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Figure 1: (a) Attribute variance heat maps of the 312 attributes in CUB birds [59] and the 102 attributes in SUN scenes [46]

(lighter color indicates lower variance, i.e., lower discriminability) and the t-SNE [34] visualizations of the test images

represented by all attributes (left) and only the high-variance ones (right). Some of the low-variance attributes (the lighter

part to the left of the cut-off line) discarded at training are still needed in discriminating unseen test classes. (b) Comparison

of reconstructed images using SAE [25] and our proposed SP-AEN method, which is shown to retain sufficient semantics for

photo-realistic reconstruction.

Abstract

We propose a novel framework called Semantics-

Preserving Adversarial Embedding Network (SP-AEN) for

zero-shot visual recognition (ZSL), where test images and

their classes are both unseen during training. SP-AEN

aims to tackle the inherent problem — semantic loss —

in the prevailing family of embedding-based ZSL, where

some semantics would be discarded during training if they

are non-discriminative for training classes, but could be-

come critical for recognizing test classes. Specifically, SP-

AEN prevents the semantic loss by introducing an indepen-

dent visual-to-semantic space embedder which disentan-

gles the semantic space into two subspaces for the two ar-

guably conflicting objectives: classification and reconstruc-

tion. Through adversarial learning of the two subspaces,

SP-AEN can transfer the semantics from the reconstructive

subspace to the discriminative one, accomplishing the im-

proved zero-shot recognition of unseen classes. Comparing
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with prior works, SP-AEN can not only improve classifica-

tion but also generate photo-realistic images, demonstrat-

ing the effectiveness of semantic preservation. On four pop-

ular benchmarks: CUB, AWA, SUN and aPY, SP-AEN con-

siderably outperforms other state-of-the-art methods by an

absolute performance difference of 12.2%, 9.3%, 4.0%, and

3.6% in terms of harmonic mean values [62].

1. Introduction

Zero-shot visual recognition, or more generally, zero-

shot learning (ZSL), recognizes novel classes that are un-

seen at training stage. The community has reached a con-

sensus that ZSL is all about transferring knowledge from

seen classes to unseen classes; Despite that there are fruit-

ful ZSL methods, the transfer still follows the simple but

intuitive mechanism: although “raccoon” is unseen, we can

recognize it by checking if it satisfies the “raccoon sig-

nature”, e.g., visual attributes “striped tail” [13, 27, 67],

classeme “fox-like” [57, 30, 65, 52], or “raccoon” word vec-

tors [47, 37]. These attributes can be modeled at training
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Figure 2: Three investigated ZSL paradigms. (a) Con-

ventional visual-to-semantic mapping � trained on clas-

sification loss. (b) Semantic autoencoder [25], visual-to-

semantic � and semantic-to-visual � trained on both clas-

sification and reconstruction losses. (c) The proposed SP-

AEN, introducing an independent visual-to-semantic � and

an adversarial-style discriminator � between the two sub-

space embeddings (blue and green triangular).

stage and are expected to be sharable in both seen and un-

seen classes at test stage. After a decade of progress, the

transfer has evolved from primitive attribute classifiers [27]

to semantic embedding based framework [1, 14, 60], which

is prevailing due to its simple and effective paradigm (cf.

Figure 2 (a)): first, it maps images from visual space to

semantic space where all the classes reside; then, ZSL is re-

duced to a simple nearest neighbor search — the image is

assigned to the nearest class in embedding space.

The semantic transfer ability of this embedding-based

ZSL framework is limited by the semantic loss problem.

As shown in Figure 1, discarding the low-variance attributes

(i.e., less discriminative) is beneficial to classification at

training; However, due to the semantic discrepancy between

seen and unseen classes, these attributes would be discrim-

inative at test time, resulting in a lossy semantic space that

is problematic for unseen class recognition. The main rea-

son is that although the class embedding has rich semantic

meanings, it is still a lonely point in the semantic space,

where the mappings of many images will inevitably col-

lapse to it [36, 15]. One may consider the extreme case that

all the class embeddings are one-hot label vectors, degener-

ating to the traditional supervised classification, therefore,

no semantics can be transfered.

