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Abstract

We present a new dataset, Functional Map of the World

(fMoW), which aims to inspire the development of machine

learning models capable of predicting the functional pur-

pose of buildings and land use from temporal sequences

of satellite images and a rich set of metadata features.

The metadata provided with each image enables reasoning

about location, time, sun angles, physical sizes, and other

features when making predictions about objects in the im-

age. Our dataset consists of over 1 million images from over

200 countries1. For each image, we provide at least one

bounding box annotation containing one of 63 categories,

including a “false detection” category. We present an anal-

ysis of the dataset along with baseline approaches that rea-

son about metadata and temporal views. Our data, code,

and pretrained models have been made publicly available.

1. Introduction

Satellite imagery presents interesting opportunities for

the development of object classification methods. Most

computer vision (CV) datasets for this task focus on images

or videos that capture brief moments [24, 20]. With satellite

imagery, temporal views of objects are available over long

periods of time. In addition, metadata is available to enable

reasoning beyond visual information. For example, by com-

bining temporal image sequences with timestamps, models

may learn to differentiate office buildings from multi-unit

residential buildings by observing whether or not their park-

ing lots are full during business hours. Models may also be

able to combine certain metadata parameters with observa-

tions of shadows to estimate object heights. In addition to

these possibilities, robust models must be able to generalize

to unseen areas around the world that may include different

building materials and unique architectural styles.

Enabling the aforementioned types of reasoning requires

a large dataset of annotated and geographically diverse

1fMoW contains 1,047,691 images covering 207 of the total 247 ISO

Alpha-3 country codes.
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Figure 1: In fMoW, temporal sequences of images, mul-

tispectral imagery, metadata, and bounding boxes are pro-

vided. In this example, if we only look inside the yellow

box in the right image, we will only see a road and vege-

tation. On the other hand, if we only see the water in the

left image, then we will potentially predict this to be a lake.

However, by observing both views of this area, we can now

reason that this sequence contains a flooded road.

satellite images. In this work, we present our efforts to col-

lect such a dataset, entitled Functional Map of the World

(fMoW). fMoW has several notable features, including

global diversity, a variable number of temporal images per

scene, multispectral imagery, and metadata associated with

each image. The task posed for our dataset falls in between

object detection and classification. That is, for each tempo-

ral sequence of images, at least one bounding box is pro-

vided that maps to one of 63 categories, including a “false

detection” (FD) category that represents content not charac-

terized by the other 62 categories. These boxes are intended

to be used as input to a classification algorithm. Figure 1

shows an example.

Collecting a dataset such as fMoW presents some inter-

esting challenges. For example, one consideration would

be to directly use crowdsourced annotations provided by

OpenStreetMap2 (OSM). However, issues doing so include

2https://www.openstreetmap.org
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inconsistent, incorrect, and missing annotations for a large

percentage of buildings and land use across the world.

Moreover, OSM may only provide a single label for the

current contents of an area, making it difficult to correctly

annotate temporal views. Another possibility is to use the

crowd to create annotations from scratch. However, anno-

tating instances of a category with no prior information is

extremely difficult in a large globally-diverse satellite image

dataset. This is due, in part, to the unique perspective that

satellite imagery offers when compared with ground-based

datasets, such as ImageNet [24]. Humans are seldom ex-

posed to aerial viewpoints in their daily lives. As such, ob-

jects found in satellite images tend to be visually unfamiliar

and difficult to identify. Buildings can also be repurposed

throughout their lifetime, making visual identification even

more difficult. For these reasons, we use a multi-phase pro-

cess that combines map data and crowdsourcing.

Another problem for fMoW is that annotating every

instance of a category is made very difficult by the in-

creased object density of certain categories. For example,

single-unit residential buildings often occur in dense clus-

ters alongside other categories, where accurately discrim-

inating and labeling every building would be very time-

consuming. To address this shortcoming, we propose pro-

viding bounding boxes as algorithm input, unlike a typical

detection dataset and challenge where bounding boxes are

expected as output. This circumvents full image annotation

issues that stem from incomplete map data and visual unfa-

miliarity. As a result, data collection could focus on global

diversity and annotations could be limited to a small number

of high-confidence category instances per image.

