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Abstract

Recently proposed robust 3D face alignment methods es-

tablish either dense or sparse correspondence between a

3D face model and a 2D facial image. The use of these

methods presents new challenges as well as opportunities

for facial texture analysis. In particular, by sampling the

image using the fitted model, a facial UV can be created.

Unfortunately, due to self-occlusion, such a UV map is al-

ways incomplete. In this paper, we propose a framework for

training Deep Convolutional Neural Network (DCNN) to

complete the facial UV map extracted from in-the-wild im-

ages. To this end, we first gather complete UV maps by fit-

ting a 3D Morphable Model (3DMM) to various multiview

image and video datasets, as well as leveraging on a new

3D dataset with over 3,000 identities. Second, we devise a

meticulously designed architecture that combines local and

global adversarial DCNNs to learn an identity-preserving

facial UV completion model. We demonstrate that by at-

taching the completed UV to the fitted mesh and generating

instances of arbitrary poses, we can increase pose varia-

tions for training deep face recognition/verification models,

and minimise pose discrepancy during testing, which lead

to better performance. Experiments on both controlled and

in-the-wild UV datasets prove the effectiveness of our ad-

versarial UV completion model. We achieve state-of-the-

art verification accuracy, 94.05%, under the CFP frontal-

profile protocol only by combining pose augmentation dur-

ing training and pose discrepancy reduction during testing.

We will release the first in-the-wild UV dataset (we refer as

WildUV) that comprises of complete facial UV maps from

1,892 identities for research purposes.

1. Introduction

During the past few years, we have witnessed consider-

able progress in sparse and dense 3D face alignment. Some

of the developments include the use of Deep Neural Net-

works (DNNs) to recover 3D facial structure [30, 47, 21],

Figure 1. Adversarial UV completion. After fitting a 3DMM to

the image, we retrieve a 3D face with an incomplete UV map. We

learn a generative model to recover the self-occluded regions. By

rotating a 3D shape with complete UV map, we can generate 2D

faces of arbitrary poses, which can either augment pose variations

during training or narrow pose discrepancy during testing for pose-

invariant face recognition.

as well as a robust framework for fitting a 3D Morphable

Model (3DMM) to images in-the-wild [3]. Furthermore,

benchmarks suitable for training sparse 3D face alignment

models have been developed recently [44, 20]. The utilisa-

tion of these methods introduces new challenges and oppor-

tunities, as far as facial texture is concerned. More specif-

ically, by sampling over the fitted image, a facial UV map

that embeds the manifold of a 3D face as a 2D contigu-

ous atlas can be created. An example of the facial UV map

is shown in Fig. 1. It is evident that such UV map con-

tains a considerable amount of missing pixels due to self-

occlusion (filled with random noise in the figure). In this

paper, we tackle the problem of facial UV map completion

from a single image, which has not received considerable

attention. We demonstrate the usefulness of the proposed

UV completion framework by creating synthetic samples to

train deep neural networks for face recognition.

Face representation using Deep Convolutional Neural

Network (DCNN) embeddings is considered the method

of choice for face verification, face clustering, and recog-

nition [35, 32, 26, 34]. However, when it comes to
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frontal-profile face verification, performance of most DC-

NNs drops drastically by over 10% [33] compared with

frontal-frontal verification, while human performance only

degrades slightly. This indicates that the pose variation

remains a significant challenge in face recognition. One

approach to learn pose-invariant discriminative representa-

tions is to collect training data with large pose variations.

However, web face images usually have long-tailed pose

distributions [24] and it is not feasible to collect and label

data that provide good coverage for full poses for all identi-

ties.

In this paper, we propose an adversarial UV comple-

tion framework (UV-GAN) and apply it to solve the pose-

invariant face recognition problem without the requirement

of extensive pose coverage in training data. Our framework

is depicted in Fig. 1, we first fit a 3DMM to 2D image and

retrieve the incomplete facial UV. To complete the UV map,

we combine local and global adversarial networks to learn

identity-preserving full UV texture (Sec. 3.2). We attach the

complete UV with the fitted mesh and generate synthetic

data with arbitrary poses. To enlarge the diversity of train-

ing images under various poses (along with pose labels), at

no additional labelling cost, we synthesise a large number

of profile images from the CASIA dataset [42]. We also use

such synthesis method to reduce the pose discrepancy dur-

ing testing. Our frontal-profile verification results show that

rendering frontal face to profile view obtains better perfor-

mance than frontalising profile face. In contrast to existing

face frontalisation methods [43, 17], the proposed method

is more effective and flexible for pose-invariant face recog-

nition.

