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Abstract

Inspired by the recent neuroscience studies on the left-

right asymmetry of the human brain in processing low and

high spatial frequency information, this paper introduces a

dual skipping network which carries out coarse-to-fine ob-

ject categorization. Such a network has two branches to si-

multaneously deal with both coarse and fine-grained clas-

sification tasks. Specifically, we propose a layer-skipping

mechanism that learns a gating network to predict which

layers to skip in the testing stage. This layer-skipping mech-

anism endows the network with good flexibility and capabil-

ity in practice. Evaluations are conducted on several widely

used coarse-to-fine object categorization benchmarks, and

promising results are achieved by our proposed network

model.

1. Introduction

Though there are still lots of arguments towards the ex-

actly where and how visual analysis is processed within the

human brain, there is considerable evidence showing that

visual analysis takes place in a predominately and default

coarse-to-fine sequence [16] as shown in Fig. 1(1). The

coarse-to-fine perception is also proportional to the length

of the cerebral circuit path, i.e. time. For example, when the

image of Fig. 1(1) is very quickly shown to a person, only

very coarse visual stimuli can be perceived, such as sand

and umbrella, which is usually of low spatial frequencies.

Nevertheless, given a longer duration, fine-grained details

with relatively higher spatial frequencies can be perceived.

It is natural to ask whether our network has such a mecha-

nism of predicting coarse information with short paths, and

fine visual stimuli with longer paths.

Another question is how the coarse-to-fine sequence is

processed in the human brain? Recent biological experi-
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Figure 1. (1) The coarse-to-fine sequence. (2-A) Example im-

ages to assess cerebral asymmetries for spatial frequencies. (2-

B) Hemispheric specialization: the left hemisphere (LH)/the right

hemisphere (RH) are predominantly involved in the local/global

letter identification. Figures from [16].

ments [16, 17, 34] reveal that functions of the two cere-

bral hemispheres are not exactly the same in processing of

spatial frequency information. The left hemisphere (LH)

and the right hemisphere (RH) are predominantly involved

in the high and low spatial frequency processing respec-

tively. As illustrated in Fig. 1(2-A), the top-left figure is

a large global letter made up of small local letters, called

a Navon figure; the top-right figure is a scene image. The

bottom-left and bottom-right are sinusoidal gratings for the

images above. In Fig. 1(2-B), given the same input visual

stimuli, the highly activated regions in LH and RH are cor-

responding to high (in red) and low (in blue) spatial fre-

quencies. Additionally, from the view of the evolution pro-

cess, the left-right asymmetry of the brain structure may be

mostly caused by the long-term asymmetrical functions per-
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formed [28].

Some researchers [12] believe that biological plausibil-

ity can be used as a guide to design intelligent systems. In

the light of this understanding and to mimic the hemispheric

specialization, we propose a dual skipping network, which

is a left-right asymmetric layer skippable network. Our net-

work can enable the coarse-to-fine object categorization in

a single framework. The whole network is structured in

Fig. 2. Our network has two branches by referring to LH

and RH respectively. Both branches have roughly the same

initialized layers and structures. The networks are built by

stacking skip-dense blocks, namely groups of densely con-

nected convolutional layers which can be dropped dynami-

cally. The unique connections are built by learning varying

knowledge or abstraction. Transition layers aim at manipu-

lating the capacity of features learned from preceding lay-

ers. The functionality of each branch is “memorized” from

the given input and supervised information in the learning

stage. The “Guide” arrow refers to a top-down facilitation

of recognition that feeds the high-level information from

the coarse branch to relatively lower-level visual process-

ing modules of the fine branch inspired by a similar mech-

anism in the brain [16, 32, 6]. Though spatial frequency

cannot be equated with the granularity of recognition, the

dual skipping network might work similar to hemispheric

specialization depending on the granularity of supervised

information.

