
PoTion: Pose MoTion Representation for Action Recognition

Vasileios Choutas1,2 Philippe Weinzaepfel2 Jérôme Revaud2 Cordelia Schmid1

1Inria∗ 2NAVER LABS Europe

Abstract

Most state-of-the-art methods for action recognition rely

on a two-stream architecture that processes appearance and

motion independently. In this paper, we claim that consider-

ing them jointly offers rich information for action recogni-

tion. We introduce a novel representation that gracefully en-

codes the movement of some semantic keypoints. We use the

human joints as these keypoints and term our Pose moTion

representation PoTion. Specifically, we first run a state-

of-the-art human pose estimator [4] and extract heatmaps

for the human joints in each frame. We obtain our PoTion

representation by temporally aggregating these probability

maps. This is achieved by ‘colorizing’ each of them de-

pending on the relative time of the frames in the video clip

and summing them. This fixed-size representation for an en-

tire video clip is suitable to classify actions using a shallow

convolutional neural network.

Our experimental evaluation shows that PoTion outper-

forms other state-of-the-art pose representations [6, 48].

Furthermore, it is complementary to standard appearance

and motion streams. When combining PoTion with the

recent two-stream I3D approach [5], we obtain state-of-

the-art performance on the JHMDB, HMDB and UCF101

datasets.

1. Introduction

Significant progress has been made in action recognition

over the past decade thanks to the emergence of Convolu-

tional Neural Networks (CNNs) [5, 32, 39, 40] that have

gradually replaced hand-crafted features [22, 25, 42]. CNN

architectures are either based on spatio-temporal convolu-

tions [39, 40], recurrent neural networks [8] or two-stream

architectures [32, 43]. Two-stream approaches train two in-

dependent CNNs, one operating on the appearance using

RGB data, the other one processing motion based on op-

tical flow images. Recently, Carreira and Zisserman [5]

obtained state-of-the-art performance on trimmed action

classification by proposing a two-stream architecture with

∗Univ. Grenoble Alpes, Inria, CNRS, INPG, LJK, Grenoble, France.

right foot

right handnose

left elbow

right foot

right handnose

left elbow

...

...

right foot

right handnose

left elbow

...

...

right foot

right handnose

left elbow

...

...

pose

estimation
color

coding

temporal

aggregationt=1

t=T

frame 1

frame t

frame T

stacking

joint

heatmaps

...

...

PoTion

Figure 1. Illustration of our PoTion representation. Given a video,

we extract joint heatmaps for each frame and colorize them using

a color that depends on the relative time in the video clip. For each

joint, we aggregate them to obtain the clip-level PoTion represen-

tation with fixed dimension.

spatio-temporal convolutions (I3D) and by pretraining on

the large-scale Kinetics dataset [47].

Other modalities can easily be added to a multi-stream

architecture. Human pose is certainly an important cue for

action recognition [6, 19, 48] with complementary infor-

mation to appearance and motion. A vast portion of the

literature on using human poses for action recognition is

dedicated to 3D skeleton input [10, 27, 31], but these ap-

proaches remain limited to the case where the 3D skeleton

data is available. 2D poses have been used by a few recent

approaches. Some of them assume that the pose of the ac-

tor is fully-visible and use either hand-crafted features [19]

or CNNs on patches around the human joints [3, 6]. How-

ever, this cannot be directly applied to videos in-the-wild

that contain multiple actors, occlusions and truncations.

Zolfaghari et al. [48] proposed a pose stream that operates

on semantic segmentation maps of human body parts. They

are obtained using a fully-convolutional network and are

then classified using a spatio-temporal CNN.

In this paper, we propose to focus on the movement of

a few relevant keypoints over an entire video clip. Model-

ing the motion of a few keypoints stands in contrast to the

17024

usual processing of the optical flow in which all pixels are

given the same importance independently of their seman-

tics. A natural choice for these keypoints are human joints.

We introduce a fixed-sized representation that encodes Pose

moTion, called PoTion. Using a clip-level representation

allows to capture long-term dependencies, in contrast to

most approaches that are limited to frames [32, 43] or snip-

pets [5, 39, 48]. Moreover, our representation is fixed-size,

i.e., it does not depend on the duration of the video clip.

It can thus be passed to a conventional CNN for classifica-

tion without having to resort to recurrent networks or more

sophisticated schemes.

Figure 1 gives an overview of our method for building

the PoTion representation. We first run a state-of-the-art hu-

man pose estimator [4] in every frame and obtain heatmaps

for every human joint. These heatmaps encode the proba-

bilities of each pixel to contain a particular joint. We col-

orize these heatmaps using a color that depends on the rel-

ative time of the frame in the video clip. For each joint, we

sum the colorized heatmaps over all frames to obtain the

PoTion representation for the entire video clip. Given this

representation, we train a shallow CNN architecture with

6 convolutional layers and one fully-connected layer to per-

form action classification. We show that this network can be

trained from scratch and outperforms other pose representa-

tions [6, 48]. Moreover, as the network is shallow and takes

as input a compact representation of the entire video clip, it

is extremely fast to train, e.g. only 4 hours on a single GPU

for HMDB, while standard two-stream approaches require

several days of training and a careful initialization [5, 43].

In addition, PoTion is complementary to the standard ap-

pearance and motion streams. When combined with I3D [5]

on RGB and optical flow, we obtain state-of-the-art perfor-

mance on JHMDB, HMDB, UCF101. We also show that

it helps for classes with clear motion patterns on the most

recent and challenging Kinetics benchmark.

In summary, we make the following contributions:

• We propose a novel clip-level representation that encodes

human pose motion, called PoTion.