Our contributions are summarized as follows: (1) We

provide the largest publicly available satellite dataset con-

taining bounding box annotations, multispectral imagery,

metadata, and revisits. This enables joint reasoning about

images and metadata, as well as long-term temporal rea-

soning for areas of interest. (2) We present methods based

on CNNs that exploit the novel aspects of our dataset, with

performance evaluation and comparisons, which can be ap-

plied to similar problems in other application domains. Our

code, data, and pretrained models have all been publicly re-

leased3. In the following sections, we provide an analysis

of fMoW and baseline methods for the task.

As an aside, in addition to collecting and publishing

fMoW, a public prize challenge4 was organized around the

dataset. It ran from Sep. 14 - Dec. 31 2017. The top 3 par-

ticipants have open-sourced their solutions on the fMoW

GitHub page. These methods, as well as the baseline, were

developed using the publicly available data. However, all

data, including the sequestered data used for final testing, is

now publicly available.

3https://github.com/fMoW
4https://www.iarpa.gov/challenges/fmow.html

2. Related Work

While large datasets are nothing new to the vision

community, they have typically focused on first-person or

ground-level imagery [24, 20, 2, 10, 11, 9, 19]. This is

likely due in part to the ease with which this imagery can

be collected and annotated. Recently, there have been sev-

eral, mostly successful, attempts to leverage techniques that

were founded on first-person imagery and apply them to re-

mote sensing data [15, 21, 30]. However, these efforts high-

light the research gap that has developed due to the lack of

a large dataset to appropriately characterize the problems

found in remote sensing. We now highlight several of these

areas where we believe fMoW can make an impact.

Reasoning Beyond Visual Information Many works

have extended CV research to simultaneously reason about

other modules of perception [3, 16, 23, 12, 4]. In this

work, we are interested in supporting joint reasoning about

temporal sequences of images and associated metadata

features. One of these features is UTM zone, which

provides location context. In a similar manner, [26] shows

improved image classification results by jointly reasoning

about GPS coordinates and images, where several features

are extracted from the coordinates, including high-level

statistics about the population. Although we use coarser

location features (UTM zones) than GPS in this work, we

do note that using similar features would be an interesting

study. GPS data for fMoW imagery was also made publicly

available after the end of the prize challenge.

Multi-view Classification Satellite imagery offers a

unique and somewhat alien perspective on the world. Most

structures are designed for recognition from ground level.

As such, it can be difficult, if not impossible, to identify

functional purpose from a single overhead image. One of

the ways fMoW attempts to address this issue is by provid-

ing multiple temporal views of each object, when available.

Along these lines, several works in the area of video pro-

cessing have been able to build upon advancements in single

image classification [17, 8, 32] to create networks capable

of extracting spatio-temporal features. These works may be

a good starting point, but it is important to keep in mind the

vastly different temporal resolution on which these datasets

operate. For example, the YouTube-8M dataset [2] contains

videos with 30 frames per second. For satellites, it is not

uncommon for multiple days to pass before they can image

the same location, and possibly months before they can get

an unobstructed view.

Perhaps the most similar work to ours in terms of tempo-

ral classification is PlaNet [28]. They pose the image local-

ization task as a classification problem, where photo albums

are classified as belonging to a particular bucket that bounds

an area on the globe. We use a similar approach in one of

our baseline methods.

Remote Sensing Datasets One of the earliest annotated
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satellite datasets similar to fMoW is the UC Merced Land

Use Dataset, which offers 21 categories and 100 images per

category with roughly 30cm resolution and image sizes of

256x256 [31]. Another recent dataset similar to fMoW is

TorontoCity [27], which includes aerial imagery captured

during different seasons in the greater Toronto area. While

they present several tasks, the two that are similar to land-

use classification are zoning classification and segmentation

(e.g., residential, commercial). Datasets have also been cre-

ated for challenges centered around semantic segmentation,

such as the IEEE GRSS Data Fusion Contests [6] and the

ISPRS 2D Semantic Labeling Contest [1].

