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Abstract

Generative Adversarial Nets (GANs) are very successful

at modeling distributions from given samples, even in the

high-dimensional case. However, their formulation is also

known to be hard to optimize and often not stable. While

this is particularly true for early GAN formulations, there

has been significant empirically motivated and theoretically

founded progress to improve stability, for instance, by using

the Wasserstein distance rather than the Jenson-Shannon

divergence. Here, we consider an alternative formulation for

generative modeling based on random projections which, in

its simplest form, results in a single objective rather than a

saddle-point formulation. By augmenting this approach with

a discriminator we improve its accuracy. We found our ap-

proach to be significantly more stable compared to even the

improved Wasserstein GAN. Further, unlike the traditional

GAN loss, the loss formulated in our method is a good mea-

sure of the actual distance between the distributions and, for

the first time for GAN training, we are able to show estimates

for the same.

1. Introduction

Generative modeling is a topic of increasing importance.

In contrast to discriminative approaches, where significant

progress has been made in the last decades, generative mod-

els are still at their infancy. This is partly due to the fact

that the output space considered when modeling a distribu-

tion over data is often significantly larger. Because of this

large output space, classical generative models such as prob-

abilistic semantic indexing [10], restricted Boltzmann ma-

chines [30], or latent Dirichlet allocation [4] have to sample

from high-dimensional distributions, which is challenging.

Instead, in recent years, progress in generative modeling

suggests to make use of the manifold assumption, i.e., to

sample from simple distributions and subsequently transform

the sample via function approximators such as deep nets to

yield the desired output. Variational autoencoders [14] and

adversarial nets [8] are among the algorithms which follow

Figure 1. Generated samples from the LSUN bedrooms dataset.

this paradigm. Variational autoencoders are based on the

principle of a variational lower bound which is maximized.

Their probabilistic interpretation is appealing, but they are

known to produce samples that are often overly smooth

when considering images. In contrast, generative adversarial

nets are often intuitively explained using a two-player game

analogy. They are known to produce sharp examples, but,

among others due to the saddle-point formulation inherent

to two-player games, optimization is finicky, as justified by

the many papers addressing this topic [1, 9, 31, 26, 27, 22,

20, 25, 13, 11, 19]. Among the most pressing issues are

mode dropping, vanishing gradients, training instability, and

sensitivity to parameter initialization.

To address some of the issues, most notably vanishing

gradients, Arjovsky et al. [2] recently introduced a variant

of GANs based on the Wasserstein distance rather than the

classical Jensen-Shannon divergence. Their approach em-

ploys the Kantorovich-Rubinstein duality which results in

a saddle-point objective, just like the original GAN frame-

work. However, optimization of saddle-point objectives is

challenging, particularly if neither of the directions is convex

or concave. Hence, optimization of the Wasserstein GANs

remains tricky as suggested by recent improvements [9].

Special techniques, e.g., [24, 23] are generally necessary but

practically not used.

In this paper we improve the stability of Wasserstein

GAN training by developing a mechanism based on random

projections as opposed to using the Kantorovich-Rubinstein
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duality. Different from the duality-based approach, in its

simplest form, we are able to formulate the optimization us-

ing a single minimization. To this end we utilize the “sliced

Wasserstein distance,” employed, e.g., by Rabin et al. [28]

for texture mixing. The sliced Wasserstein distance has since

been studied and successfully applied to a variety of tasks

such as color transfer [6] and image classification [15]. Re-

cently, Kolouri et al. [16] also proposed a family of provably

positive definite kernels based on the sliced Wasserstein dis-

tance and showed its efficacy on various pattern recognition

tasks.

Beyond stability improvements the proposed formula-

tion also enables a bound for attainable performance and

simple extensions to address modeling in high-dimensional

cases, e.g., when considering images more complex than

MNIST [18].

In experiments on the MNIST handwritten digit

dataset [18], the Toronto face dataset [32], the CIFAR-10

dataset [17], the CelebA dataset [21], and the LSUN bed-

room dataset [35] (see Fig. 1), we demonstrate that our ap-

proach is significantly more stable than conventional GANs,

and produces results which are of comparable quality. We

hope that this research encourages others to look into differ-

ent ways of interpreting and optimizing distance metrics.