• We extensively study the PoTion representation and CNN

architectures for action classification.

• We show that this representation can be combined with

the standard appearance and motion streams to obtain state-

of-the-art performance on challenging action recognition

benchmarks.

2. Related work

CNNs for action recognition. CNNs [16, 23, 33, 37] have

recently shown excellent performance in computer vision.

The successful image classification architectures have been

adapted to video processing along three lines: (a) with re-

current neural network [8, 36, 45], (b) with spatio-temporal

convolutions [11, 39, 40] or (c) by processing multiple

streams such as motion representation in addition to RGB

data [32, 43]. In particular, two-stream approaches have

shown promising results in different video understanding

tasks such as video classification [12, 32, 43], action local-

ization [20, 30] and video segmentation [18, 38]. In this

case, two classification streams are trained independently

and combined at test time. The first one operates on the ap-

pearance by using RGB data as input. The second one is

based on the motion, taking as input the optical flow that

is computed with off-the-shelf methods [2, 46], converted

into images and stacked over several frames. Feichtenhofer

et al. [12] trained the two streams end-to-end by fusing the

streams at different levels instead of training them indepen-

dently. The very recent I3D method [5] also relies on a two-

stream approach. The architecture handles video snippets

with spatio-temporal convolutions and pooling operators,

inflated from an image classification network with spatial

convolutional and pooling layers. Our PoTion representa-

tion is complementary to the two-stream approach based on

appearance and motion as it relies on human pose. Further-

more, it encodes information over the entire extent of the

video clip and captures long-term dependencies without any

limit induced by the temporal receptive field of the neurons.

Motion representation. In addition to the standard optical

flow input of two-stream networks, other motion representa-

tions for CNNs have been proposed. For instance, one vari-

ant consists of using as input the warped optical flow [43]

to account for pixel motion. Another strategy is to consider

the difference between RGB frames as input [43], which has

the advantage of avoiding optical flow computation with an

off-the-shelf method. However, this does not perform better

than optical flow and remains limited to short-term motion.

Some recent approaches aim at capturing long-term motion

dynamics [1, 36]. Sun et al. [36] enhance convolutional

LSTM by learning independent memory cell transitions for

each pixel. Similar to our approach, Bilen et al. [1] pro-

pose a clip-level representation for action recognition. They

obtain a RGB image per clip by encoding the evolution of

each individual pixel across time using a rank pooling ap-

proach. This image encodes the long-term motion of each

pixel and action classification is performed on this repre-

sentation using AlexNet [23]. In contrast, we compute a

fixed-size representation for the entire video clip that explic-

itly encodes the movements of a few semantic parts (human

joints). More recently, Diba et al. [7] linearly aggregate

CNN features trained for action classification over an entire

video clip. In this paper, we use CNN pose features with a

colorization scheme to aggregate the feature maps.

Pose representation. Human pose is a discriminative cue

for action recognition. There exists a vast literature on ac-

tion recognition from 3D skeleton data [10, 27, 31]. Most

of these approaches train a recurrent neural network on the

coordinates of the human joints. However, this requires to

7025

know the 3D coordinates of every single joint of the actor

in each frame. This does not generalize to videos in the

wild, which comprise occlusions, truncations and multiple

human actors. First attempts to use 2D poses were based

on hand-crafted features [19, 41, 44]. For instance, Jhuang

et al. [19] encode the relative position and motion of joints

with respect to the human center and scale. Wang et al. [41]

propose to group joints on body parts (e.g. left arm) and

use a bag-of-words to represent a sequence of poses. Xiao-

han et al. [44] use a similar strategy leveraging a hierarchy

of human body parts. However, these representations have

several limitations: (a) they require pose tracking across the

video, (b) features are hand-crafted, (c) they are not robust

to occlusion and truncation.

Several recent approaches propose to leverage the pose

to guide CNNs. Most of them use the joints to pool the

features [3, 6] or to define an attention mechanism [9, 13].

Chéron et al. [6] use CNNs trained on patches around hu-

man joints. Similarly, Cao et al. [3] pool features according

to joint locations. It is not clear how to handle multiple hu-

mans or occlusions. Du et al. [9] combine an end-to-end

recurrent network with a pose-attention mechanism for ac-

tion recognition. Their method requires pose keypoint su-

pervision in the training videos. Similarly, Girdhar and Ra-

manan [13] propose an attention module with a low-rank

second-order pooling approach and show that intermediate

supervision based on estimated poses helps video action

recognition. These pose-attention modules do not use the

relative position of multiple human joints over time, with-

out doubt an important cue for action recognition, whereas

our representation naturally contains this information.

Most similar to our approach, Zolfaghari et al. [48] pro-

pose to represent the motion of poses by learning a CNN

with spatio-temporal convolutions on human part semantic

segmentation inputs. This stream is combined with stan-

dard appearance and motion streams using a Markov chain

model. Our PoTion representation strongly outperforms

this part segmentation representation by focusing on the

motion of human joints over an entire video clip.

3. PoTion representation

In this section, we present our clip-level representation

that encodes pose motion, called PoTion. We present how

we obtain human joint heatmaps for each frame in Sec-

tion 3.1 and describe the colorization step in Section 3.2.

Finally, we discuss different aggregation schemes to obtain

the fixed-size clip-level representation in Section 3.3.

