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Abstract

Recognizing text from natural images is a hot research

topic in computer vision due to its various applications.

Despite the enduring research of several decades on op-

tical character recognition (OCR), recognizing texts from

natural images is still a challenging task. This is because

scene texts are often in irregular (e.g. curved, arbitrarily-

oriented or seriously distorted) arrangements, which have

not yet been well addressed in the literature. Existing meth-

ods on text recognition mainly work with regular (horizon-

tal and frontal) texts and cannot be trivially generalized to

handle irregular texts. In this paper, we develop the ar-

bitrary orientation network (AON) to directly capture the

deep features of irregular texts, which are combined into

an attention-based decoder to generate character sequence.

The whole network can be trained end-to-end by using on-

ly images and word-level annotations. Extensive experi-

ments on various benchmarks, including the CUTE80, SVT-

Perspective, IIIT5k, SVT and ICDAR datasets, show that

the proposed AON-based method achieves the-state-of-the-

art performance in irregular datasets, and is comparable to

major existing methods in regular datasets.

1. Introduction

Scene text recognition has attracted much research inter-

est of the computer vision community [6, 15, 22, 27, 31, 39]

because of its various applications such as road sign recog-

nition and navigation reading for advanced driver assistan-

t system (ADAS). Though Optical Character Recognition

(OCR) has been extensively studied for several decades,

recognizing texts from natural images is still a challenging

task due to complicated environments (e.g. uneven lighting,

blurring, perspective distortion and orientation).

∗Corresponding author.

In the past years, there have been many works to solve

scene text recognition [6, 22, 31, 39]. Although these ap-

proaches have shown promising results, most of them can

effectively handle only regular texts that are often tightly-

bounded, horizontal and frontal. However, in real-world

(a) (b) (c)

(d) (e) (f)

Figure 1. Examples of irregular (slant/perspective, curved and ori-

ented etc.) texts in natural images. Subfigures (a) - (b), (c) - (d)

and (e) - (f) are slant/perspective, curved and oriented images re-

spectively.

applications, many scene texts are in irregular arrangements

(e.g. arbitrarily-oriented, curved, slant and perspective etc.)

as shown in Fig. 1, so most existing methods cannot be

widely applied in practice.

Recently, there are two related works aiming at irreg-

ular texts: the spatial transformer network (STN) [18] -

based method by [32] and the attention-based method with

fully convolutional network (FCN) [23] by [39]. Shi et

al. [32] attempted to first rectify irregular (e.g. curved

or perspectively distorted) texts to approximately regular

texts, then recognized the rectified images with an attention-

based sequence recognition network. However, in com-

plicated (e.g. arbitrarily-oriented or serious curved) natu-

ral scenes, it is hard to optimize the STN-based method

without human-labeled geometric ground truth. Besides,

training STN needs sophisticated skills. For example, the
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thin-plate-spline (TPS) [5]-based STN [32] should be giv-

en some initialization pattern for the fiducial points, and is

not quite effective for arbitrarily-oriented scene texts. Yang

et al. [39] introduced an auxiliary dense character detection

task for encouraging the learning of visual representation-

s with a fully convolutional network. Though the method

showed better performance on irregular texts, it was car-

ried out with an exhausting multi-task learning (MTL) s-

trategy and relied on character-level bounding box annota-

tions. Note that, though the attention-based model has the

potential to perform 2D feature selection [38], we found in

experiments that directly training attention-based model on

irregular texts is difficult due to irregular character place-

ments. This situation motivates us to explore new and more

effective methods to recognize irregular scene texts.

Figure 2. Illustration of character visual representation in four di-

rections:
−→
H: left → right,

←−
H:right → left,

−→
V :top →

bottom and
←−
V :bottom→ top and four character placement clues

c1, c2, c3 and c4. Here, there are three squares connected with

dashed lines. The innermost square represents the four 1D se-

quences of features, each comes along with an arrowed line. The

middle square refers to the placement clues used for weighting

the corresponding sequences of features. The outermost square s-

tands for the weighted feature sequence by conducting Hadamard

product ⊙ with character placement clues and horizontal/vertical

features. For the character ‘a’ in the image, we can represent it by

the four weighted sequences of features.