2. Related Work

GANs were originally proposed by Goodfellow et al. [8]

in order to learn a sampling mechanism for complex data

distributions. Intuitively, a generator Gθ(z), depending on

parameters θ, transforms perturbations z, obtained from a

known distribution Pz over the latent space, into artificial

samples. A discriminator Dw(x), parameterized via w, com-

pares the artificial samples to real world data points x ∈ X
which we subsume in the dataset D = {x}. We assume the

data D to arise from an unknown data distribution Pd defined

on a compact space X . To compare data and artificial sam-

ples, the discriminator performs binary classification into

“real” or “fake” by minimizing the negative log-likelihood,

i.e., − logDw on real data points and − log(1 − Dw) on

artificial samples, while the generator tries to make this min-

imization as hard as possible. Taken together, GANs address

the following minimax program:

max
θ

min
w

Ex∼Pd
[− logDw(x)] (1)

+Ez∼Pz
[− log(1−Dw(Gθ(z)))] .

For computational reasons, both expectations are evaluated

empirically using samples. Impressive performance was

demonstrated using this framework which also spurred a sig-

nificant amount of work addressing possible improvements.

In the following we discuss some of the issues that have been

addressed to some degree in the past.

Training Instability: Training of GANs, i.e., optimiza-

tion of the program given in Eq. (1), is unstable in general,

e.g., well trained discriminators may suppress the training

of generators. To address this issue, careful tuning of the

number of generator updates after every discriminator up-

date has been suggested. However, efforts like these are

specific to tasks and hardly generalize. To understand this

instability, Arjovsky et al. [1] showed that under the opti-

mal discriminator, the training objective for the generator is

equivalent to the inverted Kullback-Leibler divergence minus

two times the Jensen-Shannon divergence between the data

distribution Pd and the transformed sample distribution, i.e.,

Gθ(Pz). The negative Jensen-Shannon divergences term in

the cost function pushes Pd and Gθ(Pz) apart, contradicting

the inverted Kullback-Leibler divergence’s efforts to draw

them closer.

Mode Dropping: Mode dropping refers to the phe-

nomenon that generated samples lack diversity. For example,

a generator for MNIST digits may suffer from the problem

of “mode dropping” if it only generates a few of the ten dig-

its. This problem has been observed when training GANs,

especially in their “− logD” incarnation of [31]. Again,

Arjovsky et al. [1] provided some theoretical justification

to this problem, arguing that the inverted Kullback-Leibler

divergence is extremely benevolent to mode dropping but

extremely harsh to novel samples.

It was shown in [2], that the aforementioned problems

can be addressed by replacing the Jensen-Shannon diver-

gence optimized in the original GAN framework with the

Wasserstein-1 distance, also known as the Earth mover’s dis-

tance. More specifically, the Wasserstein-p distance between

the unknown data distribution Pd and the transformed latent

distribution Gθ(Pz), which are both defined on a compact

data space X , is given by

Wp(Pd, Gθ(Pz)) = inf
γ∈Π(Pd,Gθ(Pz))

(E(x,y)∼γ [�x− y�p])
1

p ,

(2)

where Π(Pd, Gθ(Pz)) denotes all joint distributions that

have marginals Pd and Gθ(Pz). Computing the infimum

in Eq. (2) is hard, partly because the data distribution Pd

is not known. Therefore, it was proposed [2] to employ

the Kantorovich-Rubinstein duality to Wasserstein-1 dis-

tance [34], which yields

W (Pd, Gθ(Pz)) = sup
�f�L≤1

Ex∼Pd
[f(x)]−Ez∼Pz

[f(Gθ(z))],

(3)

where the supremum is over all 1-Lipschitz functions f :
X → R. To approximate the maximization in Eq. (3),

[2] proposed to train a neural network fw parametrized by

weights w ∈ W , which are clipped to ensure that w lies in a

compact space W , enforcing fw to be K-Lipschitz for some

K. Combined, the resulting Wasserstein GAN program
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reads

min
θ

max
w∈W

Ex∼Pd
[fw(x)]− Ez∼Pz

[fw(Gθ(z))] . (4)