The proposed layer-skipping mechanism for a single in-

put is to utilize only a part of layers in the deep model for

the purpose of computation sparsity and flexibility. The or-

ganisms like humans tend to use their energy “wisely” for

the recognition and categorization task given visual stimuli

[28]. Some recent studies [40] in neuroscience also showed

that the synaptic cross-layer connectivity is common in the

human neural system, especially in the same abstraction

level. In contrast, classical deep convolutional neural net-

works (e.g. AlexNet [8], VGG [35]) do not have this mech-

anism and have to run the entire network at inference time.

On the other hand, the recent study [5] found that most of

data samples are easy to be correctly classified without the

utilization of very deep networks. In particular, we propose

an affiliated gating network that learns to predict whether

skipping several convolutional layers in the testing stage.

Our networks are evaluated on three datasets in the coarse-

to-fine object recognition tasks. The results show the effec-

tiveness of the proposed network.

Contributions. In this paper, inspired by the left-right

asymmetry of the brain, we propose a dual skipping net-

work. The novelties come from several points: (1) The left

and right branch network structures towards solving coarse-

to-fine classification are proposed. Our network is inspired

by the recent theory in neuroscience [16]. (2) A novel layer-

skipping mechanism is introduced to skip some layers at the

testing stage. (3) We employ the top-down feedback facili-

tation to guide the fine-grained classification via high-level

global semantic information. (4) Additionally, we create a

novel dataset named small-big MNIST (sb-MNIST) dataset

with the hope of facilitating the research on this topic.

2. Related Work

Hemispheric Specialization. Left-right asymmetry of

the brain has been widely studied through psychological ex-

amination and functional imaging in primates [40]. Recent

research showed that both shapes of neurons and density

of neurotransmitter receptor expression depend on the lat-

erality of presynaptic origin [17, 34]. There is also a proof

in terms of information transfer that indicates the connec-

tivity changes between and within the left and right infer-

otemporal cortexes as a result of recognition learning [11].

Learning also differs in both local and population as well

as theta-nested gamma frequency oscillations in both hemi-

spheres and there is greater synchronization of theta across

electrodes in the right IT than the left IT [18]. It has re-

cently been argued that the left hemisphere specializes in

controlling routine and tends to focus on local aspects of

the stimulus while the right hemisphere specializes in re-

sponding to unexpected stimuli and tends to deal with the

global environment [41]. For more information, we refer to

one recent survey paper [16].

Deep Architectures. Starting with the notable victory

of AlexNet [21], ImageNet [8] classification contest has

boomed the exploration of deep CNN architectures. Later,

[13] proposed deep Residual Networks (ResNets) which

mapped lower-layer features into deeper layers by shortcut

connections with element-wise addition, making training up

to hundreds or even thousands of layers feasible. Prior to

this work, Highway Networks [38] devised shortcut connec-

tions with input-dependent gating units. Recently, [15] pro-

posed a compact architecture called DenseNet that further

integrated shortcut connections to make early layers con-

catenated to later layers. The simple dense connectivity pat-

tern surprisedly achieves the state-of-the-art accuracy with

fewer parameters. Different from the shortcut connections

used in DenseNets and ResNets, our layer-skipping mech-

anism is learned to predict whether skipping one particular

layer in the testing stage. The skipping layer mechanism is

inspired by the fact that on one-time cognition process, only

1% of total neurons in the human brain are used [28].

Coarse-to-Fine Recognition. The coarse-to-fine recogni-

tion process is natural and favored by researchers [46, 47,

29, 7] and it is very useful in real-world applications. Feed-

back Networks [47] developed a coarse-to-fine representa-

tion via recurrent convolutional operations; such that the

current iteration’s output gives a feedback to the prediction

at the next iteration. With the different emphasis on biologi-

cal mechanisms, our design is also a coarse-to-fine formula-
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tion but in a feedforward fashion. Additionally, our coarse-

level categorization will guide the fine-level task. HD-CNN

[46] learned a hierarchical structure of classes by group-

ing fine categories into coarse classes and embedded deep

CNNs into the category hierarchy for better fine-grained

prediction. In contrast, our two-branch model deals with

coarse and fine-grained classes simultaneously. Relatedly,

research on fine-grained classification [10, 45, 26, 48, 44]

has been drawing a lot of attention over the years.