From the above analysis, we can see that most existing

methods directly encode a text image as a 1D sequence of

features and then decode them to the predicted text, which

implies that any text in an image is treated in the same

direction such as from left to right by default. However,

this is not true in the wild. After carefully analyzing the

typical character placement styles of natural text images,

we suggest that the visual representation of an arbitrarily-

oriented character in a 2D image can be described in four

directions: left → right, right → left, top → bottom

and bottom → top. Concretely, we can encode the input

image to four feature sequences of four directions: hori-

zontal features (
−→
H), reversed horizontal features (

←−
H), ver-

tical features (
−→
V ) and reversed vertical features (

←−
V ), as

shown in Fig. 1, and the length of each sequence is equal.

The horizontal/vertical features can be extracted by down-

sampling the height/width of feature maps to 1. In order

to represent an arbitrarily-oriented character, a weighting

mechanism can be used to combine the four feature se-

quences of different directions. We call the weights char-

acter placement clues, which are denoted as c1, c2, c3 and

c4 in Fig. 1. The character placement clues can be learned

from the input images with a convolutional-based network,

which guides to effectively integrate the four sequences of

features, and then a filter gate (FG) generates the integrat-

ed feature sequence as the character’s visual representation.

Therefore, an arbitrarily-oriented character in a 2D image

can be represented as the combination of horizontal and

vertical features by conducting the Hadamard product with

the sequences of features and the corresponding placement

clues. In Fig. 1, c1 and c2 play the dominant role in de-

termining the visual representation of character ‘a’. In this

paper, we call the four-direction feature extraction network

and the clues extraction network arbitrary orientation net-

work (AON), which means that it can effectively handle

arbitrarily-oriented texts.

In this paper, we develop a novel method for robustly

recognizing both regular and irregular natural texts by em-

ploying the proposed arbitrary orientation network (AON).

Major contributions of this paper are as follows:

1. We propose the arbitrary orientation network (AON)

to extract scene text features in four directions and the

character placement clues.

2. We design a filter gate (FG) for fusing four-direction

features with the learned placement clues. That is, FG

is responsible for generating the integrated feature se-

quence.

3. We integrate AON, FG and an attention-based decoder

into the character recognition framework. The whole

network can be directly trained end-to-end without any

character-level bounding box annotations.

4. We conduct extensive experiments on several public ir-

regular and regular text benchmarks, which show that

our method obtains state-of-the-art performance in ir-

regular benchmarks, and is comparable to major exist-

ing methods in regular benchmarks.
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2. Related works

In recent years, several methods have been proposed for

scene text recognition. For the general information of text

recognition, readers can refer to Ye and Doermann’s recent

survey [41]. Basically, there are two types of scene text

recognition approaches: bottom-up and top-down.

Traditional methods mostly follow the bottom-up

pipeline: first extracting low-level features for individual

character detection and recognition one by one, then inte-

grating these characters into words based on a set of heuris-

tic rules or a language model. For example, [27] defined a

set of handcrafted features such as aspect ratio, hole area

ratio etc. to train a Support Vector Machine (SVM) clas-

sifier. [35, 36] first fetched each character in the cropped

word image by sliding window, then recognized it with a

character classifier trained by the extracted HOG descrip-

tors [40]. However, the performance of these methods is

limited due to the low representation capability of hand-

crafted features. With the advancement of neural-network-

based methods, many researchers developed deep neural ar-

chitectures and achieved better results. [4] adopted a fully

connected network of 5 hidden layers for character feature

representation, then used an n-gram language model to rec-

ognize characters. [37] developed a CNN-based feature ex-

traction framework for character recognition, and applied

a non-maximum suppression method for final word predic-

tions. [16] also proposed a CNN-based method with struc-

tured output layer for unconstrained recognition. These

above methods require the segmentation of each character,

which can be very challenging because of the complicat-

ed background clutter and the inadequate distance between

consecutive characters. Besides, segmentation annotations

require additional resource consuming.