How to impose the Lipschitz constraint on the discrimina-

tor is still an open problem. Gradient clipping, illustrated

in Eq. (4), was found to converge slowly and to have high

variance. Gulrajani et al. [9] proposed a different method

which restricts the norm of the gradient of the discrimina-

tor. This showed improvements over the original Wasserstein

GAN, allowing for easier generalization of the method. How-

ever, since the Wasserstein GAN utilizes the discriminator

to estimate the distance between the two distributions, the

correctness of the estimate depends fundamentally on how

well the discriminator has been trained. If the discriminator

is not trained enough, the signal might completely mislead

the generator. This is solved by training the discriminator

several times before a single generator update. Furthermore,

before the first generator update, the discriminator needs to

be trained for a significant time to ensure progress, which

adds computation cost and remains empirically motivated.

3. Approach

Following Arjovsky et al. [2], we also consider the

Wasserstein distance to model distributions. But moti-

vated by stability arguments and in contrast to using the

Kantorovich-Rubinstein duality, we pursue an approach that

estimates the Wasserstein distance directly from samples.

This is based on random projections which will lead to the

“sliced Wasserstein distance.” Moreover, just like for the

original GAN formulation given in Eq. (1), usage of the

Kantorovich-Rubinstein duality, as outlined in Eq. (4) yields

a saddle-point problem. However, saddle-point problems are

generally hard to optimize, particularly if they are neither

convex nor concave in any of the directions. Instead, our

proposed formulation searches for a global minimizer. In

addition, for the first time for GAN training, we are able to

show estimates for expected accuracy.

To describe our approach, we first consider the Wasser-

stein distance between two datasets containing real data

points x ∈ D ⊆ X , and artificially generated samples

x̂ = Gθ(z) ∈ F ⊆ X , which we subsume in the set of

“fake” samples F .

For notational simplicity only, we describe our proposed

approach without introducing the notion of mini-batches.

We however emphasize that mini-batches can be used in a

straightforward manner.

Note that the quadratic Wasserstein distance W 2
2 (D,F)

between two sets of data points D and F is equivalently

defined as

W 2
2 (D,F) =

1

|F|
min

σ∈Σ|F|

|F|�
i=1

�Dσ(i) − Fi�
2
2, (5)

where Σ|F| is the set of all permutations of |F| elements.

We use the subscript notation Di and Fi to refer to the i-th

sample in the dataset. Intuitively, the distance defined in

Eq. (5) searches for a one-to-one assignment, i.e., a bijec-

tive mapping of a “fake” sample Fi to a unique real data

point Dσ(i) with index σ(i) such that the squared difference

accumulated over the entire dataset is minimal. Note that

this assumes |F| = |D|, which is generally not a severe

restriction, particularly when considering the fact that we

generate the set of fake data F .

To facilitate the computation of the distance defined in

Eq. (5), the search for the optimal permutation σ
∗ is reformu-

lated as an integer linear program over the space of doubly

stochastic matrices M with integral entries, i.e., matrices

where both rows and columns sum to one:

W 2
2 (D,F) =

1

|F|
min
M

|F|�
i=1

|D|�
j=1

Mi,j�Dj − Fi�
2
2 (6)

s.t. M integral, doubly stochastic.

The matrix M is also referred to as a permutation matrix

and the task is known as a (linear) assignment problem as

the cost function is linear in the entries of the argument

M . Importantly, despite integrality constraints, a globally

optimal solution for this program can be found with a linear

programming solver because the constraint matrix of the

program provided in Eq. (6) is totally unimodular [7]. Hence

we can drop the integrality constraints while still obtaining

an integral solution.

Note that this formulation is conceptually similar to the

definition of the Wasserstein distance provided in Eq. (2).

Although problems of this form can be solved with stan-

dard linear programming algorithms, dedicated methods are

more suitable and achieve computational complexities of

O(|F|2.5 log(|F|)) [7]. Despite the availability of dedicated

solvers for problems of the form given in Eq. (6), we found

their complexity to be prohibitive for usage in the inner loop

of a learning algorithm.