To summarise, our key contributions are:

• We are the first to apply local, global and identity-

preserving adversarial networks to the problem of UV

map completion. We show that the proposed method

can generate realistic and coherent UV maps under

both controlled and in-the-wild settings even when

the missing regions account for 50% of the UV map.

Using the completed UV and the corresponding 3D

shape, we are able to synthesise 2D face images with

arbitrary poses.

• For face recognition training, our pose synthesis

method can enrich the pose variations of training data,

without incurring the expense of manually labelling

large datasets spanning all poses. For recognition test-

ing, our method can narrow the pose discrepancy be-

tween the verification pairs resulting in better perfor-

mance. We obtain state-of-the-art verification accu-

racy, 94.05%, under the CFP frontal-profile protocol.

• To the best of our knowledge, we are the first to col-

lect a large-scale dataset of complete ear-to-ear UV fa-

cial maps of both controlled and in-the-wild data. We

will release the first in-the-wild UV dataset (referred as

WildUV) that comprises of complete facial UV maps

from 1,892 identities for research purposes.

2. Related Work

Image Completion Image completion has been studied

in numerous contexts, including inpainting and texture syn-

thesis. Pathak et al. [27] propose context encoders with a re-

construction and an adversarial loss to generate the contents

for missing regions that comply with the neighbourhood re-

gions. Yang et al. [41] further improve inpainting with a

multi-scale neural patch synthesis method. This approach is

based on a joint optimisation of image content and texture

constraints, which not only preserves contextual structures

but also produces fine details. Possible architectures, based

on deep neural networks, for image completion are the so-

called Pixel Recurrent Neural Networks (Pixel-RNNs) [25]

and Pixel CNNs [38]. Nevertheless, we found that these ar-

chitectures are mainly suitable for low-resolution images,

whereas we want to design a DCNN architecture that can

handle high resolutions facial UV maps. Probably the clos-

est work to ours is the face completion method in [22].

This method combines a reconstruction loss, two adversar-

ial losses and a semantic parsing loss to ensure genuine-

ness and consistency of local-global contents [18]. How-

ever, their method is trained only on a small set of pre-

defined masks and is not directly applicable to our problem,

since (a) each mask has semantical correspondence with a

3D face, and (b) the missing regions of profile mask may

take up over 50% of the image.

Pose-invariant Face Recognition Recent DCNNs [35,

32, 26, 34] trained on large-scale datasets have significantly

boosted the performance of face recognition, the robust-

ness of these methods against pose variations is sourced

from the training data. To learn pose-invariant feature em-

bedding, Masi et al. [24] and Zhao et al. [46] synthesise

face image appearances across 3D viewpoints to increase

pose variations in the training data. Peng [28] further ex-

plore reconstruction-based disentanglement during training

for pose-invariant face recognition. With the introduction of

GAN, pose-invariant feature disentanglement [36, 37] and

face frontalisation [43, 17] methods become quite popular.

During testing, frontal faces are generated from the gen-

erator, which decreases the pose discrepancy and hence-

forth improves pose-invariant face recognition. However,

those approaches usually rely on large amount of pairings

across poses, which is over demanding under in-the-wild

scenario. By contrast, we propose an adversarial UV com-

pletion method that enables us to leverage frontal and four-

quarter face pairs for synthesising training examples close

to the ground truth.
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3. Proposed Approach

In this section, we describe the proposed model for UV

completion. In brief, after a 3DMM fitting on the 2D face

image, we sample the image and retrieve a UV texture for

the 3D mesh. Due to face self-occlusion, such UV texture

is always incomplete. Hence, our goal is to synthesise the

missing contents of the UV map that are semantically con-

sistent with the whole UV map as well as visually realistic

and identity-preserved. Fig. 2 illustrates the proposed net-

work consisting of one generator and two discriminators.