Conditional Computation. Some efforts have been made

to bypass the computational cost of deep models in the test-

ing stage, such as network compression [49] and condi-

tional computation (CC) [4]. The CC often refers to the

input-dependent activation for neurons or unit blocks, re-

sulting in partial involvement fashion for neural networks.

The CC learns to drop some data points or blocks within a

feature map and thus it can be taken as an adaptive variant

of dropout. [4] introduced Stochastic Times Smooth neu-

rons as binary gates in a deep neural network and termed

the straight-through estimator whose gradient is learned by

heuristically back-propagating through the threshold func-

tion. [1] proposed a ‘standout’ technique which uses an

auxiliary binary belief network to compute the dropout

probability for each node. [3] tackled the problem of se-

lectively activating blocks of units via reinforcement learn-

ing. Later, [31] used a Recurrent Neural Network (RNN)

controller to examine and constrain intermediate activations

of a network at test-time. [9] incorporates attention into

ResNets for learning an image-dependent early-stop policy

in residual units, both in layer level and feature block level.

Once stopped, the following layers in the same layer group

will not be executed. While our mechanism is to predict

whether each one particular layer should be skipped or not,

it assigns more selectivity for the forward path.

Compared with conditional computation, our layer-

skipping mechanism is different in two points: (1) CC

learns to drop out some units in feature maps, whilst our gat-

ing network learns to predict whether skipping the layers.

(2) CC usually employs reinforcement learning algorithms

which have in-differentiable loss functions and need huge

computational cost for policy search; in contrast, our gating

network is a differentiable function which can be used for

individual layers in our network.

3. Model

The presented dual skipping network is overviewed in

Fig. 2. The two subsets are shared with the same visual

inputs and built upon several types of modules, namely,

the shared convolutional layer, skip-dense blocks, transi-

tion layers, pooling and classification layers. The motiva-

tion and structure of each building block are discussed in

this section.

Shared convolutional layer. The input image is firstly
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Figure 2. Dual Skipping Networks: the left-right asymmet-

ric architecture. (i) Two homogeneous subnets derived from

DenseNets process input visual information asymmetrically. One

branch is to predict coarse/global level object classes, the other

is to predict fine/local level object classes. They share the same

preliminary visual processing module, namely the shared convo-

lutional layer. Each subnet is stacked mainly by abstraction blocks

and transition layers iteratively. Linear layers transform features

into predictions. The top-down guide link delivers feedback infor-

mation from a high abstraction level of the coarse/global subnet to

a lower abstraction level of the fine/local one. (ii) Each skip-dense

block contains several skippable densely connected convolutional

layers controlled by a cheap affiliated gating network.

processed by the convolutional layer (shared by two fol-

lowing subnets) to extract the low-level visual signal. Such

convolutional layers can be biologically corresponding to

the primary visual cortex V1 [30]. The two left and right

subnets solve the fine-grained and coarse classification re-

spectively.

Left/right subnet. Each subnet is stacked mainly by

skip-dense blocks and transition layers iteratively. As in

Fig. 2 (right), we define the skip-dense block which can

be viewed as a level of visual concept abstraction; and the

gating network is learned whether to block the information

flow passing to dense layer. Each transition has convolu-

tional operations with 1 × 1 filter size and pooling, which

aims at changing the number and spatial size of feature

maps for the next skip-dense block. Both the left and right

subnets are almost equivalent in the general structure.
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Pooling and classification layers. The global average

pooling and linear classifier are added at the top of each

branch for the prediction tasks.

3.1. Skip­Dense Block

We give the structure details of a skip-dense block in

Fig. 2 (right). For the input pattern x from a shallower ab-

straction level, a shortcut connection is applied after each

dense layer. And the option of information flowing through

each dense layer is checked by a cheap gating network

which is input-dependent. The output pattern y is then pro-

cessed into the next transition layer and entered into the next

abstraction level.