The other approaches work in a top-down style: directly

predicting the entire text from the original image without

detecting the characters. [17] conducted a 90k-class classi-

fication task with a CNN, in which each class represents an

English word. Consequently, the model can not recognize

out-of-vocabulary words. Recent works solve this prob-

lem as a sequence recognition problem, where images and

texts are separately encoded as patch sequences and char-

acter sequences, respectively. [34] extracted sequences of

HOG features to represent images, and generated the char-

acter sequence with the recurrent neural network (RNN).

[13] and [31] proposed the end-to-end neural networks that

combines CNN and RNN for visual feature representation,

then the CTC [10] Loss was combined with the RNN out-

puts for calculating the conditional probability between the

predicted and the target sequences. [22] used a recursive C-

NN to learn broader contextual information, and applied the

attention-based decoder for sequence generation. [6] pro-

posed a focus mechanism to eliminate the attention drift to

improve the regular text recognition performance. Howev-

Figure 3. The network architecture of our method, which con-

sists of four components: 1) the basal convolutional neural net-

work (BCNN) module for low-level visual representation; 2) the

arbitrary orientation network (AON) for capturing the horizon-

tal, vertical and character placement features; 3) the filter gate

(FG) for combing four feature sequences with the character place-

ment clues; 4) the attention-based decoder (Decoder) for predict-

ing character sequence. The above four modules are shown in

the blue, golden, dull-red and brown dashed boxes, respective-

ly. Meanwhile, all convolution or shared convolution blocks have

the following format: name, c[, /(sh, sw, ph, pw)]. The bilst-

m and filter gate blocks are represented as name, c. The flat-

ten, fc (fully-connected) and softmax operations have the format:

name, o(c, l). Here, c, sh, sw, ph, pw, l, / and o represent the

number of channels, stride height, stride width, pad height, pad

width, length of feature maps, pooling operation and output shape,

respectively. The whole network can be trained end-to-end.

er, since a text image is encoded into a 1D-based sequence

of features, these methods can not effectively handle the ir-

regular texts such as the arbitrarily-oriented texts. In order

to recognize irregular texts, [32] applied the spatial trans-

former network (STN) [18] for text rectification, then rec-
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ognized the rectified text images with the sequence recog-

nition network. [39] introduced an auxiliary dense char-

acter detection task for encouraging the learning of visual

representations with a fully convolutional network (FCN)

[23]. In practice, training STN-based methods is extreme-

ly difficult without human-labeled geometric ground truth,

especially for texts in complicated (e.g. curved, arbitrarily-

oriented or perspective etc.) environments. Besides, sophis-

ticated tricks are also required. For example, to train the

thin-plate-spline (TPS) [5]-based STN [32]-based method,

the initialization pattern should be given for the fiducial

points. Though [39] can recognize characters in a 2D im-

age, the method relies on the multi-task learning framework

(including 3 task branches and 2 tunable super-parameters)

and character-level bounding box annotations, which result-

s in large amount of resource consuming. While obtaining

better performance on irregular texts, it performs worse on

regular texts.

Different from existing approaches, in this paper we first

extract deep feature representations of images by using an

arbitrary orientation network (AON), then use a filter gate

(FG) to generate the integrated sequence of features, which

are fed to an attention-based decoder for generating predict-

ed sequences. Furthermore, we can once for all train the w-

hole network end-to-end with only word-level annotations.

Note that in the OCR field, natural text reading systems

often consist of two steps: 1) detecting each word’s location

in natural images and 2) recognizing text from the cropped

image. In general, robust detection is helpful in recogniz-

ing texts. Therefore, several methods [20, 25, 30, 43] have

been proposed for multi-oriented text detection. Though

this work focuses on the recognition task, our AON-based

method can directly recognize arbitrarily-oriented texts,

which alleviates the pressure of text detection.

3. The Framework

The framework of whole network is shown in Fig. 3,

which consists of four major components: 1) The basal con-

volutional neural network (a nomenclature for initial lay-

er, denoted by BCNN) for extracting low-level visual fea-

tures; 2) The arbitrary orientation network (AON) for gen-

erating four-direction sequences of features and the charac-

ter placement clues; 3) The filter gate (FG) for combining

the four sequences of features with the learned placement

clues to generate the integrated feature sequence, and 4) the

attention-based decoder for predicting character sequence.