3.1. 3D Morphable Model Fitting

To recover a 3D face from the 2D image, 3DMM fitting

is employed. We adopt the 3DMM fitting proposed in [3]

for our task. In [3], three parametric models are defined and

need to be solved: shape (Eq. 1), texture (Eq. 2) and camera

(Eq. 3) models:

S(p) = s+Usp, (1)

T (λ) = t+Utλ, (2)

W(p, c) = P(S(p), c), (3)

where p,λ and c are shape, texture and camera parameters

to optimise. Us and Ut are the shape and texture eigenbasis

respectively, s and t are mean shapes of shape and texture

models correspondingly, which are learnt from 10, 000 face

scans of different individuals [4]. Function P is a perspec-

tive camera transformation. Thus the overall cost function

for 3DMM fitting is formulated as:

argmin
p,λ,c

‖F(W(p, c))−T (λ)‖2+αs‖p‖
2
Σ

−1

s

+αt‖λ‖
2
Σ

−1

t

.

(4)

Here, ‖p‖2
Σ

−1

s

and ‖λ‖2
Σ

−1

t

are two regularisation terms to

counter over-fitting, Σ−1
s and Σ−1

t are diagonal matrices

with the main diagonal being eigenvalues for the shape and

texture model respectively. αs and αt are constants empir-

ically set to weigh the two regularisation terms. Note that

F(W(p, c)) denotes the operation of sampling the feature-

based input image on the projected 2D locations.

To accelerate the 3DMM fitting of the face images in the

wild, we initialise the fitting with 3D landmarks1 predicted

by [5], and utilise the landmarks subsequently in the opti-

misation by adding a 2D landmark term in Eq. 4. The final

objective function could be written as:

argmin
p,λ,c

‖F(W(p, c))− T (λ)‖2 + αl‖Wl(p, c)− sl‖
2

+ αs‖p‖
2
Σ

−1

s

+ αt‖λ‖
2
Σ

−1

t

, (5)

where sl is the 2D shape, αl is a constant to weigh the land-

mark term. Eq. 5 could be solved by the Gauss-Newton

optimisation framework in [3].

1The 3D landmarks here refer to the 2D projections of the 3D facial

landmarks [44, 10, 9].

Based on fitting results, we categorise face images from

CASIA dataset [42] into 13 pose groups [37]. In Fig. 3, the

mean face from [37] becomes more blurred as the yaw angle

increases. By contrast, our mean faces remain clear across

all pose groups, which indicates that our fitting method pro-

duces much more accurate poses.

3.2. UV Texture Completion

Once we have the estimated 3D shape of the facial im-

age, its visible vertices could be computed by z-buffering,

and then utilised to generate a visibility mask for UV tex-

ture. For those invisible parts (i.e. missing textures), we

want to fill them with the identity preserving textures. We

propose a Generative Adversarial Network for UV comple-

tion (we refer as UV-GAN), it comprises of one UV gener-

ation module, two discriminators and an additional module

to preserve face identity.

Generation Module Given input UV textures with miss-

ing regions, the generator G works as an auto-encoder to

construct new instances. We adopt pixel-wise l1 norm as

the reconstruction loss:

Lgen =
1

W ×H

W
∑

i=1

H
∑

j=1

∣

∣Ii,j − I∗i,j
∣

∣ , (6)

where Ii,j is the estimated UV texture and I∗i,j is the ground

truth texture. To preserve the image information in original

resolution, we follow the encoder-decoder design in [19],

where skip connections between mirrored layers in the en-

coder and decoder stacks are made. We fill the incomplete

UV texture with random noise and concatenate with its mir-

ror image as the generator input. Since the face is not ex-

actly symmetric, we avoid using symmetry loss as in [17].

Unlike the original GAN model [12] that initialises from a

noise vector, the hidden representations obtained from our

encoder capture more variations as well as relationships be-

tween invisible and visible regions, and thus help the de-

coder to fill up missing regions.