3.1. Extracting joint heatmaps

Most recent 2D pose estimation methods output human

joints heatmaps [4, 28] that indicate the estimated proba-

bility of each joint at each pixel. Our PoTion representa-

tion is based on such heatmaps. Here, we use Part Affin-

1 T

Frame index t

0.0

0.5

1.0
C = 2

o1(t)

o2(t)

1 T

Frame index t

0.0

0.5

1.0
C = 3

o1(t)

o2(t)

o3(t)

Figure 2. Illustration of the colorization scheme for C = 2 (left)

and C = 3 (right). Top: definition of each color channel oc(t)
when varying t. Bottom: corresponding color o(t).

ity Fields [4], a state-of-the-art approach for pose detection

in the wild. It can handle the presence of multiple people

and is robust to occlusion and truncation. It extracts joint

heatmaps as well as fields that represent the affinities be-

tween pairs of joints corresponding to bones, in order to

associate the different joint candidates into instances of hu-

man poses. In this work, we only use the joint heatmaps and

discard the pairwise affinities.

We run for each video frame Part Affinity Fields [4],

trained on the MS Coco dataset [26] for the keypoint lo-

calization task. We obtain as output 19 heatmaps: one for

each of the 18 human joints (three for each of the 4 limbs,

plus 5 on the head and one at the body center) and one for

the background. We denote by Ht
j the heatmap for the joint

j in frame t, i.e., Ht
j [x, y] is the likelihood of pixel (x, y)

containing joint j at frame t. The spatial resolution of this

heatmap is lower than the input, due to the stride of the net-

work. For instance, the architecture from [4] has a stride of

8, which leads to 46 × 46 heatmaps for an input image of

size 368 × 368. In practice, we rescale all heatmaps such

that they have the same size by setting the smallest dimen-

sion to 64 pixels. In the following, we denote the heatmap

width and height after rescaling by W and H respectively,

i.e., min(W,H) = 64. We also clamp the heatmaps values

to the range [0, 1], as output values can be slightly below 0
or above 1 despite being trained to regress probabilities.

3.2. Time­dependent heatmap colorization

After extracting the joint heatmaps in each frame, we

‘colorize’ them according to the relative time of this frame

in the video clip. More precisely, each heatmap Ht
j of di-

mension H ×W is transformed into an image Ct
j of dimen-

sion H ×W × C, i.e., with the same spatial resolution but

C channels. The C channels can be interpreted as color

channels, for instance an image with C = 3 channels can

be visualized with red, green and blue channels. In the fol-

lowing, we define a color as a C-dimensional tuple o ∈ R
C .

We apply the same color o(t) to all joint heatmaps at a given

frame t, i.e., the color only depends on t. Note that coloriza-

7026

Trajectory of joint j Uj Ij Nj

Figure 3. For the trajectory of a joint j observed at a few sampled locations (circles in the left figure), illustration of the different aggregation

schemes (Uj , Ij and Nj) using C = 3 (best viewed in color).

tion also works when multiple people are present and does

not require joint to be associated over time. We propose

different colorization schemes (i.e., definitions of o(t)) cor-

responding to various numbers of output channels C.

We start by presenting the proposed colorization scheme

for 2 channels (C = 2). For visualization we can for ex-

ample use red and green colors for channel 1 and 2, see

Figure 1. The main idea is to colorize the first frame in red,

the last one in green, and the middle one with equal propor-

tion (50%) of green and red. The exact proportion of red and

green is a linear function of the relative time t, i.e., t−1

T−1
, see

Figure 2 (left). For C = 2, we have o(t) = (t−1

T−1
, 1− t−1

T−1
).

The colorized heatmap of joint j for a pixel (x, y) and a

channel c at time t is given by:

C
t
j [x, y, c] = H

t
j [x, y] oc(t) , (1)

with oc(t) the c-th element of o(t).
This approach can be extended to any number of color

channels C. The idea is to split the T frames into C−1 reg-

ularly sampled intervals. In the first interval, we apply the

colorization scheme for 2 channels introduced above, us-

ing the first two channels, in the second interval we use the

second and third channels, and so on. We show the corre-

sponding colorization scheme for C = 3 in Figure 2 (right).

In this case, the T frames are split into two intervals: the

color varies from red to green in the first interval and then

from green to blue in the second one.

3.3. Aggregation of colorized heatmaps

The last step to build the clip-level PoTion representa-

tion is to aggregate the colorized heatmaps over time, see

right-hand side of Figure 1. Our goal is to obtain a fixed-

size representation that does not depend on the duration of

the video clip. We experiment with different ways of aggre-

gating the colorized heatmaps.

We first compute the sum of the colorized heatmaps over

time for each joint j, thus obtaining a C-channel image Sj :

Sj =
T∑

t=1

C
t
j . (2)

Note that the values of Sj depend on the number of frames

T . To obtain an invariant representation, we normalize each

channel c independently by dividing by the maximum value

over all pixels. We experimentally observe a similar per-

formance when using other normalization, such as dividing

each channel by T or by
∑

t o(t). We obtain a C-channel

image Uj , called the PoTion representation:

Uj [x, y, c] =
Sj [x, y, c]

maxx′,y′ Sj [x′, y′, c]
. (3)

Figure 3 (second column) shows the resulting image for

C = 3 for the trajectory shown on the left column. We

can observe that the temporal evolution of the keypoint po-

sition is encoded by the color. If a joint stays at a given

position for some time, a stronger intensity will be accumu-

lated (middle of the trajectory). This phenomenon could be

detrimental so we propose a second variant with normalized

intensity.