Dense Layer. This type of convolutional layers comes

from DenseNet [15] or ResNet [13]. The difference be-

tween DenseNet and ResNet comes from the different com-

bination methods of shortcut connections, namely merge

functions here. Therefore, the merge operation of preceding

layers can be channel concatenation or element-wise addi-

tion, used in DenseNets [15] and ResNets [13] respectively.

In particular, the pre-activation unit [14] facilitates both of

the merge functions from our observation, thus used in our

proposed model. In general, the dense connectivity pattern

enables any layer to more easily access proceeding layers

and thus use make individual layers additionally supervised

from the shorter connections.

Residual networks have been found behaving like en-

sembling numerous shallower paths [42]. Idling few layers

in these networks may not dramatically degrade the perfor-

mance. Intuitively, the tremendous number of hidden paths

may be redundant; an efficient path selection mechanism

is essential if we want to reduce the computational cost in

the testing stage. Mathematically, there are exponentially

many hidden paths in these networks. For example, for L

dense layers, we can obtain 2L hidden paths. Dynamic path

selection could pursue the specialized and flexible forma-

tions of nested convolution operations. In neuroscience, the

experimental evidence [6, 32] also indicates that the path

optimization may exist in the parvocellular pathways of the

left and right hemispheres when the low and high-pass sig-

nals are processed. This supports the motivation of our path

selection from the viewpoint of neuroscience.

Gating network. The gating network is introduced for

path selection. Particularly, our gating network is learned to

judge whether or not skipping the convolutional layer from

the training data. It can also be taken as one special type of

regularizations: the gating network should be inclined not to

skip too many layers if the input data is complex and vice

versa. Here, we utilize a N×1 fully-connected layer for the

N -dimensional input features and then a threshold function

is applied to the scalar output. We preprocess the input fea-

tures by average pooling in practice. The parameters of the

fully-connected layer are learned from the training set and

the threshold function is designed to control the learning

process.

Threshold function of gating network. The policy of de-

signing and training the threshold function as an estimator

is very critical to the success of the skipping mechanism.

Luckily, the magnitude of a unit often determines its impor-

tance for the categorization task in CNNs. Based on this

observation, we derive a simple end-to-end training scheme

for the entire network. Specifically, the output of threshold

function is multiplied with each unit of the convolutional

layer output, which affects the layer importance of catego-

rization.

The key ingredient of gating network is the threshold

function. Given an activation or input, the threshold func-

tion needs to judge whether skipping the following dense

layer or not as in Fig. 2 (right). Intuitively, the threshold

function performs as a binary classifier. In here, we choose

hard sigmoid function

hard sigm(x) = max

(

0,min

(

kx+
1

2
, 1

))

(1)

for its first derivative in (0, 1) keeps constant, which en-

courages more flexible path searching compared with the

sigmoid function. Besides, for the outputs clipped to 0 or

1, we borrow the idea of straight-through estimator [4] to

make the error backpropagated through the threshold func-

tion. Thus it is always differentiable.

The slope variable k is the key parameter to determine

the output scaling of dense layers. The k is initialized at

1 and increased by a fixed value every epoch. As results,

the learned curve of gating will be slope enough to make

the outputs of gating network either 0 or 1 in the training

process. It can be used as an approximation of step func-

tion that emits binary decisions. However, the large slope

variable would make the weight training of gating modules

unstable. Again, we use the straight-through estimator to

keep k equal to one in backward mode.

The mutual adjustment and regularization of gating and

dense layers abbreviate the problem of training difficulty

and hard convergence of reinforcement learning [3]. For in-

ference, the gating network makes discrete binary decisions

to save computation.

3.2. Guide

The faster coarse/global subnet can guide the slower

fine/local subnet with global context information of objects

in a top-down fashion, inspired from the LSF-based top-

down facilitation of recognition in the visual cortex pro-

posed by [2]. In here, we select the output features of the

last skip-dense block in the coarse branch to guide the last

transition layer in the fine branch. Specifically, the output

features are bilinear upsampled and concatenated into the

input features of the last transition layer in the local subnet.
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Figure 3. Illustrated examples of sb-MNIST dataset. Each “big”

figure is composed of copies of a “small” figure.