To address this issue we note that the 1-dimensional case,

i.e., the case where x ∈ R and x̂ = Gθ(z) ∈ R, has a

more elegant solution. Specifically, let σD and σF be the

permutations such that

DσD(i) ≤ DσD(i+1), ∀i ∈ {1 ≤ i < N}, (7)

FσF (i) ≤ FσF (i+1), ∀i ∈ {1 ≤ i < N}. (8)

Note that those permutations are easily obtained by sort-

ing real data and artificial samples according to their value,

which is possible in the 1-dimensional case. Given those

permutations, the optimal σ∗ for the Wasserstein distance
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xi ∈ D ⊆ IR

Gθ(zi) ∈ F ⊆ IR

xi xj

Gθ(zi) Gθ(zj)

d2

d3 d4
d1

h

Figure 2. �xi − Gθ(zi)�
2

2 + �xj − Gθ(zj)�
2

2 =
�

d21 − h2
�

+
�

d22 − h2
�

<
�

d23 − h2
�

+
�

d24 − h2
�

= �xi−Gθ(zj)�
2

2+�xj−
Gθ(zi)�

2

2. Thus, the minimum in Eq. (5) is achieved when there is

no line crossing, i.e., samples monotonically arranged.

defined in Eq. (5) is simply

σ
∗ = σDσ

−1
F , i.e., (9)

W 2
2 (D,F) =

1

|F|

|D|�
i=1

�DσD(i) − FσF (i)�
2
2. (10)

Intuitively, the permutation σ
∗ assigns the “fake” sam-

ple FσF (i) to the real data point DσD(i). To see that this is

indeed the optimal assignment, let’s consider Fig. 2 more

carefully. The assignment is optimal if the data point with

smallest value is assigned to the “fake” sample with smallest

value. Any other assignment would result in crossing pair-

ings which can be minimized further by disentangling the

corresponding points. In practice, for 1-dimensional datasets

(of identical size) we sort both D and F in O(|F| log |F|)
time to find the correspondences and therefore the optimal

permutation σ
∗.

However, machine learning datasets of interest are rarely

1-dimensional. Therefore, in the following, we extend the

1-dimensional special case to an alternative metric. The

employed technique is based on random projections of the

high-dimensional datasets onto a variety of 1-dimensional

subspaces. Formally, we project the datapoints and artificial

examples onto 1-dimensional spaces by integrating over all

possible directions ω ∈ Ω on the unit sphere Ω:

W̃ 2
2 (D,F) =

�
ω∈Ω

W 2
2 (D

ω,Fω)dω. (11)

Hereby the sets Dω = {ω�Di}
|D|
i=1 and Fω = {ω�Fi}

|F|
i=1

contain 1-dimensional projections of the datapoints Di and

Fi onto the direction ω. W̃2(D,F) is also known as the

“sliced Wasserstein distance” [6]. Kolouri et al. [15] have

shown that the sliced Wasserstein distance satisfies the prop-

erties of non-negativity, identity of indiscernibles, symmetry,

and subadditivity. Hence, it is a true metric.

In practice, we approximate the sliced Wasserstein dis-

tance between the distributions by using random samples and

Algorithm 1: Training the Sliced Wasserstein Gen-

erator

Given :Parameters θ, sample size n, number of

projections m, learning rate α

1 while θ not converged do

2 Sample data {Di}
n
i=1 ∼ Px, noise

{zi}
n
i=1 ∼ Pz;

3 {Fi}
n
i=1 ← {Gθ(zi)}

n
i=1;

4 compute sliced Wasserstein Distance (D,F)
5 Init loss L ← 0;

6 Sample random projection directions

Ω = {ω1:m};

7 for each ω ∈ Ω do

8 Dω ← {ωTDi}
n
i=1, Fω ← {ωTFi}

n
i=1;

9 Dω
σ ← sorted Dω , Fω

σ ← sorted Fω;

10 L ← L+ 1
n
�Dω

σ − Fω
σ �

2;

11 end

12 return L
m

;

13 θ ← θ − α∇θL;

14 end

replacing the integration over Ω with a summation over a ran-

domly chosen set of unit vectors Ω̂. It is now straightforward

to formulate the optimization as

min
θ

1

|Ω̂|

�
ω∈Ω̂

W 2
2 (D

ω,Fω(θ)), (12)

when using the sliced Wasserstein distance metric. Hereby

we made the dependence of the “fake” samples F(θ) and

their respective projections Fω(θ) on the generator parame-

ters θ explicit. Note that we obtain a single minimization as

opposed to a saddle-point formulation.