3.1. Basal Convolutional Neural Network (BCNN)

The BCNN module is responsible for capturing the foun-

dational visual representation of text images, and outputs a

group of feature maps. BCNN can help reduce the computa-

tional cost and graphic memory. As shown in Fig. 3, we use

four convolution blocks as the foundational feature extrac-

tor. The outputs of BCNN must be square feature maps. We

empirically found that higher-level feature representation as

the initial state of AON can yield better performance.

3.2. MultiDirection Feature Extraction Module

This module includes the arbitrary orientation network

(AON) and the filter gate (FG), which constitute the core of

the proposed method. With the extracted foundational fea-

tures, we devise AON for capturing arbitrarily-oriented text

features and the corresponding character placement clues.

We also design FG for integrating multi-direction features

by using the character placement clues. The details of AON

and FG will be described in next section.

3.3. Attentionbased Decoder

An attention-based decoder is a recurrent neural net-

work (RNN) that directly generates the target sequence

(y1, ..., yM ) from an input feature sequence (ĥ1, ..., ĥL).
Bahdanau et al. [3] first proposed the architecture of

attention-based decoder. At the t-th step, the attention mod-

ule generates an output yt as follows:

yt = softmax(WT st), (1)

where WT is a learnable parameter, and st is the RNN hid-

den state at time t, computed by

st = RNN(yt−1, gt, st−1), (2)

where gt is the weighted sum of sequential feature vectors

Ĥ : (ĥ1, ..., ĥL), that is,

gt =
L
∑

j=1

αt,j ĥj , (3)

where αt ∈ R
L is a vector of the attention weights, also

called alignment factors [3]. In the computation of attention

weights, αt is often evaluated by scoring each element in Ĥ
separately and normalizing the scores as follows:

αt = Attend(st−1, Ĥ), (4)

where Attend describes the attending process [7].

Above, the RNN function in Eq. (2) represents an LST-

M recurrent network. Note that the decoder is capable of

generating sequences of variable lengths. Following [34], a

special end-of-sequence (EOS) token is added to the target

set, so that the decoder completes the generation of charac-

ters when EOS is emitted.

3.4. Network Training

We integrate the BCNN, AON, FG and attention decoder

into one network, as shown in Fig. 3. Therefore, given an
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input image I, the loss function of the network is as follows:

L = −
∑

t

lnP (ŷt|I, θ), (5)

where ŷt is the ground truth of the t-th character and θ is a

vector that combines all the network parameters.

3.5. Character Sequence Decoding

Decoding is the final process to generate the predicted

characters. Following the decoding conventions, two pro-

cessing modes are given: unconstrained (lexicon-free) mod-

e and constrained mode. We execute unconstrained text

recognition by directly selecting the most probable charac-

ter. While in constrained text recognition, with respect to

different types of lexicons (their sizes are denoted by “50”,

“1k” and “full” respectively), we calculate the conditional

probability distributions for all lexicon words, and take the

one with the highest probability as the output result.

4. Technical Details of AON and FG

4.1. Arbitrary Orientation Network (AON)

We develop an arbitrary orientation network consisting

of the horizontal network (HN), the vertical network (VN)

and the character placement clue network (CN) for extract-

ing horizontal, vertical and placement features respectively.

The HN encodes the foundational feature maps into a

sequence of horizontal feature vectors H ∈ R
L×D by first

performing downsampling on height directly by 5 shared

convolutional blocks (described bellow) with the corre-

sponding pooling strategy (shown in Fig. 3) to 1, and us-

ing the bidirectional LSTM to further encode the feature

sequence, then generating the reversed feature sequence by

conducting reverse operation (described in Eq. (6) and (7)),

where L and D represent the length of Ĥ and the channel

number, respectively. Symmetrically, VN first rotates the

square feature maps by 90 degrees, then generates the ver-

tical feature vectors V ∈ R
L×D with the same procedure

as HN. Here, reversion can accelerate training convergence,

thus indirectly impacts the training of CN.