The injection of feedback information from the coarse level

can be beneficial for the fine-grained object categorization.

4. Experiments

Datasets. We conduct experiments on four datasets,

namely sb-MNIST, CIFAR-100 [20] and CUB-200-2011

[43], Stanford Cars [19].

sb-MNIST. Inspired by the experiments with Navon figures

in [16], we build sb-MNIST dataset by randomly selecting

two images from MNIST dataset and using the first one as

the local figure to construct the second one. We generate

12,000 training images and 2,000 testing images for build-

ing the dataset. Some examples are illustrated in Fig. 3.

CIFAR-100 has 60,000 images from 100 fine-grained

classes, which are further divided into 20 coarse-level

classes. The image size is 32 × 32. We use the standard

training/testing split1.

CUB-200-2011 contains 11,788 bird images of 200 fine-

grained classes. Strictly following the biological taxonomy,

we collect 39 coarse labels in total by the family names of

the 200 bird species. For instance, the black-footed alba-

trosses belong to Diomedeidae family. We use the default

training/testing split.

Stanford Cars is another fine-grained classification dataset.

It contains 16,185 car images of 196 fine classes (e.g. Tesla

Model S Sedan 2012 or Audi S5 Coupe 2012) which de-

scribe the properties such as Maker, Model, Year of the car.

In terms of the basic car types defined in [47], it can be

categorized into 7 coarse classes containing Sedan, SUV,

Coupe, Convertible, Pickup, Hatchback and Wagon. The

default training/test split is used here.

Competitors. We compare the following several base-

lines. (1) Feedback Net [47]: as the only work of enabling

the coarse-to-fine classification, it is a feedback based learn-

ing architecture in which each representation is formed in an

iterative manner based on the feedback received from pre-

vious iteration’s output. The network is instantiated using

existing RNNs. Thus Feedback Net has a better classifica-

tion performance than the standard CNNs. (2) DenseNet

[15]: DenseNet connects each layer to all of its preced-

ing layers in a feed-forward fashion; and the design of our

skip-dense block is derived from DenseNet. Thus compar-

ing with DenseNet, our network has two new components:

the gating network to skip some layers dynamically and the

1https://www.cs.toronto.edu/˜kriz/cifar.html

two-branch structure for solving the coarse-to-fine classi-

fication. (3) ResNet [13]: it is an extension of traditional

CNNs by learning the residual of each layer to enable the

network of being trained substantially deeper than previous

CNNs.

Implementation details. The merge types of our mod-

els can be channel concatenation or element-wise addition,

“Concat” and “Add” for short. In the experiments, we

configure our model based on Concat merge type, namely

DenseNets as default. The shared convolution layer with

output channels of twice the growth rate is performed to

the input visual images. We replace the outputs of skipped

dense layers with features maps of the same size filled with

zero at inference.

For sb-MNIST, we configure 4 skip-dense blocks each

with 3 dense layers and growth rate as 6. We do not use

guide link for sb-MNIST dataset. For CIFAR-100, we ver-

ify our method with different model settings. Two set-

tings of Concat merge type are based on DenseNet-40 and

DenseNet-BC-100 [15], denoted as Concat-40 and Concat-

BC-100 respectively. We also report the results of our

model with Add merge type. Referred as Add-166, the

model is built very similar to ResNet-164 [14], except for

Add-166 including two extra transition layers. Data prepro-

cessing procedure and initializations follow [15, 14].

For CUB-200-2011 and Stanford Cars, our model is built

on DenseNet-121 [15]. The input images are resized to

360 × 360 for training and test on both datasets. We in-

corporate the ImageNet pre-trained DenseNet-121 weights

into our model as network initialization. Mini-batch size is

set to 16, learning rate is started with 0.01. To save GPU

memory, we use the memory-efficient implementation of

DenseNets [33] here. The experiments are conducted with-

out using any bounding boxes or part annotations.

