ 85.4 96.7 87.8 93.0 99.3 94.5 86.3 94.7 76.1

Table 1: Comparison of different sequence representations with our proposed approach, where CNN, CE, SSE represent the CNN module

for per-frame feature learning, temporal co-attentive embedding module and snippet-similarity estimation module, respectively. Top-1,-5

accuracies(%) and mAP (%) are reported.
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Figure 4: Parameter analysis for snippet length L and score selection rate t%. (a)-(b) The top-1 accuracies and mAP on iLIDS-VID and

PRID2011 with varying L. (c)-(d) The top-1 accuracies and mAP on iLIDS-VID and PRID2011 with varying t%.

the snippet length influences the final performance, we con-

duct a series of experiments using snippets with different

lengths for testing. In these experiments, when a sequence

is shorter than the considered length, we use the whole se-

quence instead. Figs 4a and 4b show the top-1 accuracies

and mAP on iLIDS-VID and PRID2011. It can be observed

that the trained model is robust to the snippet length: all

the top-1 accuracies are above 80% and the mAP are above

84%. We also find the results gradually decrease as the snip-

pets become longer.

The influence of the score selection rate t%. The com-

petitive similarity aggregation strategy is expected to alle-

viate the effects of comparison between irrelevant snippets.

However, too small t% might make the overall similarity

estimation unstable. To investigate how t% influences the

accuracy, we employ different score selection rates for test-

ing. The results in Figs. 4c and 4d validate our assump-

tion, where both too large or too small score selection rates

lead to slightly worse performance, and the best results are

achieved when t% = 20%.

4.3. Analysis of Coattentive Snippet Embedding

We investigate the effectiveness of the proposed co-

attentive embedding by comparing it with various temporal

embedding strategies over the value features V(s).

Comparison of pooling strategies. Average/max pooling

methods are the most straightforward ways to summarize

the features from different frames. Based on snippet repre-

sentations, these methods can yield reasonably well results

as shown in Table 3a and 3b. However, they are less re-

sistant to the contaminated frames in the snippet compared

with the proposed co-attentive embedding (Table 3g).

Comparison with LSTM. LSTM is frequently adopted to

encode a data sequence into a feature vector. We construct

two variants based on LSTM: one encodes a snippet with

its last hidden states (Table 3c), and the other utilizes the

average vector of all the hidden states (Table 3d). In our

evaluation, the effects of LSTM feature embeddings vary

with different datasets. They are less effective than other

temporal embeddings methods we studied here.

Comparison with different attention mechanisms. We

also compare the proposed co-attentive embedding with

two different attention mechanisms. (1) The first method

is the self-attentive attention reduced from the proposed

co-attention, where each snippet is encoded into a vector

guided by the query feature learned from the snippet itself.

(2) The second method was proposed in [39] for video per-

son Re-ID. It utilizes the temporal varying LSTM hidden

states to attend feature maps of the current frame in the se-

quence, which differs from the proposed attention mech-

anism of adopting the last hidden state as the only query

feature to summarize both snippets. We adapt the attention

mechanism in [39] to video snippets in our framework. Re-

sults in Table 3e and 3f suggest that our way of learning a

global query feature vector is more effective than the tem-

poral varying one for selecting representative features from

different frames. The results in Table 3f and 3g confirm that

the proposed co-attention mechanism is consistently better

than the self-attentive version of our approach.
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Methods
Deep iLIDS-VID PRID2011