Discrimination Module Despite that previous genera-

tion module could fill missing pixels with small reconstruc-

tion errors, it does not guarantee the output textures to be

visually realistic and informative. In Fig. 5 (a), we show ex-

amples of the generated texture from the generator, which

are quite blurry and missing important details. To improve

the quality of synthetic images and encourage more photo-

realistic results, we adopt a discrimination module D to dis-

tinguish real and fake UVs. The adversarial loss, which is

a reflection of how the generator could maximally fool the

discriminator and how well the discriminator could distin-

guish between real and fake, is defined as:

Ladv = min
G

max
D

Ex∼pd(x),y∼pd(y) [logD(x,y)] +

Ex∼pd(x),z∼pz(z) [log(1−D(x, G(x, z)))] ,
(7)
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Figure 2. Network architecture. It consists of one generator and two discriminators. The generator takes the incomplete UV map and its flip

filled with random noise as input and outputs the full UV map. Two discriminators are learned to validate the genuineness of the synthetic

UV texture and the main face region. The pre-trained identity classification network that would always be fixed, is to further ensure the

newly generated faces preserve the identity. Note that only the generator is required for the testing stage.

Figure 3. The mean faces of 13 pose groups in the CASIA dataset [42]. The first row is our results, and the second row is from [37]. Our

mean faces are more clear under large pose variations, and there is only slight blurriness on facial organs even for profile faces.

where pz(z), pd(x) and pd(y) represent the distributions

(Gaussian) of the noise variable z, the partial UV texture x

and the full UV texture y respectively.

Particularly, our module D consists of two discrimina-

tors: a global and a local discriminator. We firstly train

a global discriminator to determine the faithfulness of the

entire UV maps. The core idea is that synthetic contents

should not only look realistic, but also conform to their sur-

rounding contexts. Furthermore, we define a local discrimi-

nator that focuses on the face centre. There are two reasons

for introducing the local discriminator: (1) for UV faces in

the wild, outer face (e.g. ears, forehead) is usually noisy and

unreliable; (2) inner face is considered much more infor-

mative as fas as identity is concerned. Compared with the

global discriminator, the local module (Fig. 5 (d)) enhances

the central face region with less noisy and sharper bound-

aries. The benefit of combining global and local discrimi-

nator is: the global one maintains the context of the facial

image, while the local discriminator enforces the generated

texture to be more informative within central face region.

Similar GAN architecture with two discriminators could be

found in [22, 17].

Identity Preserving Module Preserving the identity

while synthesising faces is the most critical part in develop-

ing the recognition-via-generation framework. We exploit

the centre loss [40] to improve the identity preserving abil-

ity of our UV-GAN. Specifically, we define the centre loss

based on the activations after the average pooling layer of

ResNet-27 [40, 15].

Lid =
1

m

m
∑

i=1

‖xi − cyi
‖
2
2 , (8)

where m is the batch size, xi ∈ R
512 is the embedding fea-

tures and cyi
∈ R

512 denotes the yi-th class feature centre.

Note that ResNet-27 is pre-trained on CASIA [42] dataset

using the softmax loss to classify 10k identities. It captures

the most prominent feature and facial structure to discrim-

inate identity. Hence, it is beneficial to leverage this loss

to maintain identity in the synthetic texture. As our feature

embedding network is fixed during training, all the gener-

ated samples would lie close to their own fixed feature cen-

tre.

Objective Function The final loss function for the

proposed UV-GAN is a weighted sum of aforementioned

losses:

L = Lgen + λ1Ladv g + λ2Ladv l + λ3Lid, (9)

where Ladv g and Ladv l are the global and local adversarial

losses as in Eq. 7, and λ1, λ2 and λ3 are the weights to

balance different losses.

4. Experiments

4.1. Settings and Datasets

For UV completion, the original size of ground truth UV

maps is 377×595 and we re-scale the incomplete UV maps

to 256 × 256 as the input of the UV-GAN model. The

network structures of the generator and discriminator fol-

low2 [19]. The input of the local discriminator is a 128×128
crop on facial feature regions as shown in Fig 2, and local

discriminator has the same structure as the global discrim-

inator. For each complete facial UV map used for training,

2https://github.com/phillipi/pix2pix
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we create 20 synthetic 2D facial images with arbitrary yaw

angles [−90◦, 90◦], compute the visibility masks and use

the corresponding incomplete facial UV maps for training.

Our network is implemented with Tensorflow [1]. We train

UV-GAN for 100 epochs with a batch size of 8 and a learn-

ing rate of 10−4. In all our experiments, we empirically set

λ1 = 10−2, λ2 = 4× 10−2, and λ3 = 10−3.