All of our models are trained using SGD with a cosine

annealing learning rate schedule [27] and Nesterov momen-

tum [39] of 0.9 without dampening. The models are trained

jointly with or without gating modules, then fine-tuned with

gating. We found that joint training as a start speeds up the

whole process and makes the performance more stable. We

do gradient clipping with L2 norm threshold 1.0 for avoid-

ing gradient explosion. For the gating modules whose out-

puts are all 0 or 1 in a batch, we apply auxiliary binary cross

entropy loss on them to guarantee functioning of the gat-

ing modules. All the code is implemented in PyTorch and

run on Linux machines equipped with the NVIDIA GeForce

GTX 1080Ti graphics cards.

4.1. Main Results and Discussions

4.1.1 sb-MNIST

The results on this dataset are compared in Tab. 1. The “Lo-

cal” and “Global” indicate the classification of “small” fig-
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Methods
Accuracy (%)

Local Global

LeNet [23] 90.3 70.2

DenseNet 98.3 97.2

ResNet 98.1 96.8

Ours 99.1 99.1

Table 1. Results on sb-MNIST dataset. Our network has 17 lay-

ers and averagely ∼20% layers can be skipped in the testing step.

DenseNet and ResNet have 40 and 18 layers respectively.

Methods
Accuracy (%)

Params
Local Global

[36] 72.6 – –

All-CNN [37] 66.3 – –

Net-in-Net [25] 64.3 – –

Deeply Sup. Net [24] 65.4 – –

FractalNet [22] 76.7 – 38.6M

Highway [38] 67.6 – –

Feedback Net [47] 71.1 80.8 1.9M

DenseNet-40 [15] 75.6 80.9 1.0M×2

DenseNet-BC-100 [15] 77.7 83.0 0.8M×2

ResNet-164 [14] 75.7 81.4 1.7M×2

Concat-40 75.4 82.9 0.9M+0.7M

Concat-BC-100 76.9 83.4 0.7M+0.6M

Add-166 75.8 82.5 1.5M+0.5M

Table 2. Results on CIFAR-100 dataset. The virtual depth of

Feedback Net is 48, indicating the number of unfolded layers in

Feedback Net, reported from [47]. “×2” indicates two separate

branches for two tasks. a + b in the “Params” column represents

the averagely used parameters a, b in Local and Global branches

of our models. The Global results of DenseNet and ResNet are run

by ourselves.

ures and “big” figures. On this dataset, DenseNet, ResNet

and LeNet are run separately for the both “Local” and

“Global” tasks. The classification of “small” and “big” fig-

ures in the image corresponds to the identification task of

high and low spatial frequency processing [16]. This toy

dataset gives us a general understanding of it.

Judging from the results in Tab. 1, our method out-

performs other methods by a clear margin. It is largely

due to two reasons. Firstly, the skip-dense blocks can ef-

ficiently learn the visual concepts; secondly, the gating net-

work learns to find optimal path routing for avoiding suffer-

ing from both overfitting and underfitting. The performance

of original version LeNet is greatly suffered from the small

number of layers and convolutional filters while DenseNet

and ResNet show slight overfitting. Averagely, our model

uses 76% of all the parameters as 15% and 31% of dense

layers in “Local” and “Global” branches are skipped. Due

to a portion of layers skipped in testing step, the total run-

ning time and running cost are lower.

4.1.2 CIFAR-100

We compare the results in Tab. 2. We compare Feedback

Net, DenseNet and ResNet as well as other previous works.

The “Local” and “Global” indicate the classification tasks

at fine-grained and coarse levels individually. DenseNet

and ResNet are run separately for the “Local” and “Global”

tasks respectively.

In Tab. 2, our models outperform several baselines and

show comparable performances to the corresponding base

models with much less computational cost. Compared with

the Feedback Net, Concat-40 gains the accuracy margins of

4.3% and 2.1% on “Local” and “Global” individually with

relatively fewer parameters. This implies that our network

has the better capability of learning the coarse-to-fine in-

formation by the two branches. Though Feedback Net has

a shallower physical depth 12, it contains more parameters

and consumes more computation cost. This difference is

largely caused by the different architectures of two types of

networks: Feedback Net is built upon the recurrent neural

network, while our network is a forward network with the

strategy of skipping some layers. Thus, our network is more

efficient in term of computational cost and running time.