SpaceNet [7], a recent dataset that has received substan-

tial attention, contains both 30cm and 50cm data of 5 cities.

While it mainly includes building footprints, point of inter-

est (POI) data was recently released into SpaceNet that in-

cludes locations of several categories within Rio de Janeiro.

Other efforts have also been made to label data from Google

Earth, such as the AID [29] (10,000 images, 30 categories)

and NWPU-RESISC45 (31,500 images of 45 categories)

[5] datasets. In comparison, fMoW offers 1,047,691 images

of 63 categories, and includes associated metadata, tempo-

ral views, and multispectral data, which are not available

from Google Earth.

3. Dataset Collection

Prior to the dataset collection process for fMoW, a set

of categories had to be identified. Based on our target of 1

million images, collection resources, plan to collect tempo-

ral views, and discussions with researchers in the CV com-

munity, we set a goal of including between 50 and 100 cat-

egories. We searched sources such as the OSM Map Fea-

tures5 list and NATO Geospatial Feature Concept Dictio-

nary6 for categories that highlight some of the challenges

discussed in Section 2. For example, “construction site”

and “impoverished settlement” are categories from fMoW

that may require temporal reasoning to identify, which

presents a unique challenge due to temporal satellite im-

age sequences typically being scattered across large time

periods. We also focused on grouping categories according

to their functional purpose to encourage the development

of approaches that can generalize. For example, by group-

ing recreational facilities (e.g., tennis court, soccer field),

algorithms would hopefully learn features common to these

types of facilities and be able to recognize other recreational

facilities beyond those included in the dataset (e.g., rugby

fields). This also helps avoid issues related to label noise in

the map data.

Beyond research-based rationales for picking certain cat-

egories, we had some practical ones as well. Before cate-

gories could be annotated within images, we needed to find

5https://wiki.openstreetmap.org/wiki/Map_Features
6https://portal.dgiwg.org/files/?artifact_id=8629

locations where we have high confidence of their existence.

This is where maps play a crucial role. “Flooded road”,

“debris or rubble”, and “construction site” were the most

difficult categories to collect since open source data does

not generally contain temporal information. However, with

more careful search procedures, reuse of data from humani-

tarian response campaigns, and calculated extension of key-

words to identify categories even when not directly labeled,

we were able to collect temporal stacks of imagery that con-

tained valid examples.

All imagery used in fMoW was collected from the Dig-

italGlobe constellation7. Images were gathered in pairs,

consisting of 4-band or 8-band multispectral imagery in the

visible to near-infrared region, as well as a pan-sharpened

RGB image that represents a fusion of the high-resolution

panchromatic image and the RGB bands from the lower-

resolution multispectral image. 4-band imagery was ob-

tained from either the QuickBird-2 or GeoEye-1 satel-

lite systems, whereas 8-band imagery was obtained from

WorldView-2 or WorldView-3.

More broadly, fMoW was created using a three-phase

workflow consisting of location selection, image selection,

and bounding box creation. The location selection phase

was used to identify potential locations that map to our cat-

egories while also ensuring geographic diversity. Potential

locations were drawn from several Volunteered Geographic

Information (VGI) datasets, which were conflated and cu-

rated to remove duplicates. To ensure diversity, we removed

neighboring locations within a specified distance (typically

500m) and set location frequency caps for categories that

have severely skewed geographic distributions. These two

factors helped reduce spatial density while also encouraging

the selection of locations from disparate geographic areas.

The remaining locations were then processed using Digital-

Globe’s GeoHIVE8 crowdsourcing platform. Members of

the GeoHIVE crowd were asked to validate the presence of

categories in satellite images, as shown in Figure 2.