UVDB. UVDB is a dataset that we developed for train-

ing the proposed UV-GAN. It has been built from three

different sources. The first subset contains 3,564 subjects

(3,564 unique identities with six expressions, 21,384 unique

UV maps in total) scanned by the 3dMD device3. The sec-

ond subset is constructed from Multi-PIE [13] with 337

identities (2514 unique facial UV maps for each illumi-

nation setting, 50,280 in total). The third subset (called

WildUV) is constructed from UMD video dataset [2]. We

have selected videos with large pose variations to get cov-

erage in all different poses and finally developed the first

in-the-wild UV dataset with 1,892 identities (5,638 unique

UV maps). Poisson blending [29] was used for improving

the quality of the facial UV maps. As is shown in Fig. 4,

the UVDB contains facial UV maps captured in controlled

conditions, as well as challenging in-the-wild videos (e.g.,

low resolution with potential occlusions). We will release

WildUV subset with 2D face images, 3D fitting results and

the complete UV maps. For the 3dMD and WildUV subsets,

the first 90% of identities are used for training and the rest

are used for testing. For the MultiPIE subset, the first 200

subjects are used for training and the rest 137 subjects for

testing [36, 37]. For face synthesis, we use all the training

subsets of UVDB.

Figure 4. UV Completion Dataset.

CASIA [42] contains 494,414 images of 10,575 sub-

jects.

VGG2 [6] consists of a training set with 8,631 identi-

ties (3,141,890 images) and a test set with 500 identities

(169,396 images).

MS1M [14] includes about 100k identities with 10 mil-

lion images. In this paper, we use a refined version [11, 8]

of MS1M.

3http://www.3dmd.com/

CFP [33] consists of 500 subjects, each with 10 frontal

and 4 profile images. The evaluation protocol includes

frontal-frontal (FF) and frontal-profile (FP) face verifica-

tion, each having 10 folders with 350 same-person pairs and

350 different-person pairs.

4.2. UV Completion

To quantitatively evaluate the UV completion results, we

employ two metrics. The first one is the peak signal-to-

noise ratio (PSNR) which directly measures the difference

in pixel values. The second one is the structural similar-

ity index (SSIM) [39] that estimates the holistic similarity

between two images. These two metrics are computed be-

tween the predicted UV maps and the ground truth.

UVDB (a) (b) (c) (d) (e) CE

3dMD
25.8 26.3 25.2 25.7 26.5 25.1

0.889 0.895 0.879 0.886 0.898 0.856

MultiPIE
25.2 25.7 24.6 25.2 25.8 24.5

0.881 0.885 0.865 0.873 0.886 0.842

WildUV
22.3 22.8 22.0 22.5 22.9 21.6

0.872 0.876 0.861 0.868 0.887 0.840

Table 1. Quantitative evaluations of profile UV completion under

different settings of our model and Context Encoder [27]. (a):

Lgen. (b): flip + Lgen. (c): flip + Lgen + Ladv g . (d) flip +

Lgen + Ladv g + Ladv l. (e) UV-GAN. For each subset, the first

row is PSNR value (dB) and the second row is SSIM value.

We first conduct the ablation study of the proposed UV-

GAN under different settings and also compare with Con-

text Encoder [27]. Fig. 5 shows UV completion results for

profile faces on the UVDB. We have also zoomed in on the

occluded eye to more clearly reveal the sharpness and au-

thenticity of the recovery result by our combined loss. With

only reconstruction loss Lgen, the completed UV maps are

smooth and blurry. When adding flipped faces in train-

ing, the model converges faster and leads to better results

(Tab. 1), but the completed images are still blurry. With

global and local adversarial losses (Ladv g + Ladv l), the

UV completion results look much more visually realistic

and coherent globally and locally. Note that incorporating

global adversarial loss slightly decreases PSNR and SSIM

values (see Tab. 1 (c)), which are observed similarly in gen-

erative face completion [22]. Notwithstanding, when cou-

pled with local and identity-preserving modules, such ef-

fects have been mitigated (see Tab. 1 (d) & (e)). The closest

to our method is the CE method proposed in [27]. For a

fair comparison, we have trained the CE method with our

data. As can be seen, the proposed UV-GAN performs con-

sistently better than the CE model both qualitatively and

quantitatively.