On the “Global” task, our network can still achieve a

modest improvement over other baselines. One possible ex-

planation is that since the “Global” task is relatively easy,

the networks with standard layers may tend to overfit the

training data; in contrast, our gating network can skip some

layers for better regularization.

4.1.3 CUB-200-2011 and Stanford Cars datasets

We compare the results on CUB-200-2011 and Stanford

cars datasets in Tab. 3 and Tab. 4 respectively. The “Local”

and “Global” tasks still refer to the fine-grained and coarse-

level classification. Our network uses 121 layers and aver-

agely ∼30% and ∼13% of dense layers of global and local

branches can be skipped in the testing step.

On the coarse classification, our result is better than

those baselines. On the fine-grained task, our models

achieve results comparable to the state-of-the-art [10] with

much fewer parameters. On CUB-200-2011 dataset, our

result is still better than that of MG-CNN, Bilinear-CNN

and RA-CNN (scale 1+2) which employ multiple VGG net-

works [35] for classification, showing the effectiveness of

our compact structure. Comparably, each sub-network of

Bilinear-CNN uses the pre-trained VGG network and there

is no information flow between two networks until the final

fusion layer.

4.2. Ablation Studies on CIFAR­100 dataset

We also conduct some ablation studies to further evaluate

and explain the impacts on performances by choosing key

settings in our models.
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Methods
Accuracy (%)

Params
Local Global

DenseNet-121 [15] 81.9 92.3 8M×2

ResNet-34 [13] 79.3 91.8 22M×2

MG-CNN [44] 81.7 – ≥144M

Bilinear-CNN [26] 84.1 – ≥144M

RA-CNN (scale 1+2) [10] 84.7 – ≥144M

RA-CNN (scale 1+2+3) [10] 85.3 – ≥144M

Ours 84.9 93.4 6M+5M

Table 3. Results on CUB-200-2011 dataset. The results of

DenseNet-121 and ResNet-34 are run by ourselves.

Methods
Accuracy (%)

Params
Local Global

Feedback Net [47] 53.4 87.4 1.5M

DenseNet-121 [15] 90.5 92.8 8M×2

ResNet-34 [13] 89.3 92.0 22M×2

Bilinear-CNN [26] 91.3 – ≥144M

RA-CNN (scale 1+2) [10] 91.8 – ≥144M

RA-CNN (scale 1+2+3) [10] 92.5 – ≥144M

Ours 92.0 93.8 6M+5M

Table 4. Results on Stanford Cars dataset. The results of

DenseNet-121 and ResNet-34 are run by ourselves.

4.2.1 Merge types and gating functions

We compare the different choices of merge types and gat-

ing functions. For merge types, we use Concat-BC-100 and

Add-166 for Concat and Add types respectively since the

two models have roughly the same number of bottleneck

dense layers (48 and 54). For gating functions, we compare

the proposed hard sigm with soft sigm(x) = 1

1+e−x
.

The results are compared in Tab. 5. Two evaluation met-

rics have been used here, namely accuracy and skip ratio.

The skip ratio is computed by the number of skipped layers

dividing the total number of dense layers in each individual

branch.

Judging from the results in Tab. 5, the combination of

channel concatenation for merge and gating via hard sig-

moid is our best network configuration as it achieves the

best performance with the fewest parameters. Besides, we

notice that hard sigm is generally better than soft sigm for

both merge types on most cases, indicating that the former

possesses a stronger ability of routing path searching.

We compare the skip ratios on “Local” and “Global”

tasks. In testing stages, the coarse branch of our network

will skip much more layers than its sibling fine branch. This

is largely due to the fact that the “Global” task is easy, and

using relative a few layers of coarse branch is good enough

to grasp the coarse-level information. Interestingly, this

point follows the coarse-to-fine perception in the recent neu-

ral science study [16] that low spatial frequency information

is predominantly processed by right hemisphere faster with

relatively shorter paths in the cerebral system.