Since we describe each character sequence in four direc-

tions: left → right, right → left, top → bottom and

bottom→ top,H and V can be represented as follows:

H =

{−→
H : (h1, ..., hL)

T , left→ right
←−
H : (hL, ..., h1)

T , right→ left
(6)

V =

{−→
V : (v1, ..., vL)

T , top→ bottom
←−
V : (vL, ..., v1)

T . bottom→ top
(7)

For each text image, the CN outputs the corresponding

character placement clues C ∈ R
4×L as:

C = (c1, ..., cL)
T . (8)

Here, for any ci ∈ R
4, we have

∑

4

j=1
cij = 1, where cij

refers to the j-th direction’s weight. The extraction process

of clues is depicted as the green blocks in Fig. 3.

In practice, we find that it is hard to train the HN and VN

respectively and simultaneously. The state of each branch

is easy to corrupted on orientation distribution unbalanced

training datasets. Therefore, we design a shared convolu-

tion mechanism that performs the same convolutional fil-

ter operations for both horizontal and vertical process, and

the shared convolution block is shown in Fig. 4. With the

shared convolutional mechanism, the network is robust and

easy to learn on orientation unbalanced training datasets.

Figure 4. The shared convolution block in the dashed box provides

a mechanism that multi-groups of feature maps share the same

convolutional filters.

4.2. Filter Gate (FG)

With the captured four feature sequences and charac-

ter placement clues, we design a filter gate to neglec-

t the irrelevant features. Formally, given the i-th features

(
−→
Hi,
←−
Hi,
−→
V i,
←−
V i), we use the corresponding placemen-

t clue ci to attend the appropriate features:

ĥ′

i = [
−→
Hi

←−
Hi

−→
V i

←−
V i]ci. (9)

Then an activation operation is performed as follows:

ĥi = tanh(ĥ′

i). (10)

Above, ĥi indicates the i-th element of Ĥ : (ĥ1, ..., ĥL).

5. Performance Evaluation

We conduct extensive experiments to validate the pro-

posed method on both irregular and regular recognition

benchmarks. To be fair, we train the HN used in AON as the

baseline model (denoted by Naive base), which is similar to

the previous works focusing on regular text recognition. We

also combine HN with the TPS-based STN used in [32] as

the STN-based control model (denoted by STN base). Al-

l control experiments are conducted with similar training

data and in similar running environment. We compare our

model with not only the major existing methods (including

the-state-of-the-art ones), but also the above two baseline

models: Naive base and STN base. Furthermore, we ex-

plore the roles of HN, VN, CN and FG in AON.
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5.1. Datasets

The regular and irregular benchmarks are as follows:

SVT-Perspective [28] contains 639 cropped images for

testing. Images are picked from side-view angle snapshots

in Google Street View, therefore one may observe severe

perspective distortions. Each image is associated with a 50-

word lexicon and a full lexicon.

CUTE80 (CT80 in short) [29] is collected for evaluat-

ing curved text recognition. It contains 288 cropped natural

images for testing. No lexicon is associated.

ICDAR 2015 (IC15 in short) [21] contains 2077 cropped

images where more than 200 irregular (arbitrarily-oriented,

perspective or curved). No lexicon is associated.

IIIT5K-Words (IIIT5K in short) [26] is collected from

the Internet, containing 3000 cropped word images in its

test set. Each image specifies a 50-word lexicon and a 1k-

word lexicon, both of which contain the ground truth words

as well as other randomly picked words.

Street View Text (SVT in short) [35] is collected from

the Google Street View, consists of 647 word images in its

test set. Many images are severely corrupted by noise and

blur, or have very low resolutions. Each image is associated

with a 50-word lexicon.

ICDAR 2003 (IC03 in short) [24] contains 251 scene

images, labeled with text bounding boxes. Each image is

associated with a 50-word lexicon defined by Wang et al.

[35]. For fair comparison, we discard images that contain

non-alphanumeric characters or have less than three char-

acters, following [35]. The resulting dataset contains 867

cropped images. The lexicons include the 50-word lexicons

and the full lexicon that combines all lexicon words.