Fig. 6 shows the performance of the proposed UV-GAN

model under different poses from 0◦ to 90◦ in intervals of

15◦ on the UVDB. The completion results on the controlled
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GT Masked UV (a) (b) (c) (d) (e) CE [27]
Figure 5. UV Completion results for profile faces on UVDB under different settings of our model and Context Encoder [27]. (a): Lgen.

(b): flip + Lgen. (c): flip + Lgen + Ladv g . (d) flip + Lgen + Ladv g + Ladv l. (e) UV-GAN. The proposed UV-GAN shows the most

realistic and plausible completed content.

Ground Truth

Figure 6. UV completion results under view changes on UVDB. Please zoom in to check the completion results on the self-occluded facial

parts (e.g. eye regions).

UVDB Metric 0
◦ ±30

◦ ±60
◦ ±90

◦

3dMD
PSNR 28.3 27.9 27.0 26.5

SSIM 0.920 0.907 0.903 0.898

MPIE
PSNR 27.5 26.7 26.5 25.8

SSIM 0.912 0.903 0.899 0.886

WildUV
PSNR 26.3 25.2 24.5 22.9

SSIM 0.908 0.902 0.894 0.887

Table 2. Quantitative evaluations of UV-GAN under view changes.

and in-the-wild faces are both visually realistic and con-

sistent. In the profile case, we find that the only imper-

fection is the slight blurriness on the self-occluded eyes,

which indicates that the proposed UV-GAN can success-

fully complete the UV maps in side views. In Tab. 2, we

observe that the completion quality deteriorates as the yaw

angle increases because the self-occluded regions are en-

larging. Moreover, the completion results degrade as the

data change from highly controlled 3dMD data to totally

in-the-wild data, which indicates that UV completion in-

the-wild is more challenging perhaps due to low resolution

and occlusions.

4.3. Pose­invariant Face Recognition

We pre-process all the face images by applying the face

detection [45] and a 3DMM fitting. After that, face images

are cropped to 112 × 112. To study the impacts of training

data and loss function on recognition, we use the same net-

work architecture in all our experiments (ResNet-274 [40])

without any bells and whistles. That is, we only vary the

training data and the loss functions, which include centre

loss [40], sphere loss [23] and softmax loss.

We abbreviate each training strategy as [dataset]-[loss]-

[aug]. For example, CASIA-sm means that we have trained

the network using CASIA dataset with the soft-max loss

(denoted by sm), while CASIA-sphere means that we have

used the sphere loss. CASIA-sm-aug1 refers to training the

network in the CASIA dataset using the softmax loss (sm)

and the augmentation method proposed in [24]. CASIA-

sm-augUV refers to training using the same dataset and loss

as above but augmenting the data using UV-GAN. Our aug-

mentation method is as follows: we create 300 face images

per identity (similar to Fig. 7). For frontal faces in the train-

4https://github.com/ydwen/caffe-face
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Method LFW 0◦- 0◦ 0◦- 45◦ 0◦- 90◦ 45◦- 0◦ 45◦- 45◦ 45◦- 90◦ 90◦- 0◦ 90◦- 45◦ 90◦- 90◦

CASIA-center 99.10 0.8128 0.8001 0.7018 0.8088 0.8199 0.7328 0.7081 0.7332 0.7331

CASIA-sphere 99.27 0.8010 0.7678 0.6211 0.7784 0.7934 0.6708 0.6262 0.6749 0.6957

CASIA-sm 99.02 0.8158 0.7878 0.6483 0.7946 0.8135 0.6955 0.6515 0.7015 0.7233

CASIA-sm-augUV 99.22 0.8342 0.8182 0.7237 0.8256 0.8404 0.7582 0.7302 0.7597 0.7682

VGG2-sm 99.35 0.8397 0.8262 0.7325 0.8319 0.8486 0.7672 0.7386 0.7704 0.7805

MS1M-sm 99.60 0.8605 0.8427 0.6693 0.8486 0.8572 0.6993 0.6718 0.7050 0.7172

Table 3. Face probing across poses on VGG2 test set. Accuracy on LFW [16] is also put in the left as a performance reference. Cosine

similarity scores are evaluated across pose templates. A higher value is better.