Merge Gating
Accuracy (%) Skip Ratio (%)

Local Global Local Global

concat
hard 76.9 83.4 15.3 29.7

soft 73.8 79.7 15.4 30.5

add
hard 75.8 82.5 10.4 39.8

soft 74.2 83.1 6.1 23.5

Table 5. Ablation study on CIFAR-100 dataset. ‘concat’,

‘add’,‘hard’,‘soft’ indicate the channel concatenation, element-

wise addition, soft sigmoid function and hard sigmoid function.
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Figure 4. Local and Global layer-skipping ratios and error rates

under different gating thresholds. The slope variable is properly

scaled for the smooth change of the skip ratios.

4.2.2 Skip ratio vs. error rate

To further verify the flexibility of our model, we take the

Concat-BC-100 model with hard sigm for gating as the

study object since it achieves the excellent performance

with very few parameters. We vary the threshold of gating

network which can affect the layer-skipping ratios and error

rates of “Local” and “Global” tasks, as reported in Fig. 4.

From the results, we can conclude that both branches are

capable of producing acceptable accuracy within a certain

range of gating thresholds. As expected, the optimal range

of skip ratios for two branches are not same due to the dif-

ferent granularity level of recognition tasks. For the Global

branch, 0% − 35% is the optimal skip ratio range. For the

Local branch, 0% − 20% is the optimal skip ratio range,

which is more strict than the Global branch. The good thing

is that the learned gating module at each dense layer makes

the performance of two branches keep consistent under var-

ious user-defined thresholds. As the gating threshold value

is raised above 0.5, the skip ratios of two branches increase

rapidly and the error rates rise synchronously, meaning that

the network becomes disordered and weak in expressiv-

ity. We also notice that the performances of two trained

branches without or with little layer skipping keep almost

undamaged even we didn’t train the full network without
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Figure 5. Feature visualization at shared and transition layers for

Global and Local branches.

gating when fine-tuning. We conjecture two reasons behind

this intriguing phenomenon. First, the shortcut connections

make the model very stable and robust to the fine weight up-

dating. The second reason is that there still exist some data

samples using the whole dense layers when training with

gating.

4.3. Feature Visualization

Investigating the responses of intermediate feature maps

at different abstraction levels facilitates our understanding

on nueral networks. Especially, the asymmetry of two

branches leads to discrepant manipulatations on the given

input. Here, we do feature visualization on different ab-

straction levels. Technically, we extract the output features

from the first shared convolutional layer and transition lay-

ers of two branches. Then the absolute values of the feature

maps are applied over by channel-wise average pooling and

scaled to [0, 1] for visualization.

A case study on sb-MNIST dataset is shown in Fig. 5.

From the visualization results, we can observe that the

first shared features hold both global and local information.

Then Global branch cares more about global context infor-

mation and grasps the shape or style of big figure “8” very

quickly at transition layer 1 and 2. Then the transformed

features at transition layer 3 of the Global branch represent

the semantic information of the big figure. While the Lo-

cal branch focuses more on the local details of the big fig-

ure and neglects the background instantly at transition layer

1. And it keeps the shape of the big figure “8” almost un-

changed until the last transition layer, which means the Lo-

cal branch does not learn the pattern of the big figure. In-

stead, it transforms the local details, namely the features of

small figures, into the final representation.

5. Conclusion

Inspired by the recent study on the hemispheric special-

ization and coarse-to-fine perception, we proposed a novel

left-right asymmetric layer skippable network for coarse-

to-fine object categorization. We leveraged a new design

philosophy to make this network simultaneously classify

coarse and fine-grained classes. In addition, we proposed

the layer-skipping behavior of densely connected convolu-

tional layers controlled by an auxiliary gating network. The

experiments conducted on three datasets validate the per-

formance, showing the promising results of our proposed

network.
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