5.2. Implementation Details

Network details: The deep neural network has been de-

tailed in Fig. 3. In our network, all images are resized to

100 × 100. As for the convolutional strategy, all convolu-

tional blocks have 3 × 3 size of kernels, 1 × 1 size of pads

and 1× 1 size of strides, and all pooling (max) blocks have

2 × 2 size of kernels. We adopt batch normalization (BN)

[14] and ReLU activation right after each convolution. For

the character generation task, the attention is designed with

an LSTM (256 memory blocks) and 37 output units (26 let-

ters, 10 digits, and 1 EOS symbol).

Implementation and Running Environment: We train our

model on 8-million synthetic data released by Jaderberg

et al. [15] and 4-million synthetic instances (excluding the

images that contain non-alphanumeric characters) cropped

from 80-thousand images [12] by the ADADELTA [42] op-

timization method. Meanwhile, we conduct data augmenta-

tion by randomly rotating each image range from 0◦ to 360◦

once. Our method is implemented under the Caffe frame-

work [19]. The CUDA 8.0 and CUDNN v7 backend are ex-

tensively used in our implementation, so that most modules

in our method are GPU-accelerated. Our method can han-

dle about 190/630 samples per second in the training/testing

phase. The experiments are carried out on a workstation

with one Intel Xeon(R) E5-2650 2.30GHz CPU, one N-

VIDIA Tesla P40 GPU, and 128GB RAM.

5.3. Performance on Irregular Datasets

Method
SVT-Perspective CT80 IC15

50 Full None None None

ABBYY[35] 40.5 26.1 − − −
Mishra et al.[11] 45.7 24.7 − − −
Wang et al.[37] 40.2 32.4 − − −
Phan et al.[28] 75.6 67.0 − − −
Shi et al.[31] 92.6 72.6 66.8 54.9 −
Shi et al.[32] 91.2 77.4 71.8 59.2 −
Yang et al.[39] 93.0 80.2 75.8 69.3 −
Cheng et al.[6] 92.6 81.6 71.5 63.9 66.2

Naive base 92.4 83.3 70.5 75.4 67.8

STN base 94.6 82.8 68.5 73.7 67.5

Ours 94.0 83.7 73.0 76.8 68.2

Table 1. Results on irregular benchmarks. “50” is lexicon size and

“Full” indicates the combined lexicon of all images in the bench-

marks. “None” means lexicon-free.

Recently, Cheng et al. [6] proposed FAN to improve text

recognition performance, which must be trained with addi-

tional character-level bounding box annotations. Here, we

also compare our method with FAN on the irregular dataset-

s. Tab. 1 summarizes the recognition results on three irregu-

lar text datasets: SVT-Perspective, CUTE80 and ICDAR15.

Comparing with the existing methods’ performance result-

s released in the literature, we find that our method out-

performs the existing methods on almost all benchmarks,

except for SVT-Perspective with lexicon-free released by

Yang et al. [39]. However, it is worthy of pointing out that

Yang’s method [39] implicates its text-reading system with

both word-level and character-level bounding box annota-

tions, which is resource consuming, while our method can

be easily carried out with only word-level annotations.

Figure 5. Some images rectified by TPS.

Tab. 1 also gives the results of the two baseline model-

s. We can see that Naive base does not recognize irregular

texts well. Though theoretically TPS-based STN can handle

any irregular texts, it seems not able to satisfactorily recti-

fy arbitrary-oriented or seriously curved texts in practice.
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Fig. 5 shows some rectified examples by TPS, their origi-

nal images are shown in Fig. 1. We can see that except for

the first and the third images, the other four images are not

desirably rectified.