The image selection phase comprised of a three-step

process, which included searching the DigitalGlobe satel-

lite imagery archive, creating image chips, and filtering out

cloudy images. Approximately 30% of the candidate im-

ages were removed for being too cloudy. DigitalGlobe’s

IPE Data Architecture Highly-available Object-store ser-

vice was used to process imagery into pan-sharpened RGB

and multispectral image chips in a scalable fashion. These

chips were then passed through a CNN architecture to clas-

sify and remove any undesirable cloud-covered images.

Finally, images that passed through the previous two

phases were sent to a curated and trusted crowd for bound-

ing box annotation. This process involved a separate in-

7https://www.digitalglobe.com/resources/

satellite-information
8https://geohive.digitalglobe.com
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Figure 2: Sample image of what a GeoHIVE user might see

while validating potential fMoW dataset features. Instruc-

tions can be seen in the top-left corner that inform users

to press the ‘1’, ‘2’, or ‘3’ keys to validate existence, non-

existence, or cloud obscuration of a particular object.

terface from the first phase, where crowd users were asked

to draw bounding boxes around the category of interest in

each image and were provided some category-specific guid-

ance for doing so. The resulting bounding boxes were then

graded by a second trusted crowd to assess quality. The

trusted crowd includes individuals from universities and

elsewhere that have a strong relationship with DigitalGlobe

or the labeling campaigns they have conducted. In total,

642 unique GeoHIVE users required a combined total of

approximately 2,800 hours to annotate category instances

for fMoW.

Even after multiple crowd validation procedures and im-

plementing programmatic methods for ensuring geographic

diversity, there were several categories that contained some

bias. For example, the “wind farm” category does not

contain very many examples from the United States, even

though the initial location selection phase returned 1,938 vi-

able locations from the United States. Many of these “wind

farm” instances were invalidated by the crowd, likely due

to the difficulty of identifying tall, thin structures in satel-

lite imagery, particularly when the satellite image is looking

straight down on the tower. The “barn”, “construction site”,

“flooded road”, and “debris or rubble” categories are also

examples that contain some geographic bias. In the case

of the “barn” category, the bias comes from the distribution

of “barn” tags in OSM, which are predominately located

in Europe, whereas the other three categories contain geo-

graphic bias as a result of the more complex feature selec-

tion process, mentioned earlier, that was required for these

categories. FD boxes were included to mitigate this bias.

When they are present in an image, algorithms are forced

to use the imagery to accurately make predictions, as there

may be two boxes with different labels that share similar

metadata features.

The following provides a summary of the metadata fea-

tures included in our dataset, as well as any preprocessing

operations that are applied before input into the baseline

methods:

• UTM Zone One of 60 UTM zones and one of 20 lat-

itude bands are combined for this feature. We convert

these values to 2 coordinate values, each between 0

and 1. This is done by taking the indices of the values

within the list of possible values and then normalizing.

While GPS data is now publicly available, it was with-

held during the prize challenge to prevent participants

from precisely referencing map data.

• Timestamp The year, month, day, hour, minute, sec-

ond, and day of the week are extracted from the times-

tamp and added as separate features. The timestamp

provided in the metadata files is in Coordinated Uni-

versal Time (UTC).

• GSD Ground sample distance, measured in meters,

is provided for both the panchromatic and multispec-

tral bands in the image strip. The panchromatic im-

ages used to generate the pan-sharpened RGB images

have higher resolution than the MSI, and therefore

have smaller GSD values. These GSD values, which

describe the physical sizes of pixels in the image, are

used directly without any preprocessing.

• Angles These identify the angle at which the sensor

is imaging the ground, as well as the angular location

of the sun with respect to the ground and image. The

following angles are provided:

– Off-nadir Angle Angle in degrees (0-90◦) be-

tween the point on the ground directly below the

sensor and the center of the image swath.

– Target Azimuth Angle in degrees (0-360◦) of

clockwise rotation off north to the image swath’s

major axis.

– Sun Azimuth Angle in degrees (0-360◦) of

clockwise rotation off north to the sun.