We first compute the intensity image Ij by summing the

values of all channels for every pixel, i.e., Ij is an image

with a single channel:

Ij [x, y] =

C∑

c=1

Uj [x, y, c] . (4)

An example of intensity image is shown in Figure 3 (third

column). This representation has no information about tem-

poral ordering, but encodes how much time a joint stays

at each location. A normalized PoTion representation can

now be obtained by dividing Uj by the intensity Ij , i.e., a

C-channel image Nj such that:

Nj [x, y, c] =
Uj [x, y, c]

ǫ+ Ij [x, y]
, (5)

with ǫ = 1 in order to avoid instabilities in areas with low

intensity. Figure 3 (right) shows an example for N . In

this case, all locations of the motion trajectory are weighted

equally, regardless of the amount of time spent at each

location. Indeed, momentary stops in the trajectory are

weighted more than other trajectory locations in Uj and Ij .

The division in Equation 5 cancels out this effect.

In the experiments (Section 5), we study the performance

of each of these 3 representations as well as their combina-

tion and find that stacking the 3 representations gives overall

the best performance.

7027

64

114

19(2C+1)

3

3

32

57

128

3

3

32

57

128

3

3

16

28

256

16

28

256

3

3

3

3

3

3

512 512

14 14

8 8
512

global

average

pooling

fully-

connected

PoTion

Figure 4. Architecture of the classification network that takes as

input the PoTion representation of a video clip.

4. CNN on PoTion representation

In this section we present the convolutional neural net-

work that we use to classify our clip-level PoTion represen-

tation. Section 4.1 first presents the network architecture.

Section 4.2 then gives some implementation details.

4.1. Network architecture

As the PoTion representation has significantly less tex-

ture than standard images, the network architecture does

not need to be deep and does not require any pretraining.

Hence, we propose an architecture with 6 convolutional

layers and 1 fully-connected layer. Figure 4 presents an

overview of the proposed architecture. The input of the net-

work is composed of the PoTion representation stacked for

all joints. More precisely, it has 19 × (2C + 1) channels

when stacking Uj , Ij and Nj for all joints. 19 is the num-

ber of joint heatmaps, and Uj , Ij and Nj have respectively

C, 1 and C channels.

Our architecture is composed of 3 blocks with 2 convo-

lutional layers in each block. All convolutions have a kernel

size of 3, the first one with a stride of 2 and the second one

with a stride of 1. Consequently, at the beginning of each

block, the spatial resolution of the feature maps is divided

by two. When the spatial resolution is reduced, we dou-

ble at the same time the number of channels, starting with

128 channels for the first block. Each convolutional layer

is followed by batch normalization [17] and a ReLU non-

linearity. After the 3 convolutional blocks we use a global

average pooling layer followed by a fully-connected layer

with soft-max to perform video classification. In the exper-

iments (Section 5), we study some variants of this architec-

ture with different number of blocks, convolutional layers

and channels.

4.2. Implementation details

We initialize all layer weights with Xavier initializa-

tion [15]. This is in contrast to standard action recogni-

tion methods that require pretraining on ImageNet even for

modalities such as optical flow. More recently, Carreira and

Zisserman [5] have highlighted the importance of pretrain-

ing for action recognition with the Kinetics dataset [47]. In

contrast, our CNN, which takes as input the PoTion rep-

resentation, can be trained from scratch. During training,

we drop activations [35] with a probability of 0.25 after

each convolutional layer. We optimize the network using

Adam [21] and use a batch size of 32. Once that we have

precomputed our compact PoTion representation for every

video clip of the dataset, it takes approximatively 4 hours

to train our CNN for HMDB on a NVIDIA Titan X GPU.

In other words, the video classification training can be done

in a few hours on a single GPU without any pretraining.

This stands in contrast to most state-of-the-art approaches

that often require multiple days on several GPUs with an

important pretraining stage [5].

Data augmentation. Data augmentation plays a central

role in CNN training. Without surprise, we found that ran-

domly flipping the inputs at training significantly improves

the performance (see Section 5), as is typically the case

with image and action classification. Note that, in our case,

we do not only need to horizontally flip the PoTion rep-

resentation, but also swap the channels that correspond to

the left and the right joints. We also experimented with

some other strategies, such as random cropping, smoothing

the heatmaps, or shifting them by a few pixels randomly

for each joint, i.e., adding small amount of random spatial

noise. However, we did not observe any significant gain.

5. Experimental results

In this section we present extensive experimental re-

sults for our PoTion representation. After introducing the

datasets and metrics in Section 5.1, we study the parame-

ters of PoTion in Section 5.2 and of the CNN architecture

in Section 5.3. Next, we show in Section 5.4 the impact of

using the ground-truth or estimated pose. Finally, we com-

pare our method to the state of the art in Section 5.5.

5.1. Datasets and metrics

We mainly experiment on the HMDB and JHMDB

datasets. We also compare to the state of the art on UCF101

and on the larger and more challenging Kinetics benchmark.

The HMDB dataset [24] contains 6,766 video clips from 51

classes, such as brush hair, sit or swing baseball.

The JHMDB dataset [19] is a subset of HMDB with 928

short videos from 21 classes. All frames are annotated with

a puppet model that is fitted to the actor, i.e., this results in

an approximative 2D ground-truth pose.

The UCF101 dataset [34] consists of around 13k videos

from 101 action classes including a variety of sports and

instrument playing.

The Kinetics dataset [47] has been recently introduced. It

is large-scale with 400 classes and around 300k video clips

collected from YouTube.

HMDB, JHMDB and UCF101 have 3 train/test splits.