(a) Profile Face UV Completion

(b) Frontal Face UV Completion
Figure 7. Profile face and frontal face UV Completion on CFP dataset. From left to right: 2D face images, 3D face fitting results, 3D face

shapes, self-occluded UV maps, UV completion results by UV-GAN, 3D face synthesis of five views, and ground truth of the frontal/profile

faces. The proposed UV-GAN can generate realistic, coherent and identity-preserved UV maps for in-the-wild profile and frontal faces.

ing data, we generate non-frontal views, which preserve ac-

curate facial details that are critical for identity discrimi-

nation. For non-frontal faces in the training data, we only

increase the pose angle to generate non-frontal faces with

larger self-occluded area.

VGG2 This experiment aims at assessing the impact of

pose variations (frontal, three-quarter and profile views) on

template matching. In [6], six templates of each subject are

divided into two sets, A and B, so that each set contains tem-

plates of three different poses. And a 3×3 similarity matrix

is constructed between the two sets. Each template is rep-

resented by a single vector computed by averaging the face

descriptors of each face in the set. The similarity between

templates is then computed as the cosine distance between

the vectors representing each template.

In Tab. 3, we show the similarity matrix averaged over

368 subjects. Each row corresponds to the three pose tem-

plates from A versus the three pose templates from B. We

find that (1) the similarity drops greatly when probing pairs

of differing poses, e.g., front-to-three-quarter and front-to-

profile, implying that recognition across poses is a challeng-

ing problem; (2) recognition results are better when match-

ing pairs with smaller pose gaps, which means that min-

imising pose gaps during testing, e.g., face frontalisation

or frontal face rotation, is highly beneficial; (3) recogni-

tion results are better when the training data contain large

pose variations (e.g. VGG2). That is, pose-invariant fea-

ture embedding can be directly learned from such data with-

out any special tricks; (4) by simply increasing the number

of identities (e.g. using MS1M [14]) without having large

pose variations in the training data, it is not possible to

learn a pose-invariant embedding; (5) training on the pro-

posed CASIA-augUV dataset is more beneficial for learn-

ing a pose-invariant embedding than training on the CA-
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Method Frontal-Frontal Frontal-Profile

Human 96.24 ± 0.67 94.57 ± 1.10

Sengupta et al. [33] 96.40 ± 0.69 84.91 ± 1.82

Sankarana et al. [31] 96.93 ± 0.61 89.17 ± 2.35

Chen et al. [7] 98.67 ± 0.36 91.97 ± 1.70

DR-GAN [36] 97.84 ± 0.79 93.41 ± 1.17

DR-GAN+ [37] 97.84 ± 0.79 93.41 ± 1.17

Peng et al. [28] 98.67 93.76

CASIA-center 98.34 ± 0.44 87.77 ± 2.39

CASIA-Sphere 98.64 ± 0.24 84.39 ± 2.59

CASIA-sm 98.59 ± 0.21 87.74 ± 1.07

CASIA-sm-aug1 98.25 ± 0.42 90.14 ± 1.53

CASIA-sm-augUV 98.83 ± 0.27 93.09 ± 1.72

-Profile2Frontal - 93.55 ± 1.67

-Frontal2Profile - 93.72 ± 1.59

-Template2Template - 94.05± 1.73

VGG2-sm 99.17 ± 0.11 93.40 ± 1.64

MS1M-sm 99.59 ± 0.13 87.11 ± 1.47

Shape Only 67.49 ± 2.04 62.26 ± 2.57

Table 4. Verification accuracy(%) comparison on CFP dataset.

SIA dataset; (6) the performance of a model trained on

the CASIA-augUV approaches the performance of a model

trained in VGG2 dataset, which is 6 times larger than CA-

SIA. Hence, it is evident that by incorporating larger pose

variations in the training set using the proposed UV-GAN

improves the performance.

CFP The Celebrities in Frontal-Profile (CFP)

dataset [33] focuses on extreme pose face verification.

The reported human performance is 96.24% on the frontal-

frontal protocol and 94.57% on the frontal-profile protocol,

which shows the challenge in recognising profile views.

In Tab. 4, we compare various training strategies with

state-of-the-art methods. For the frontal-frontal protocol,

the model MS1M-sm obtains the best verification accuracy

with 99.59%, and the model VGG2-sm ranks second with

an accuracy of 99.17%, which indicates that MS1M and

VGG2 contain larger variations than CASIA dataset. Nev-

ertheless, it is evident that our data augmentation on CASIA

helps to improve the performance from 98.59% to 98.83%.