– Sun Elevation Angle in degrees (0-90◦) of ele-

vation, measured from the horizontal, to the sun.

• Image+box sizes The pixel dimensions of the

bounding boxes and image size, as well as the fraction

of the image width and height that the boxes occupy,

are added as features.

A full list of metadata features and their descriptions can

be found in the supplement.

4. Dataset Analysis

Here we provide some statistics and analysis of fMoW.

Two versions of the dataset are publicly available:

• fMoW-full The full version of the dataset includes

pan-sharpened RGB images and 4/8-band multispec-

tral images (MSI), which are both stored in TIFF for-
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Figure 3: This shows the total number of instances for each category (including FD) in fMoW across different number of

bands. These numbers include the temporal views of the same areas. fMoW-full consists of 3 band imagery (pan-sharpened

RGB), as well as 4 and 8 band imagery. In fMoW-rgb, the RGB channels of the 4 and 8 band imagery are extracted and

saved as JPEG images.

mat. Pan-sharpened images are created by “sharp-

ening” lower-resolution MSI using higher-resolution

panchromatic imagery [22]. All pan-sharpened images

in fMoW-full have corresponding MSI, where the

metadata files for these images are nearly identical.

• fMoW-rgb An alternative JPEG compressed ver-

sion of the dataset, which is provided due to the large

size of fMoW-full. For each pan-sharpened RGB

image we simply perform a conversion to JPEG. For

MSI images, we extract the RGB channels and save

them as JPEGs.

For all experiments presented in this paper, we use

fMoW-rgb. We also exclude RGB-extracted versions of

the MSI in fMoW-rgb, as they are effectively downsam-

pled versions of the pan-sharpened RGB images.

4.1. fMoW Splits

We have made the following splits to the dataset:

• train Contains 83,412 (62.85%) of the total

unique bounding boxes.

• val Contains 14,241 (10.73%) of the total unique

bounding boxes. This set was made representative of

test, so that validation can be performed.

• test Contains 16,948 (12.77%) of the total unique

bounding boxes.

• seq Contains 18,115 (13.65%) of the total unique

bounding boxes. This set was also made representative

of test, but was not publicly released during the prize

challenge centered around this dataset.

Each split was formed by first binning the GSD, num-

ber of temporal views per sequence, UTM zone, and off-

nadir angle values. After binning these values, temporal

sequences were divided between the different dataset splits

while ensuring that the counts for these bins, as well as the

distribution of categories per split, were consistent. Sin-

gleton sequences, such as those that are the only ones to

cover a particular UTM zone, were also evenly distributed

between the various splits. The total number of bounding

box instances for each category can be seen in Figure 3.

4.2. fMoW Statistics

Variable length sequences of images are provided for

each scene in the dataset. Figure 4 shows the distribution

of sequence lengths in fMoW. 21.2% of the sequences con-

tain only 1 view. Most (95%) of the sequences contain 10

or fewer images.
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Figure 4: This shows the distribution of the number of tem-

poral views in our dataset. The number of temporal views is

not incremented by both the pan-sharpened and multispec-

tral images. These images have almost identical metadata

files and are therefore not counted twice. The maximum

number of temporal views for any area in the dataset is 41.
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A major focus of the collection effort was global diver-

sity. In the metadata, we provide UTM zones, which typi-

cally refer to 6◦ longitude bands (1-60). We also concate-

nate letters that represent latitude bands (total of 20) to the

UTM zones in the metadata. Figure 5 illustrates the fre-

quency of sequences within the UTM zones on earth, where

the filled rectangles each represent a different UTM zone.

Green colors represent areas with higher numbers of se-

quences, while blue regions have lower counts. As seen,

fMoW covers much of the globe.

The images captured for fMoW also have a wide range

of dates, which, in some cases, allows algorithms to analyze

areas on earth over long periods of time. Figure 6 shows dis-

tributions for years and local times (converted from UTC)

in which the images were captured. The average time dif-

ference between the earliest and most recent images in each

sequence is approximately 3.8 years.