We denote by HMDB-1 the first split of HMDB, and so

on. The Kinetics dataset contains only one split with around

7028

2 3 4 6 8
C

50

55

60

65

70

Ac
cu
ra
cy

JHMDB-1

2 3 4 6 8
C

40
42
44
46
48
50

Ac
cu
ra
cy

HMDB-1

Figure 5. Mean classification accuracy when varying the number

of channels C in the PoTion representation.

aggreg. JHMDB-1 HMDB-1

U 60.7± 0.4 44.1± 0.9
I 52.2± 2.7 43.3± 0.4
N 60.4± 1.0 42.5± 0.9

U + I +N 58.5± 1.5 44.4± 1.3
Table 1. Mean classification accuracy with different aggregation

schemes. The symbol + denotes the stacking of multiple types.

240k clips in the training set, 20k clips in the validation set

and 40k clips in the test set for which the ground-truth is not

publicly available. We use the videos that are still available

on YouTube, i.e., we train on 239k videos and report results

on 19k videos from the validation set.

As all datasets have only a single label per video, we

report mean classification accuracy (in percentage), i.e., the

ratio of videos of a given class that are correctly classified,

averaged over all classes. When studying the parameters,

we launch every experiment 3 times and report the mean

and the standard deviation over the 3 runs.

5.2. PoTion representation

In this section, we study the parameters of the PoTion

representation, namely the number of channels per joint as

well as the aggregation techniques.

Number of channels. We first study the impact of the num-

ber of channels in the PoTion representation (Section 3.2).

Figure 5 shows the mean classification accuracy on the first

split of JHMDB and HMDB when varying the number of

color channels C. We observe that the performance first

clearly increases until C = 4. For instance there is an im-

provement of 7% (resp. 2%) accuracy on JHMDB (resp.

HMDB) between C = 2 and C = 4. Then, the perfor-

mance saturates or drops at C = 6 or C = 8 on HMDB and

JHMDB respectively. In the remaining experiments, we use

C = 4 as it is a good trade-off between accuracy and com-

pactness of the PoTion representation.

Aggregation techniques. We now study the impact of the

different aggregation schemes in the PoTion representation.

We first train different models with the three aggregation

techniques: U , I and N (Section 3.3). We report their per-

formance in the first three rows of Table 1. We observe

a significant drop for I compared to the other representa-

tions, in particular on JHMDB (-8.5%). This is explained

flip JHMDB-1 HMDB-1

yes 58.5± 1.5 44.4± 1.3

no 51.3± 5.7 43.4± 0.6
Table 2. Mean classification accuracy with and without flip data

augmentation during training.

Architecture
JHMDB-1 HMDB-1

#channels #conv

128, 256 2 58.9± 1.8 42.1± 0.9
256, 512 2 57.3± 3.4 43.6± 0.2

64, 128, 256 2 59.5± 0.8 42.4± 0.9

128, 256, 512

1 54.1± 1.3 37.9± 0.3
2 58.5± 1.5 44.4± 1.3

3 55.1± 2.2 40.4± 0.2
256, 512, 1024 2 56.0± 3.0 42.7± 0.6

128, 256, 512, 1024 2 36.3± 6.1 35.5± 0.5
Table 3. Mean classification accuracy for different network archi-

tectures. The first column (#channels) denotes the number of chan-

nels in each block and the second column (#conv) the number of

convolution layers per block.

by the fact that the color-encoded temporal ordering is lost

in this intensity-only representation. When we stack these

3 aggregation schemes and let the network learns the most

relevant representations, we obtain a small gain on HMDB

and roughly the same performance on JHMDB if we take

into account the large variance which can be explained by

the small size of the dataset. In the remaining experiments,

we use the 3 stacked aggregation scheme U + I +N .

5.3. CNN on PoTion

We now study the impact of data augmentation and net-

work architecture.

Data augmentation. Table 2 compares the performance

with and without flip data augmentation during training.

We observe that this data augmentation strategy is effective.

In particular, the accuracy increases by 7% on the smallest

dataset, JHMDB. The impact is less important on the larger

HMDB dataset (around 1%). We therefore use flip data aug-

mentation in all subsequent experiments.

Network Architecture. We now compare different net-

work architectures. A network is constituted of several

blocks inside which the spatial resolution stays constant,

see Figure 4. We vary the number of blocks, the number

of convolution layers per block and the number of filters of

the convolutions. The architecture presented in Section 4.1

has 3 blocks with 128, 256, 512 channels, respectively, and

2 convolutions per block. We use the same notation to de-

scribe alternative architectures. Table 3 reports the perfor-

mance for various architectures. We observe a drop of 4%

and 6% when using only 1 convolution per block (fourth

row): the network is not sufficiently deep. Having 3 con-

volutions per block (sixth row) also leads to a small drop

of performance (3% and 4%): the network is too deep to be

7029

estimated pose [4] 58.5± 1.5
puppet pose 62.1± 1.1

puppet pose + crop 67.9± 2.4
Table 4. Mean classification accuracy on JHMDB-1 when using

the estimated pose, the ground-truth puppet pose, and additionally

a crop around the puppet.

trained robustly with limited data. We now study the impact

of the number of blocks. We can see that the architectures

with two blocks (first two rows) result in slightly lower per-

formance (by around 1% to 2%) than the ones with 3 blocks.

Adding a fourth block (last row) leads to a significant drop

of performance. This can be explained by the fact that the

datasets are small. Finally, we study the impact of the num-

ber of convolution filters. We observe that dividing it by

two (64, 128, 256) leads to a slightly better accuracy on

JHMDB, the smallest dataset. However, for larger dataset,

a higher number of filters is required. If we double the num-

ber of filters (256, 512, 1024), the performance drops due to

overfitting. As a summary, we choose the architecture with

2 convolution layers per block, 3 blocks with respectively

128, 256 and 512 channels in their convolution layers.