model top-1 top-5 top-10 top-20 top-1 top-5 top-10 top-20

Wang et al. [28] ✗ 39.5 61.1 71.7 81.0 40.0 71.7 84.5 92.2

Cho et al. [3] ✗ 30.3 56.3 70.3 82.7 45.0 72.0 85.0 92.5

Mclaughlin et al. [19] ✓ 58.0 84.0 91.0 96.0 70.0 90.0 95.0 97.0

You et al. [31] ✗ 56.3 87.6 95.6 98.3 56.7 80.0 87.6 93.6

Zheng et al. [34] ✓ 53.0 81.4 - - 95.1 77.3 93.5 - - 99.3

Zhou et al. [39] ✓ 55.2 86.5 - - 97.0 79.4 94.4 - - 99.3

Xu et al. [30] ✓ 62.0 86.0 94.0 98.0 77.0 95.0 99.0 99.0

Liu et.al. [18] ✓ 68.0 86.8 95.4 97.4 90.3 98.2 99.3 100.0

Proposed approach ✓ 85.4 96.7 98.8 99.5 93.0 99.3 100.0 100.0

Table 2: Results by state-of-the-art methods on the iLIDS-VID and PRID2011 datasets. Top-1, -5, -10, -20 accuracies (%) are reported.

Methods
iLIDS-VID PRID2011 MARS

top-1 mAP top-1 mAP top-1 mAP

a. ave-pool 79.8 82.6 87.8 90.2 83.7 75.9

b. max-pool 81.0 84.3 89.5 91.3 83.6 74.9

c. LSTM-last 78.0 82.0 83.3 86.2 84.4 73.9

d. LSTM-ave 72.0 76.6 87.5 89.8 82.6 71.9

e. att. in [39] 80.2 83.4 89.3 91.4 83.5 74.8

f. self-att. 84.7 87.4 89.6 91.6 84.8 75.5

g. co-att. 85.4 87.8 93.0 94.5 86.3 76.1

Table 3: Comparison of different snippet embedding methods. Top-

1 accuracies (%) and mAP (%) are reported.

Methods
Deep MARS

model top-1 top-5 top-20 mAP

Liao et al. [14] ✗ 30.7 46.6 60.9 16.4

Li et al.[11] ✓ 71.8 86.6 93.0 56.1

Zhou et al. [39] ✓ 70.6 90.0 97.6 50.7

Liu et al. [18] ✓ 73.7 84.9 91.6 51.7

Zhong et al.[38] ✓ 73.9 - - - - 68.5

Hermans et al. [7] ✓ 79.8 91.4 - - 67.7

Proposed approach ✓ 86.3 94.7 98.2 76.1

Table 4: Results by state-of-the-art methods on the MARS dataset.

Top-1, -5, -20 accuracies (%) and mAP (%) are reported.

4.4. Comparison with Stateoftheart Approaches

We compare our approach with state-of-the-art ap-

proaches. The results are not refined by any post-processing

techniques such as re-ranking [38] or multi-query [34].

Results on iLIDS-VID [27] and PRID2011 [8]. In Ta-

ble 2, we compare our method with previous approaches

that adopt various ways for video sequence embedding.

Some of them adopt handcrafted features like color his-

togram [31, 3], HOG3D [31, 28]. Some others are based

on deep learning frameworks, usually utilizing LSTM [19],

average/max pooling [34] or temporal attention [39, 18] for

feature summarization. Our approach significantly outper-

forms the others. The main reason for the improvements is

that our method explicitly represents the sequences in the

form of video snippets for both training and testing, while

others either embed the whole sequence into a single vec-

tor [19, 31, 18, 39] or simply utilize individual images [3].

The proposed co-attention further makes the snippet embed-

dings more robust to outliers and more relevant to the probe

snippet for similarity estimation.

Results on MARS [34]. MARS is currently the largest

video person Re-ID dataset. Compared with iLIDS-VID,

it is 4 times larger in the number of identities and 30 times

larger in total sequences. For ease of training and testing,

we randomly sample snippets from the sequences to keep

the snippet number no more than 20 for each sequence. The

results by our proposed method and state-of-the-art meth-

ods are shown in Table 4. The proposed approach signif-

icantly outperforms state-of-the-arts in terms of top-1, -5,

-20 accuracies and mAP.