Figure 5: This shows the geographic diversity of fMoW.

Data was collected from over 400 unique UTM zones (in-

cluding latitude bands). This helps illustrate the number of

images captured in each UTM zone, where more green col-

ors show UTM zones with a higher number of instances,

and more blue colors show UTM zones with lower counts.
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Figure 6: Distribution over (a) years the images were cap-

tured, and (b) time of day the images were captured (UTC

converted to local time for this figure).

5. Baselines and Methods

Here we present 5 different approaches to our task,

which vary by their use of metadata and temporal reason-

ing. All experiments were performed using fMoW-rgb.

Two of the methods presented involve fusing metadata into

a CNN architecture in an attempt to enable the types of rea-

soning discussed in the introduction. We perform mean sub-

traction and normalization for the metadata feature vectors

using values calculated over train + val.

It is worth noting here that the imagery in fMoW is not

registered, and while many sequences have strong spatial

correspondence, individual pixel coordinates in different

images do not necessarily represent the same positions on

the ground. As such, we are prevented from easily using

methods that exploit registered sequences.

The CNN used as the base model in our various base-

line methods is DenseNet-161 [14], with 48 feature maps

(k=48). During initial testing, we found this model to out-

perform other models such as VGG-16 [25] and ResNet-

50 [13]. We initialize our base CNN models using the pre-

trained ImageNet weights, which we found to improve per-

formance during initial tests. Training is performed using

a crop size of 224x224, the Adam optimizer [18], and an

initial learning rate of 1e-4. Due to class imbalance in our

dataset, we attempted to weight the loss using class frequen-

cies, but did not observe any improvement.

To merge metadata features into the model, the softmax

layer of DenseNet is removed and replaced with a concate-

nation layer to merge DenseNet features with metadata fea-

tures, followed by two 4096-d fully-connected layers with

50% dropout layers, and a softmax layer with 63 outputs (62

main categories + FD). An illustration of this base model is

shown in Figure 7.

gsd:	0.5219

utm:	30T

timestamp:	2016-02-04T12:29:21Z

…

off_nadir_angle_dbl:	10.154
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Extract	

Features
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Figure 7: An illustration of our base model used to fuse

metadata features into the CNN. This model is used as

a baseline and also as a feature extractor (without soft-

max) for providing features to an LSTM. Dropout layers

are added after the 4096-d FC layers.

We test the following approaches with fMoW:

• LSTM-M An LSTM architecture trained using tem-

poral sequences of metadata features. We believe

training solely on metadata helps understand how im-

portant images are in making predictions, while also

providing some measure of bias present in fMoW.
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• CNN-I A standard CNN approach using only im-

ages, where DenseNet is fine-tuned after ImageNet.

Softmax outputs are summed over each temporal view,

after which an argmax is used to make the final pre-

diction. The CNN is trained on all images across all

temporal sequences of train + val.

• CNN-IM A similar approach to CNN-I, but with

metadata features concatenated to the features of

DenseNet before the fully connected layers.

• LSTM-I An LSTM architecture trained using fea-

tures extracted from CNN-I.

• LSTM-IM An LSTM architecture trained using

features extracted from CNN-IM.

The LSTM models, which were also trained with the

Adam optimizer [18], contained 4096-d hidden states,

which were passed to a 512-d multi-layer perceptron

(MLP). All of these methods are trained on train + val.

As tight bounding boxes are typically provided for category

instances in the dataset, we add a context buffer around each

box before extracting the region of interest from the im-

age. We found that it was useful to provide more context

for categories with smaller sizes (e.g., single-unit residen-

tial, fountain) and less context for categories that generally

cover larger areas (e.g., airports, nuclear power plants).

Per-category F1 scores for test are shown in Table 1.