5.4. Impact of pose estimation

In this section we examine the impact of the errors due

to the pose estimation [4]. To do so we take the ground-

truth 2D pose from the annotated puppet of JHMDB, where

the annotations include the x, y coordinates of every pup-

pet joint. We synthetically generate joint heatmaps from

them, similarly to the ones used by [4] during training.

These heatmaps are obtained by putting Gaussians centered

at the annotated joint positions. Note that the puppet has

15 joints, compared to 19 heatmaps extracted by Part Affin-

ity Fields [4]. We observe in Table 4 that using the puppet

pose yields a gain of around 4% in accuracy on JHMDB.

We also experiment with a cropped version of the frames

centered on the puppet. This variant allows to focus on the

actor and to stabilize the video, but is only possible if we

know which actor is performing the action and if we can

track him. Table 4 shows that this strategy leads to an ad-

ditional improvement of 6%. In the following, GT-JHMDB

refers to using the puppet pose with cropped frame.

5.5. Comparison to the state of the art

Multi-stream approach. We verify whether our Po-

Tion representation is complementary to the standard RGB

and optical flow streams used by most state-of-the-art ap-

proaches [5, 32, 43]. To do so, we finetune TSN [43] and

I3D [5] on each dataset. We then merge their RGB and

flow scores with our PoTion stream using equal weights.

Note that the score for the PoTion stream corresponds to

the first run of our previous experiments, where we report

the mean and standard deviation over three runs. Table 5 re-

method streams GT-JHMDB-1 JHMDB-1 HMDB-1 UCF101-1

PoTion PoTion 70.8 59.1 46.3 60.5

TSN [43]+PoTion
RGB+Flow 80.8 80.8 69.1 92.0

RGB+Flow+PoTion 87.5 85.0 77.1 94.9

I3D [5]+Potion
RGB+Flow 87.4 87.4 82.0 97.5

RGB+Flow+PoTion 90.4 87.9 82.3 98.2

Zolfaghari et al. [48]

RGB+Flow 72.8 72.8 66.0 88.9

Pose 56.8 45.5 36.0 56.9

RGB+Flow+Pose 83.2 79.1 71.1 91.3

Table 5. Mean classification accuracy when combining PoTion

with state-of-the-art two-stream methods [5, 43]. We also com-

pare to the pose representation of [48] combined with their own

RGB and flow streams based on spatio-temporal convolutions.

ports the mean classification accuracy on the first split of the

JHMDB, HMDB and UCF101 datasets. We observe a clear

complementarity of PoTion to the RGB and flow streams.

The gain in mean classification accuracy when adding Po-

Tion to TSN is up to +8% (on HMDB-1). Using the more

recent I3D architecture, that performs significantly better

thanks to pretraining on Kinetics, we still obtain a consistent

improvement on all datasets, up to +3% (on GT-JHMDB-1).

In summary, we show that PoTion brings complementary

information to the appearance and motion streams. As ex-

pected, the gain is more important when the performance of

the two-stream approach is lower (TSN).

Comparison to Zolfaghari et al. [48]. Table 5 also com-

pares our method with the most related approach [48] that

adds a third stream operating on human part segmentation

maps. PoTion significantly outperforms their human pose

stream (row ‘PoTion’ vs row ‘Pose’ of [48]) by a large mar-

gin: +14% on JHMDB and GT-JHMDB (i.e. using the pup-

pet annotation), +10% on HMDB and +4% on UCF101.

PoTion is thus very effective for encoding the evolution

of the human pose over an entire video clip. The +14%

gain w.r.t. [48] on GT-JHMDB is solely due to an improved

representation, as the approaches use the same GT pose.

Our multi-stream performance is also significantly higher

than [48] when used in combination with either TSN or I3D.

Comparison to the state of the art. Table 6 compares our

best approach, i.e., a combination of PoTion with I3D [5],

to the state of the art. Overall, we outperform all existing

approaches on all datasets, including methods that lever-

age pose [13, 48] or capture long-term motion [36]. On

JHMDB we significantly outperform P-CNN [6], a method

that leverages pose estimation to pool CNN features. We

obtain a significantly higher accuracy (85.5%) than the clas-

sification performance reported by action localization ap-

proaches [14, 29] and 1.4% above I3D alone. On HMDB,

we report 80.9% mean classification accuracy, performing

better than I3D [5] by 0.3% and than other methods by

more than 10%. On UCF101, we also report state-of-the-

art accuracy with 98.2%, 0.5% above I3D alone. Note that

the comparison to other reported numbers is not entirely

fair since each method uses different modalities (e.g. RGB

only [13, 39, 40], or also optical flow [5, 32, 43]) and pre-

training (ImageNet [43], Sports1M [39] or Kinetics [5]).

7030

Method JHMDB HMDB UCF101

P-CNN [6] 61.1 - -

Action Tubes [14] 62.5 - -

MR Two-Sream R-CNN [29] 71.1 - -

Chained (Pose+RGB+Flow) [48] 76.1 69.7 91.1

Attention Pooling [13] - 52.2 -

Res3D [40] - 54.9 85.8

Two-Stream [32] - 59.4 88.0

IDT [42] - 61.7 86.4

Dynamic Image Networks [1] - 65.2 89.1

C3D (3 nets) [39]+IDT - - 90.4

Two-Stream Fusion [12]+IDT - 69.2 93.5

LatticeLSTM [36] - 66.2 93.6

TSN [43] - 69.4 94.2

Spatio-Temporal ResNet [11]+IDT - 70.3 94.6

I3D [5] - 80.7 98.0

I3D† 84.1 80.6 97.7

PoTion 57.0 43.7 65.2

I3D† + PoTion 85.5 80.9 98.2

Table 6. Comparison to the state of the art with mean per-class

accuracy on JHMDB, HMDB and UCF101 averaged over the 3

splits. † denotes results that we have reproduced.