By contrast, data augmentation by [24] (CASIA-sm-aug1)

only gives an accuracy of 98.25%. The method in [24] aug-

ments the data by introducing perturbation on the param-

eters of the 3D shape that correspond to identity. We be-

lieve that this is not an optimal strategy, since these param-

eters contain important information regarding identity. To

support our claim, the last row of Tab. 4 shows the perfor-

mance of the 157-d identity parameters from our 3D fitting

results. The recognition accuracy is 67.49% which demon-

strates that even though the shape is quite low-dimensional

and only estimated by 3DMM fitting it indeed contains in-

formation regarding identity.

For the frontal-profile protocol on the CFP dataset, pose

augmentation during training is very effective in learning

pose-invariant feature embedding. Our augmentation im-

proves the accuracy from 87.74% (CASIA-sm) to 93.09%
(CASIA-sm-augUV) and even approaches the performance

of the VGG2-sm (93.40%), which is trained on a much

larger dataset than CASIA (see Tab. 4). To further improve

the performance, we use our UV-GAN to synthesise frontal

faces from profile faces and vice versa to producing match-

ing pairs in the testing set. We present some illustrations

of the completed UV maps for profile and frontal faces in

Fig. 7. From the completed UV maps and 3D face shapes,

we can synthesise the face in arbitrary poses, e.g. frontal

and profile faces.

By synthesising frontal faces from profile faces (Pro-

file2Frontal in Tab. 4 and Fig. 7(a)) during testing

and matching them, the accuracy improves by 0.46%.

Similarly, synthesising profile faces from frontal faces

(Frontal2Profile in Tab. 4 and Fig. 7(b)) leads to slightly bet-

ter results, an improvement of 0.63%. Since our UV-GAN

can generate faces with arbitrary poses from any given face,

we can easily translate the pair-wise face verification prob-

lem into a more robust template verification problem. In

our experiments, we synthesise frontal faces from profile

faces and profile faces from frontal faces at the same time,

which are denoted by Template2Template in Tab. 4. We

have used a view interpolation of 15◦ to generate two tem-

plates. After that, we used the generated template feature

centres to conduct verification, where the accuracy attains a

value of 94.05%, 0.29% higher than the state-of-art method

proposed by Peng et al. [28].

5. Conclusions

In this paper, an understudied computer vision problem,

that of completion of facial UV maps that have been pro-

duced by fitting 3D face models in images. To this end, we

collected a large-scale dataset of completed facial UV maps.

Then, we employ global and local adversarial networks to

learn identity-preserved UV completion. When we attach

the completed UV map to the fitted 3D mesh, we can get

faces with arbitrary poses, which can increase pose varia-

tions during training of a face recognition model and de-

crease pose discrepancy during testing, which lead to better

performance. Experiments on both controlled and in-the-

wild UV datasets confirm the effectiveness of the proposed

UV completion method. The proposed method also obtains

state-of-the-art verification accuracy under the CFP frontal-

profile evaluation protocol.
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[21] H. Kim, M. Zollhöfer, A. Tewari, J. Thies, C. Richardt, and

C. Theobalt. Inversefacenet: Deep single-shot inverse face

rendering from a single image. arXiv:1703.10956, 2017. 1

[22] Y. Li, S. Liu, J. Yang, and M.-H. Yang. Generative face

completion. In CVPR, 2017. 2, 4, 5

[23] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song.

Sphereface: Deep hypersphere embedding for face recogni-

tion. In CVPR, 2017. 6

[24] I. Masi, A. T. Trn, T. Hassner, J. T. Leksut, and G. Medioni.

Do we really need to collect millions of faces for effective

face recognition? In ECCV, 2016. 2, 6, 8

[25] A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel

recurrent neural networks. arXiv:1601.06759, 2016. 2

[26] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face

recognition. In BMVC, 2015. 1, 2

[27] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A.

Efros. Context encoders: Feature learning by inpainting. In

CVPR, 2016. 2, 5, 6

[28] X. Peng, X. Yu, K. Sohn, D. N. Metaxas, and M. Chan-

draker. Reconstruction-based disentanglement for pose-

invariant face recognition. In ICCV, 2017. 2, 8
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