An arguably possible solution is to preserve semantic-

s by reconstruction — the embedded semantic vector from

one image should be able to map the image back, where

any two semantic embeddings are expected to preserve suf-

ficient semantics to be apart, otherwise the reconstruction

would fail [24, 63, 69, 19]. However, reconstruction and

classification are essentially two conflicting objectives: the

former aims to preserve as many image details as possible

while the latter focuses on suppressing irrelevant ones. For

example, using only “head” and “torso” attributes might be

sufficient for “person” recognition while the color attributes

“red” and “white” are indeed disturbing. To further illus-

trate this, as shown in Figure 2 (b), suppose �: � → �
and �: � → � are two mapping transformations between

the visual and semantic spaces. For classification, we want

�, �′ ∈ � of the same class to be mapped to close semantic

embeddings �, �′ ∈ � , i.e., �(�) = � ≈ �′ = �(�′); For

reconstruction, we want �(�) ≈ � and �(�′) ≈ �′, which

is difficult to be satisfied as � ≈ �′. Therefore, joint train-

ing of the two objectives is ineffective to preserve semantics

(e.g., SAE [25]). For example, as illustrated in Figure 1 (b),

if we want to achieve good classification performance, the

reconstruction will fail generally.

To resolve this conflict, we propose a novel visual-

semantic embedding framework: Semantics-Preserving

Adversarial Embedding Network (SP-AEN). As illustrated

in Figure 2 (c), we introduce a new mapping � : � → �
and an adversarial objective [17] where the discriminator �
and encoder � try to make � (�) and �(�) indistinguish-

able. There are two benefits of introducing � and � to help

� preserve semantics: 1) Semantic Transfer. Even though

the semantic loss is inevitable by �, we can avoid it us-

ing � by borrowing ingredients from �(�) of other classes,

and the discriminator � will eventually transfer semantics

from � (�) to �(�) by tailoring the two semantic embed-

dings into the same distribution. For example, for a “bird”

image where the attribute “spotty” in �(bird) is lost, we

can retain it by using �(leapard) because “spotty” is a dis-

criminative and preserved attribute in “leopard” images. 2)

Disentangled Classification and Reconstruction. As the

reconstruction is only imposed to � and �, � is disentan-

gled to focus on classification. In this way, the conflict be-

tween classification and reconstruction is resolved because

the constraint �(�(�)) ≈ � and �(�(�′)) ≈ �′ is relaxed

to �(� (�)) ≈ � and �(� (�′)) ≈ �′, as � (�) and � (�′)
are not necessarily to be close with each other to comply

with the discriminative objective as �. As shown in Fig-

ure 1 (b), compared to the reconstruction style in Figure 2

(b) [25], our visual-semantic embedding �(� (�)) can re-

construct photo-realistic images, suggesting that the seman-

tic is better preserved.

We can deploy state-of-the-art network structures for SP-

AEN in a flexible plug-and-play and end-to-end fine-tune

fashion, e.g., � may use the powerful model for classifi-

cation [21], � and � may use the encoder and decoder of

the image generation architecture [11]. The overall archi-

tecture is illustrated in Figure 3 and will be detailed in Sec-

tion 4.1. We validate the effectiveness of SP-AEN on four

popular benchmarks: CUB [59], AWA [27], SUN [46], and

aPY [13], surpassing the state-of-the-art performances [62]
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by 12.2%, 9.3%, 4.0%, and 3.6% in harmonic mean val-

ues, respectively. To the best of our knowledge, SP-AEN

is the first ZSL model that empowers photo-realistic image

generation from the semantic space. We hope that it will fa-

cilitate the ZSL community for better visual investigations

of knowledge transfer.

2. Related Work

Zero-Shot Learning One main stream of ZSL is the

attribute-based visual recognition [13, 27, 49, 43, 10, 22]

where the attributes serve as an intermediate feature space

that transfer semantics across classes, supporting zero-shot

recognition of unseen classes. To scale up ZSL, embedding

based methods are prevailing [14, 2, 3, 49, 61, 55, 25, 31].