Yet, our PoTion representation complements and outper-

forms the best available approach [5].

Detailed analysis. To analyse the gain obtained by the Po-

Tion representation, we study the difference in classification

accuracy between I3D and I3D+PoTion for each class of

JHMDB. The per-class difference is shown in Figure 6. We

observe that the accuracy significantly improves for nearly

all classes. Note that some classes are already perfectly

classified, thus no further gain is possible. A clear improve-

ment is often related to a well defined pose motion pattern,

like for the classes wave or clap. The classes for which the

performance is lower are often extremely similar in terms of

the pose and its motion, like three classes of shooting. For

these kind of classes, the appearance of the object is more

relevant than the pose.

Results on Kinetics. We also evaluate performance on the

large-scale Kinetics dataset [47]. Due to the very large num-

ber of frames to process, we use an approximation that runs

at about 100 fps to compute the joint heatmaps [4]. We sub-

sample one frame out of two and estimate the heatmaps at

a single scale after resizing the images to a fixed resolution

of 320 × 240. On Kinetics, the top-1 and top-5 accuracies

decrease by 2% and 1% respectively when using PoTion

with I3D compared to I3D alone. To better understand this

loss, we show the per-class difference of top-1 accuracy in

Figure 7 for the 10 best and 10 worst classes. We observe

that the largest drops occur for classes such as tying bow tie

and making sushi. After careful analysis, we find that many

videos of these classes do not even show the human actor as

they are captured from first person viewpoint. Even when

the actor is partially visible, most joints are not. Moreover,

several videos are tutorials that focus more on objects than

actors: for example videos tagged as ironing show mainly

the iron and the hand manipulating it. For these videos, Po-

sh
oo

t_
ba

ll

sh
oo

t_
gu

n

sh
oo

t_
bo

w

th
ro

w

pu
sh

ki
ck

_b
al

l

pi
ck

pu
llu

p

ru
n

cli
m

b_
st

ai
rs

sw
in

g_
ba

se
ba

ll

st
an

d

po
ur go
lf

br
us

h_
ha

ir

wa
lk

ju
m

p

ca
tc

h

wa
ve

cla
p sit

-5 %

+0 %

+5 %

+10 %

+15 % JHMDB

Figure 6. Per-class accuracy improvement on JHMDB when using

PoTion in addition to I3D (averaged over the 3 splits).

ty
in

g
bo

w
tie

to
ss

in
g

co
in

go
lf

dr
iv

in
g

re
ad

in
g

ne
ws

pa
pe

r
re

co
rd

in
g

m
us

ic
sw

in
gi

ng
 o

n
so

m
et

hi
ng

m
ak

in
g

su
sh

i
ta

ki
ng

 a
 sh

ow
er

an
sw

er
in

g
qu

es
tio

ns
se

tti
ng

 ta
bl

e

fo
ld

in
g

pa
pe

r
co

ok
in

g
ch

ick
en

so
m

er
sa

ul
tin

g
pu

m
pi

ng
 fi

st
wa

xi
ng

 le
gs

wa
xi

ng
 c

he
st

st
ick

in
g

to
ng

ue
 o

ut
dr

in
ki

ng
 b

ee
r

ce
le

br
at

in
g

sw
ee

pi
ng

 fl
oo

r

-15 %

-10 %

-5 %

+0 %

+5 %

+10 % Kinetics

Figure 7. Per-class top-1 accuracy improvement on Kinetics when

using PoTion in addition to I3D for the 10 best and 10 worst

classes.

Tion is unable to make an accurate prediction. In addition

to the approximation made to extract the potion representa-

tion on Kinetics, and the fact that humans are poorly visible,

we also point out that many videos are highly compressed,

feature erratic camera motion and consist of multiple shots

per clip. Despite these challenges, PoTion still improves

the I3D performance on many classes. This is in particular

the case for classes for which is a clear motion pattern is

present, such as sweeping floor or celebrating.

6. Conclusion

This paper introduces the PoTion representation that

encodes the motion of pose keypoints over a video clip.

We show that this novel clip-level representation is suit-

able for video action classification with a shallow CNN.

In addition, it is complementary to traditional appearance

and motion streams. Our PoTion representation leads to

state-of-the-art performance on the JHMDB, HMDB, and

UCF101 datasets. Future work includes experimenting on

untrimmed videos using a sliding window approach, as well

as end-to-end learning of the joint heatmaps and the classifi-

cation network, which is possible since building the PoTion

representation from heatmaps is fully differentiable.

Acknowledgements. This work was supported by ERC ad-

vanced grant Allegro, an Amazon academic research award

and an Intel gift.

7031

References

[1] H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould.

Dynamic image networks for action recognition. In CVPR,

2016. 2, 8

[2] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High ac-

curacy optical flow estimation based on a theory for warping.

In ECCV, 2004. 2

[3] C. Cao, Y. Zhang, C. Zhang, and H. Lu. Action recognition

with joints-pooled 3D deep convolutional descriptors. In IJ-

CAI, 2016. 1, 3

[4] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime

multi-person 2D pose estimation using part affinity fields. In

CVPR, 2017. 1, 2, 3, 7, 8

[5] J. Carreira and A. Zisserman. Quo vadis, action recognition?