From the results, it can be observed that, in general, the

LSTM architectures show similar performance to our ap-

proaches that sum the probabilities over each view. Some

possible contributors to this are the large quantity of single-

view images provided in the dataset and that temporal

changes may not be particularly important for several of the

categories. CNN-I and CNN-IM are also, to some extent,

already reasoning about temporal information while making

predictions by summing the softmax outputs over each tem-

poral view. Qualitative results that show success and failure

cases for LSTM-I are shown in Figure 8. Qualitative re-

sults are not shown for the approaches that use metadata, as

it is much harder to visually show why the methods succeed

in most cases.

It could be argued that the results for approaches using

metadata are only making improvements because of bias

exploitation. To show that metadata helps beyond inher-

ent bias, we removed all instances from the test set where

the metadata-only baseline (LSTM-M) is able to correctly

predict the category. The results of this removal, which can

be found in Table 2, show that metadata can still be useful

for improving performance.

To further confirm the importance of temporal reason-

ing, we compare the methods presented above with two ad-

ditional methods, CNN-I-1 and CNN-IM-1, which make

predictions for each individual view. We then have all other

methods repeat their prediction over the full sequence. This

is done to show that, on average, seeing an area multiple

LSTM-M CNN-I LSTM-I CNN-IM LSTM-IM

false_detection 0.599 0.728 0.729 0.853 0.837

airport 0.447 0.859 0.800 0.884 0.837

airport hangar 0.017 0.721 0.665 0.677 0.699

airport terminal 0.023 0.697 0.715 0.746 0.759

amusement park 0.622 0.746 0.727 0.898 0.868

aquaculture 0.514 0.754 0.762 0.811 0.805

archaeological site 0.016 0.524 0.491 0.574 0.607

barn 0.292 0.695 0.684 0.717 0.707

border checkpoint 0.000 0.333 0.404 0.523 0.515

burial site 0.019 0.852 0.859 0.827 0.846

car dealership 0.101 0.741 0.797 0.747 0.770

construction site 0.053 0.372 0.373 0.318 0.358

crop field 0.514 0.888 0.872 0.930 0.926

dam 0.158 0.806 0.798 0.864 0.886

debris or rubble 0.381 0.403 0.607 0.474 0.488

educational institution 0.157 0.495 0.475 0.548 0.557

electric substation 0.000 0.849 0.869 0.858 0.872

factory or powerplant 0.000 0.443 0.459 0.536 0.544

fire station 0.028 0.409 0.494 0.483 0.523

flooded road 0.625 0.296 0.285 0.638 0.795

fountain 0.085 0.727 0.705 0.814 0.840

gas station 0.022 0.785 0.779 0.761 0.772

golf course 0.220 0.860 0.916 0.899 0.875

ground transportation station 0.114 0.658 0.694 0.713 0.719

helipad 0.067 0.812 0.856 0.831 0.820

hospital 0.012 0.387 0.404 0.426 0.458

impoverished settlement 0.538 0.410 0.506 0.750 0.704

interchange 0.142 0.833 0.678 0.905 0.909

lake or pond 0.000 0.721 0.650 0.687 0.694

lighthouse 0.037 0.715 0.755 0.779 0.828

military facility 0.426 0.509 0.564 0.597 0.655

multi-unit residential 0.227 0.385 0.414 0.445 0.451

nuclear powerplant 0.000 0.720 0.762 0.600 0.552

office building 0.011 0.198 0.218 0.228 0.225

oil or gas facility 0.522 0.789 0.773 0.844 0.865

park 0.025 0.626 0.638 0.662 0.698

parking lot or garage 0.076 0.775 0.787 0.700 0.732

place of worship 0.362 0.638 0.658 0.712 0.735

police station 0.068 0.246 0.237 0.201 0.329

port 0.444 0.692 0.698 0.736 0.667

prison 0.087 0.611 0.650 0.695 0.726

race track 0.234 0.898 0.886 0.919 0.892

railway bridge 0.030 0.703 0.755 0.761 0.813

recreational facility 0.295 0.907 0.919 0.903 0.906

road bridge 0.000 0.722 0.738 0.747 0.756

runway 0.488 0.821 0.814 0.889 0.885

shipyard 0.000 0.371 0.351 0.368 0.351

shopping mall 0.117 0.615 0.629 0.662 0.662

single-unit residential 0.429 0.688 0.703 0.717 0.684

smokestack 0.204 0.735 0.755 0.772 0.768

solar farm 0.424 0.912 0.921 0.927 0.931