5. Conclusion

We proposed competitive similarity aggregation and co-

attentive snippet embedding for the video-based person re-

identification. Both strategies are based on video snip-

pet representations, which reduce the intra-person varia-

tion in each sample and thus facilitate the similarity learn-

ing. The co-attentive snippet embedding alleviates the in-

fluences of noisy frames and enforces the compared snippet

pairs weighting more on related information for snippet-

similarity estimation. The competitive aggregation fur-

ther employs reliable snippet similarities for final sequence-

similarity estimation. We evaluate the proposed method on

three datasets and perform a series of ablation studies to

verify the effectiveness of each component of our approach.

The final results are significantly better than those of the

current state-of-the-art approaches.

Acknowledgement. This work is supported by SenseTime

Group Limited, the General Research Fund sponsored

by the Research Grants Council of Hong Kong (Nos.

CUHK14213616, CUHK14206114, CUHK14205615,

CUHK14203015, CUHK14239816, CUHK419412,

CUHK14207814, CUHK14208417, CUHK14202217), the

Hong Kong Innovation and Technology Support Program

(No.ITS/121/15FX), and China Postdoctoral Science

Foundation (Nos. 2017M610641, 2014M552339).

1176



References

[1] E. Ahmed, M. Jones, and T. K. Marks. An improved deep

learning architecture for person re-identification. In CVPR,

2015. 2

[2] W. Chen, X. Chen, J. Zhang, and K. Huang. Beyond loss:

A deep quadruplet network for person re-identification. In

CVPR, 2017. 2

[3] Y.-J. Cho and K.-J. Yoon. Improving person re-identification

via pose-aware multi-shot matching. In CVPR, 2016. 8

[4] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In 2009 IEEE Conference on Computer Vision and Pattern

Recognition, pages 248–255, June 2009. 5

[5] M. Gou, X. Zhang, A. Rates-Borras, S. Asghari-Esfeden,

M. Sznaier, and O. Camps. Person re-identification

in appearance impaired scenarios. arXiv preprint

arXiv:1604.00367, 2016. 2

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 5

[7] A. Hermans, L. Beyer, and B. Leibe. In defense of the triplet

loss for person re-identification. CoRR, abs/1703.07737,

2017. 8

[8] M. Hirzer, C. Beleznai, P. M. Roth, and H. Bischof. Person

re-identification by descriptive and discriminative classifica-

tion. In Scandinavian conference on Image analysis, 2011.

1, 6, 8

[9] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 5

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,

editors, NIPS. 2012. 2

[11] D. Li, X. Chen, Z. Zhang, and K. Huang. Learning deep

context-aware features over body and latent parts for person

re-identification. In CVPR, 2017. 2, 8

[12] S. Li, T. Xiao, H. Li, B. Zhou, D. Yue, and X. Wang. Per-

son search with natural language description. In CVPR, July

2017. 2

[13] W. Li, R. Zhao, T. Xiao, and X. Wang. Deepreid: Deep filter

pairing neural network for person re-identification. In CVPR,

June 2014. 2

[14] S. Liao, Y. Hu, X. Zhu, and S. Z. Li. Person re-identification

by local maximal occurrence representation and metric

learning. In CVPR, 2015. 8

[15] H. Liu, Z. Jie, J. Karlekar, M. Qi, J. Jiang, S. Yan, and

J. Feng. Video-based person re-identification with accumu-

lative motion context. CoRR, abs/1701.00193, 2017. 2

[16] J. Liu, A. Shahroudy, D. Xu, and G. Wang. Spatio-temporal

lstm with trust gates for 3d human action recognition. In

ECCV, 2016. 2

[17] K. Liu, B. Ma, W. Zhang, and R. Huang. A spatio-

temporal appearance representation for video-based pedes-

trian re-identification. In ICCV, 2015. 2, 3

[18] Y. Liu, J. Yan, and W. Ouyang. Quality aware network for

set to set recognition. In CVPR, 2017. 2, 4, 6, 8

[19] N. McLaughlin, J. Martinez del Rincon, and P. Miller. Re-

current convolutional network for video-based person re-

identification. In CVPR, 2016. 2, 6, 8

[20] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid.