A new model and the Kinetics dataset. In CVPR, 2017. 1, 2,

5, 7, 8

[6] G. Chéron, I. Laptev, and C. Schmid. P-CNN: Pose-based

CNN features for action recognition. In ICCV, 2015. 1, 2, 3,

7, 8

[7] A. Diba, V. Sharma, and L. Van Gool. Deep temporal linear

encoding networks. In CVPR, 2017. 2

[8] J. Donahue, L. Anne Hendricks, S. Guadarrama,

M. Rohrbach, S. Venugopalan, K. Saenko, and T. Dar-

rell. Long-term recurrent convolutional networks for visual

recognition and description. In CVPR, 2015. 1, 2

[9] W. Du, Y. Wang, and Y. Qiao. RPAN: An end-to-end recur-

rent pose-attention network for action recognition in videos.

In ICCV, 2017. 3

[10] Y. Du, W. Wang, and L. Wang. Hierarchical recurrent neu-

ral network for skeleton based action recognition. In CVPR,

2015. 1, 2

[11] C. Feichtenhofer, A. Pinz, and R. Wildes. Spatiotemporal

residual networks for video action recognition. In NIPS,

2016. 2, 8

[12] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional

two-stream network fusion for video action recognition. In

CVPR, 2016. 2, 8

[13] R. Girdhar and D. Ramanan. Attentional pooling for action

recognition. In NIPS, 2017. 3, 7, 8

[14] G. Gkioxari and J. Malik. Finding action tubes. In CVPR,

2015. 7, 8

[15] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In ICAIS, 2010.

5

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 2

[17] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 5

[18] S. D. Jain, B. Xiong, and K. Grauman. FusionSeg: Learn-

ing to combine motion and appearance for fully automatic

segmention of generic objects in videos. In CVPR, 2017. 2

[19] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black.

Towards understanding action recognition. In ICCV, 2013.

1, 3, 5

[20] V. Kalogeiton, P. Weinzaepfel, V. Ferrari, and C. Schmid.

Action tubelet detector for spatio-temporal action localiza-

tion. In ICCV, 2017. 2

[21] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. In ICLR, 2015. 5

[22] A. Kläser, M. Marszaek, and C. Schmid. A spatio-temporal

descriptor based on 3D-gradients. In BMVC, 2008. 1

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 2

[24] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre.

HMDB: a large video database for human motion recogni-

tion. In ICCV, 2011. 5

[25] I. Laptev. On space-time interest points. IJCV, 2005. 1

[26] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Com-

mon objects in context. In ECCV, 2014. 3

[27] J. Liu, A. Shahroudy, D. Xu, and G. Wang. Spatio-temporal

LSTM with trust gates for 3D human action recognition. In

ECCV, 2016. 1, 2

[28] A. Newell, K. Yang, and J. Deng. Stacked hourglass net-

works for human pose estimation. In ECCV, 2016. 3

[29] X. Peng and C. Schmid. Multi-region two-stream R-CNN

for action detection. In ECCV, 2016. 7, 8

[30] S. Saha, G. Singh, M. Sapienza, P. H. S. Torr, and F. Cuz-

zolin. Deep learning for detecting multiple space-time action

tubes in videos. In BMVC, 2016. 2

[31] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang. NTU RGB+D:

A large scale dataset for 3D human activity analysis. In

CVPR, 2016. 1, 2

[32] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. In NIPS, 2014. 1,

2, 7, 8

[33] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

2

[34] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A Dataset

of 101 Human Actions Classes From Videos in The Wild. In

CRCV-TR-12-01, 2012. 5

[35] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: a simple way to prevent neural

networks from overfitting. JMLR, 2014. 5

[36] L. Sun, K. Jia, K. Chen, D. Y. Yeung, B. E. Shi, and

S. Savarese. Lattice long short-term memory for human ac-

tion recognition. In ICCV, 2017. 2, 7, 8

[37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 2

[38] P. Tokmakov, K. Alahari, and C. Schmid. Learning motion

patterns in videos. In CVPR, 2017. 2

[39] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.

Learning spatiotemporal features with 3D convolutional net-

works. In ICCV, 2015. 1, 2, 7, 8

[40] D. Tran, J. Ray, Z. Shou, S.-F. Chang, and M. Paluri. Con-

vnet architecture search for spatiotemporal feature learning.

arXiv, 2017. 1, 2, 7, 8

7032

[41] C. Wang, Y. Wang, and A. L. Yuille. An approach to pose-

based action recognition. In CVPR, 2013. 3

[42] H. Wang and C. Schmid. Action recognition with improved

trajectories. In ICCV, 2013. 1, 8

[43] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and

L. Van Gool. Temporal segment networks: Towards good

practices for deep action recognition. In ECCV, 2016. 1, 2,

7, 8

[44] B. Xiaohan Nie, C. Xiong, and S.-C. Zhu. Joint action recog-

nition and pose estimation from video. In CVPR, 2015. 3

[45] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan,

O. Vinyals, R. Monga, and G. Toderici. Beyond short snip-

pets: Deep networks for video classification. In CVPR, 2015.

2

[46] C. Zach, T. Pock, and H. Bischof. A duality based approach

for realtime TV-L1 optical flow. Pattern Recognition, 2007.

2

[47] A. Zisserman, J. Carreira, K. Simonyan, W. Kay, B. Zhang,

C. Hillier, S. Vijayanarasimhan, F. Viola, T. Green, T. Back,

P. Natsev, and M. Suleyman. The Kinetics Human Action

Video Dataset. arXiv, 2017. 1, 5, 8

[48] M. Zolfaghari, G. L. Oliveira, N. Sedaghat, and T. Brox.

Chained multi-stream networks exploiting pose, motion, and

appearance for action classification and detection. In ICCV,

2017. 1, 2, 3, 7, 8

7033