space facility 0.000 0.824 0.737 0.875 0.889

stadium 0.174 0.825 0.850 0.818 0.819

storage tank 0.140 0.921 0.921 0.928 0.924

surface mine 0.200 0.824 0.802 0.870 0.880

swimming pool 0.362 0.920 0.913 0.906 0.907

toll booth 0.030 0.891 0.918 0.960 0.954

tower 0.141 0.723 0.737 0.754 0.777

tunnel opening 0.526 0.867 0.897 0.949 0.942

waste disposal 0.071 0.595 0.570 0.604 0.670

water treatment facility 0.044 0.854 0.816 0.853 0.879

wind farm 0.540 0.939 0.948 0.959 0.968

zoo 0.039 0.566 0.582 0.598 0.611

Average 0.193 0.679 0.688 0.722 0.734

Table 1: F1 scores for different approaches on test. Color

formatting was applied to each column independently. The

average values shown at the bottom of the table are calcu-

lated without FD scores.

times outperforms single-view predictions. We note that

these tests are clearly not fair for some categories, such as

“construction site”, where some views may not even con-

tain the category. However, we perform these tests for com-

pleteness to confirm our expectations. Results are shown in

Table 3. Per-category results are in the supplement.
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LSTM-I:	Construction	Site								CNN-I:	Educational	Institution								GT:	Construction	Site	

LSTM-I:	Debris	or	Rubble								CNN-I:	Hospital								GT:	Debris	or	Rubble

LSTM-I:	Flooded	Road								CNN-I:	False	Detection								GT:	False	Detection

LSTM-I:	Construction	Site								CNN-I:	False	Detection								GT:	False	Detection

Figure 8: Qualitative examples from test of the image-only approaches. The images presented here show the extracted and

resized images that are passed to the CNN approaches. The top two rows show success cases for LSTM-I, where CNN-I

was not able to correctly predict the category. The bottom two rows show failure cases for LSTM-I, where CNN-I was able

to correctly predict the category. Note that sequences with ≥9 views were chosen and additional views were trimmed to keep

the figure rectangular.

LSTM-M CNN-I LSTM-I CNN-IM LSTM-IM

0 0.685 0.693 0.695 0.702

Table 2: Results on test instances where the metadata-

only baseline (LSTM-M) is not able to correctly predict

the category. These are the average F1 scores not including

FD. These results show that metadata is important beyond

exploiting bias in the dataset.

CNN-I-1 CNN-I LSTM-I CNN-IM-1 CNN-IM LSTM-IM

0.618 0.678 0.684 0.666 0.722 0.735

Table 3: Average F1 scores, not including FD, for individual

images from test. CNN-I-1 and CNN-IM-1 make pre-

dictions for each individual view. All other methods repeat

their prediction over the full sequence.

6. Conclusion and Discussion

We present fMoW, a dataset that consists of over 1 mil-

lion satellite images. Temporal views, multispectral im-

agery, and metadata are provided to enable new types of

joint reasoning. Models may leverage temporal information

and simultaneously reason about the rich set of metadata

features (e.g., timestamp, UTM zone) provided for each

image. By posing a task in between detection and classi-

fication, we avoid the inherent challenges associated with

collecting a large geographically-diverse detection dataset,

while still allowing for models to be trained that are trans-

ferable to real-world detection systems. Different methods

were presented for this task that demonstrate the importance

of joint reasoning about metadata and temporal information.

All code, data, and pretrained models have been made pub-

licly available. We hope that by releasing the dataset and

code, other researchers in the CV community will find new

and interesting ways to further utilize the metadata and tem-

poral changes to a scene. We also hope to see fMoW being

used to train models that are able to assist in humanitarian

efforts, such as applications involving disaster relief.
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