These methods directly learn a mapping from the image

visual space to a semantic space, represented by semantic

vectors such as word vectors [37, 47, 42] or textual descrip-

tions [29, 12, 9]. Our proposed SP-AEN is an embedding

based ZSL that exploits the ranking based classification loss

as [14]. However, to the best of our knowledge, SP-AEN is

the first ZSL method that can reconstruct images from the

semantic embeddings. The evaluation used in the experi-

ments follows a similar setting for practical ZSL applica-

tions [8, 62]. Note that ZSL is also closely related to few-

shot learning [18] and domain adaptation [40, 45], where

both of them assume that a small number of training images

given in the test classes; however, no image is exposed to

test classes at training in ZSL.

Domain Shift and Hubness. Similar problems to the

semantic loss have been reported in other terms. Domain

shift [51, 15] is a generic problem that resides in all type-

s of visual recognition, where the data from train and test

are in different distributions. Hubness [36] states the phe-

nomenon that the mapped semantic embeddings from im-

ages would be collapsed to hubs, which are near many other

points without being similar to the class label in any mean-

ingful way. We believe that semantic loss is one of the main

reason for hubness, which can be alleviated by reconstruc-

tion [24, 63, 69, 19]. In this paper, we find that jointly train-

ing [25] reconstruction and classification is not effective to

preserve semantics. Another way of countering semantic

loss is to learn independent attribute classifiers [39], which

is not applicable when attribute annotation is unavailable.

Generative Adversarial Network (GAN). The idea of

GAN [17] is to train a generator that can fool a discrim-

inator to confuse the distributions of the generated and

true samples. In theory, this max-min training procedure

can lead the generator to perfectly model the data distribu-

tion. SP-AEN is similar to the GAN applied in the feature-

level [44, 58, 35, 53]. Recently, several ZSL models adop-

t generative model for data augmentation of unseen class-

es [38, 6]. However, they violate the ZSL assumption that

the unseen class is prohibitively seen at training.

Image Generation. We seek algorithms that can gener-

ate perceptually realistic images [16, 23, 5, 32, 33, 56]. Be-

sides pixel-level loss, these methods impose feature-level

reconstruction loss for preserving perceptual similarity or

adversarial loss to remove unreal artifacts. However, they

are based on image-to-image transformation while we re-

quires that the reconstruction is from the semantic embed-

ding. Our reconstruction network relates to image genera-

tion from a bottleneck layer [11, 41, 66, 48].

3. Formulation

We start by formalizing the ZSL task and then introduce

the training objectives of the proposed SP-AEN.

3.1. Preliminaries

Given a set of training set {��, ��}, where �� ∈ � is an

image represented in the visual space, and �� ∈ ℒ� is a class

label in the seen class set, the goal of ZSL is to learn a clas-

sifier which can generalize to predict any image � at test

stage to its correct label, which is not only in ℒ� but also

in the unseen class set ℒ�. As summarized in [62, 29],

almost all types of ZSL methods can be unified into the

embedding-based framework: we hope to find a visual-to-

semantic mapping �: � → � , where any class label � is

embedded as y� ∈ ℝ
� in the semantic space � (e.g., an

attribute space). Therefore, the predicted label �∗ can be

obtained by following simple nearest neighbor search:

�∗ = max
�∈ℒ

y
�
� �(�). (1)

In particular, if � ∈ ℒ�, it is the conventional ZSL setting;

if � ∈ ℒ� ∪ ℒ�, it is the generalized ZSL setting, which is

more practical for real applications. It is worth noting that

Eq. (1) is not necessarily a linear model; in fact, as we will

introduce in Section 4.1, it can also be highly non-linear in

nature by using deep neural networks to implement �.

3.2. Classification Objective

As label prediction in Eq. (1) is fundamentally a ranking

problem, we use a large-margin based ranking loss func-

tion for classification objective [14, 60], i.e., given a training

pair (�, �) we want a higher dot-product similarity between

y� and �(�) and a lower one for any wrongly labeled pair

(�, �′), and the similarity margin between the correct one

and the wrong one should be larger than a threshold:

���� =
∑

� ∕=�′

max{0, � − y
�
� �(�) + y

�
�′�(�)}. (2)

Where � > 0 is a hyperparameter for the margin. At each

iteration in stochastic training, only one �′ is randomly se-

lected from the unpaired labels.

As mentioned in Section 1, the classification objective

���� essentially forces the semantic embedding �(�) of all
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