Epicflow: Edge-preserving interpolation of correspondences

for optical flow. In CVPR, 2015. 5

[21] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi.

Performance measures and a data set for multi-target, multi-

camera tracking. In European Conference on Computer

Vision workshop on Benchmarking Multi-Target Tracking,

2016. 2

[22] R. R. Varior, M. Haloi, and G. Wang. Gated siamese

convolutional neural network architecture for human re-

identification. In ECCV, 2016. 2

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,

A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all

you need. In NIPS, 2017. 2, 4

[24] F. Wang, W. Zuo, L. Lin, D. Zhang, and L. Zhang. Joint

learning of single-image and cross-image representations for

person re-identification. In CVPR, 2016. 2

[25] L. Wang, Y. Xiong, D. Lin, and L. Van Gool. Untrimmednets

for weakly supervised action recognition and detection. In

CVPR, 2017. 2

[26] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and

L. Van Gool. Temporal segment networks: Towards good

practices for deep action recognition. In ECCV, 2016. 2

[27] T. Wang, S. Gong, X. Zhu, and S. Wang. Person re-

identification by video ranking. In ECCV, 2014. 1, 2, 6,

8

[28] T. Wang, S. Gong, X. Zhu, and S. Wang. Person re-

identification by discriminative selection in video ranking.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 38(12):2501–2514, Dec 2016. 8

[29] T. Xiao, S. Li, B. Wang, L. Lin, and X. Wang. Joint detec-

tion and identification feature learning for person search. In

CVPR, 2017. 5

[30] S. Xu, Y. Cheng, K. Gu, Y. Yang, S. Chang, and

P. Zhou. Jointly attentive spatial-temporal pooling networks

for video-based person re-identification. In ICCV, 2017. 2,

6, 8

[31] J. You, A. Wu, X. Li, and W.-S. Zheng. Top-push video-

based person re-identification. In CVPR, 2016. 2, 6, 8

[32] W. Zhang, X. Yu, and X. He. Learning bidirectional tem-

poral cues for video-based person re-identification. IEEE

Transactions on Circuits and Systems for Video Technology,

PP(99):1–1, 2017. 2

[33] H. Zhao, M. Tian, S. Sun, J. Shao, J. Yan, S. Yi, X. Wang,

and X. Tang. Spindle net: Person re-identification with hu-

man body region guided feature decomposition and fusion.

In CVPR, 2017. 2

[34] L. Zheng, Z. Bie, Y. Sun, J. Wang, C. Su, S. Wang, and

Q. Tian. Mars: A video benchmark for large-scale person

re-identification. In ECCV, 2016. 1, 2, 6, 8

[35] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian.

Scalable person re-identification: A benchmark. In ICCV,

2015. 2

1177



[36] L. Zheng, H. Zhang, S. Sun, M. Chandraker, Y. Yang, and

Q. Tian. Person re-identification in the wild. In CVPR, 2017.

2

[37] Z. Zheng, L. Zheng, and Y. Yang. Unlabeled samples gener-

ated by gan improve the person re-identification baseline in

vitro. In ICCV, 2017. 2

[38] Z. Zhong, L. Zheng, D. Cao, and S. Li. Re-ranking person

re-identification with k-reciprocal encoding. In CVPR, 2017.

8

[39] Z. Zhou, Y. Huang, W. Wang, L. Wang, and T. Tan. See

the forest for the trees: Joint spatial and temporal recurrent

neural networks for video-based person re-identification. In

CVPR, 2017. 2, 4, 6, 7, 8

[40] X. Zhu, X.-Y. Jing, F. Wu, and H. Feng. Video-based person

re-identification by simultaneously learning intra-video and

inter-video distance metrics. In IJCAI, 2016. 2, 6

1178