Method
IIIT5k SVT IC03

50 1k None 50 None 50 Full None

ABBYY[35] 24.3 − − 35.0 − 56.0 55.0 −
Wang et al. [35] − − − 57.0 − 76.0 62.0 −
Mishra et al.[11] 64.1 57.5 − 73.2 − 81.8 67.8 −
Wang et al.[37] − − − 70.0 − 90.0 84.0 −
Goel et al.[8] − − − 77.3 − 89.7 − −
Bissacco et al.[4] − − − 90.4 78.0 − − −
Alsharif [2] − − − 74.3 − 93.1 88.6 −
Almazán et al.[1] 91.2 82.1 − 89.2 − − − −
Yao et al.[40] 80.2 69.3 − 75.9 − 88.5 80.3 −
Jaderberg et al.[16] − − − 86.1 − 96.2 91.5 −
Su and Lu[33] − − − 83.0 − 92.0 82.0 −
Gordo[9] 93.3 86.6 − 91.8 − − − −
Jaderberg et al.[17] 97.1 92.7 − 95.4 80.7 98.7 98.6 93.1

Jaderberg et al.[16] 95.5 89.6 − 93.2 71.7 97.8 97.0 89.6

Shi et al.[31] 97.6 94.4 78.2 96.4 80.8 98.7 97.6 89.4

Shi et al.[32] 96.2 93.8 81.9 95.5 81.9 98.3 96.2 90.1

Lee et al.[22] 96.8 94.4 78.4 96.3 80.7 97.9 97.0 88.7

Yang et al.[39] 97.8 96.1 − 95.2 − − 97.7 −
Cheng’s baseline[6] 98.9 96.8 83.7 95.7 82.2 98.5 96.7 91.5

Cheng et al.[6] 99.3 97.5 87.4 97.1 85.9 99.2 97.3 94.2

Naive base 99.5 98.1 86.0 96.9 81.9 98.5 96.5 90.5

STN base 99.5 97.8 85.9 96.3 80.7 98.5 96.2 89.2

Ours 99.6 98.1 87.0 96.0 82.8 98.5 97.1 91.5

Table 2. Results on regular benchmarks. “50” and “1k” are lexicon

sizes. “Full” indicates the combined lexicon of all images in the

benchmarks. “None” means lexicon-free.

5.4. Performance on Regular Datasets

AON is designed for recognizing both irregular and reg-

ular texts. Therefore, we test our method on some regular

text benchmarks, the results are shown in Tab. 2. In the

constrained cases, our method achieves comparable perfor-

mance to the existing methods. In the unconstrained cases,

our method only falls behind Cheng et al. [6] on the three

benchmarks, and Jaderberg et al. [17] on IC03. For [6],

two major factors lead to its high performance: a) using

extra geometric annotations (location of each character) in

training the attention decoder, and b) exploiting a ResNet-

based feature extractor for obtaining robust feature repre-

sentation. However, labelling the location of each character

is extremely expensive, so it is not feasible for real appli-

cations. For fair comparison, we also gave the results of

Cheng’s baseline (without the FocusNet branch) in Tab. 2,

and found that our method outperforms Cheng’s baseline in

most cases, which validates the superiority of our method.

Though Jaderberg et al. [17] achieves an amazing result-

s on IC03, their model cannot recognize out-of-vocabulary

words, which limits its applicability in real world. Note

that our model is trained without any character geometric

information, and it performs better than the other existing

methods. As a whole, our method performs effectively in

recognizing regular texts.

5.5. Deep insight into AON

Here, to further clarify the working mechanism of AON,

we elaborate the roles of the major components HN, VN, CN

and FG in AON, and show the placement trends of texts in

some real images. These trends are generated by AON.

Figure 6. Illustration of learned character placement clues by

AON. Each image is surrounded with four changing-gray bars with

arrows of different directions. Deeper gray in the bars indicates

larger weight for the corresponding directional feature.

The roles of HN,VN, CN and FG in AON. We use

both horizontal sequence of features and vertical sequence

of features to represent arbitrarily-oriented texts. Concrete-

ly, for horizontal/vertical texts, horizontal/vertical features

are enough to represent the texts; For perspective/slant or

arbitrarily-oriented text, we generate the final feature se-

quence by combining horizontal and vertical features. HN

and VN are responsible for generating horizontal and ver-

tical features respectively. CN plays an important role in

learning the weights (i.e., character placement clues) that

are used to guide the generation of final feature sequences.

FG is just to perform the weight-sum operation with the

horizontal/vertial feature sequence and the learnt placement

weights. Fig. 6 shows some examples of generated place-

ment clues. We can see that the generated clues conform to

our visual observations in the images, which validates the

effectiveness of CN in AON.

Text placement trends generated with AON. Here we

verify that the learned character placement clues can be

used to generate placement trends of character sequences

by positioning each character and drawing text orientations

in the original images. Bellow is the computation process

of text placement trends.

We know that the alignment factors αt produced by the

attention module indicate the probability distributions over

the input sequence of features for generating the glimpse

vector gt. And the four character placement clues C =
[c1, c2, c3, c4] imply the importance of four extracted fea-

ture sequences for representing characters. With C and αt,

we roughly divide the input image into L × L patches and

calculate the character position distribution dis by dis =
C ⊙ αt, where dis = (d1, d2, d3, d4) ∈ R

4×L. We further

normalize each element by norm(dij) =
dij∑

2

i=1

∑
L
j=1

dij
for

i∈ (1, 2), and by norm(dij) =
dij∑

4

i=3

∑
L
j=1

dij
for i ∈ (3, 4).
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Here, norm indicates the normalization operation.

For a character at position (x, y), we first com-

pute the horizontal coordinate x with [d1, d2] by x =
∑L

j=1

∑

2

i=1
j × norm(dij), where i ∈ (1, 2) and j ∈

(1, 2, ..., L). Similarity, we compute the vertical coordinate

y with [d3, d4] by y =
∑L

j=1

∑

4

i=3
j × norm(dij).

To visualize the placement trends of texts in the input

images, we mark the coordinate (x, y) on each input image

as the corresponding character’s position, and consecutive-

ly connect the last character’s position and the current char-

acter’s position with an arrow to describe the text’s place-

ment trend. Fig. 7 shows some examples of generated text

placement trends of real images. We can see that the trends

formed by the connected arrows basically conform to our

visual observations, which again shows that our method is

effective in estimating the orientations of texts in images.

Perspective

Curved

Oriented

Figure 7. The visualization of generated placement trends for

perspective, curved and oriented images, shown in the 1st, 2nd

and 3rd row, respectively. The curves formed by connected red

arrows indicate text placement trends. All texts in the images are

correctly recognized by our method.

6. Discussions

The necessity of CN in AON. As the attention-based

decoder is able to select features for generating characters.

It is natural to suspect whether CN is necessary. To answer

this, we have two experiments without CN: 1) Concatenat-

ing horizontal and vertical feature sequence along the chan-

nel axis. We find the model converges slowly and cannot

achieve state-of-the-art performance, because three quarter-

s’ information in the final feature sequence is superfluous.

2) Concatenating horizontal and vertical along the temporal

axis. We get results of averagely about 4% lower than that

of AON on all benchmarks. The above experiments show

that CN is important in AON.

Impact of aspect ratio. We studied the impact of aspect

ratio by experiments, but did not observed obvious negative

impact for images with a large aspect ratio. Compared to the

previous works [31, 32], the enlarging/shrinking operation

in height does not obviously affect recognition results of

horizontal texts with a large aspect ratio.

Integrating with only two directional feature se-

quence. It is not reasonable to integrate only two direction-

al sequences of features. For example, as shown in Fig. 1,

if we integrate the right-left and down-top directional se-

quences of features to generate the final feature sequence,

the visual features of ‘p’ and ‘d’ will be frame-wisely mixed

up due to the weighting mechanism of FG.

The computational cost of AON. Computational cost

and the number of parameters are major concerns in

resource-constrained scenarios such as embedded computer

systems. Comparing to the Naive base model, the introduc-

ing of AON increases parameters and computational cost

(twice of Naive base). However, the STN base needs triple

parameters and computational cost of Naive base.

7. Conclusion

In this work, we propose a novel method to recognize

arbitrarily oriented texts by 1) devising an arbitrary orienta-

tion network to extract visual features of characters in four

directions and the character placement clues, 2) using a fil-

ter gate mechanism to combine the four-direction sequences

of features, and 3) employing an attention-based decoder

for generating character sequence. Different from most ex-

isting methods, our method can effectively recognize both

irregular and regular texts from images. Experiments over

both regular and irregular benchmarks validate the superior-

ity of the proposed method. In the future, we plan to extend

the proposed idea to other related tasks.
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