We summarize the proposed approach in Alg. 1. In every

iteration, we sample random directions (e.g., from a Gaus-

sian distribution). We then draw a set of samples from the

true and fake distributions. Afterwards we project the dis-

tributions along each random direction, and compute the

Wasserstein distance between the projected distributions.

The sliced Wasserstein distance between the true and the

fake distributions is computed as the average Wasserstein

distance along all the projections. Gradients for the parame-

ters of the deep net are computed by differentiating this loss,

and any variant of stochastic gradient descent can be used to

perform the parameter updates.

We also want to mention that computation of

W2(D
ω,Fω(θ)) requires a sorting algorithm, which in-

creases computational complexity compared to optimizing

GANs and GAN variants. This increase is slightly alleviated

by the fact that our proposed technique does not need a dis-

criminator. All in all, we found the generator updates of our

approach to be slower by a factor varying from 1.5 to 2 in
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our experiments when |Ω̂| ≤ 10, 000 and when the sample

size is less or equal to 256. More details are provided in

Sec. 4. This may be time well spent when also considering

the improved stability that we demonstrate in Sec. 4.

3.1. Training objective as an upper bound

In the following we provide a more formal treatment of

the described approach and show that by training on the

objective given in Eq. (12), we are, in fact, optimizing an

upper bound on the sliced Wasserstein distance between the

true distribution and the generated distribution.

Let Pf = Gθ(Pz) be the distribution induced by the

generator. Our goal is to learn the data distribution Pd. If

P̂d, P̂f are random empirical measures of Pd, Pf , then our

optimization problem can be formulated as

min
Pf

E[W̃ 2
2 (P̂d, P̂f )]. (13)

However, we are concerned about W̃ 2
2 (Pd,Pf ). This is re-

lated to the program given in Eq. (13) in the following man-

ner.

Claim 1 Let Pd and Pf be two distributions. Suppose that

P̂d and P̂f are empirical measures of Pd and Pf , induced by

random sets (of n i.i.d samples) D and F . Then

W̃ 2
2 (Pd,Pf ) ≤ 16E[W̃2(P̂d, P̂f )]. (14)

Proof: See Appendix A.

Following the proof of Claim 1, we can guarantee the

following bound for the generated distribution that solves

our training objective.

Corollary 1 Let Pd and Pf be two distributions. Suppose

that P̂d and P̂f are (n-sample) empirical measures of Pd

and Pf , and let P̂�
d be an independent copy of P̂d. For P∗

f

defined by P
∗
f = argmin

Pf
E[W̃ 2

2 (P̂d, P̂f )], the following

holds:

W̃2(Pd,P
∗
f ) ≤ 14E[W̃2(P̂d, P̂

�
d)]. (15)

Proof: See Appendix B.

Corollary 1 tells us that, as E[W̃ 2
2 (P̂d, P̂

�
d)] → 0, our

bound gets tighter and therefore we should be able to learn a

better solution. We investigate how E[W̃ 2
2 (P̂d, P̂

�
d)] behaves

empirically for different datasets with the number of samples

used in Sec. 4.1.

3.2. Scaling to high dimensional distributions

By minimizing the sliced Wasserstein distance between

the distributions Pd and Gθ(Pz) over a finite set of directions,

we are essentially matching marginals of Pd and Gθ(Pz)
along those directions. For faster convergence it is, therefore,

better to use projections along which the distributions are

Dataset Size Approx #examples

MNIST 28x28x1 50,000

CIFAR-10 32x32x3 50,000

TFD 48x48x1 100,000

LSUN Bedrooms 64x64x3 200,000

CelebA 64x64x3 200,000

Table 1. Datasets used in various experiments

most dissimilar. Since we are randomly sampling projections

in a high dimensional space, it is unlikely that all projections

sampled will have useful information, especially as training

progresses.

In theory this can be addressed by methods such as linear

discriminant analysis, but they are expensive. Instead we

choose to use a discriminator, much like those in GANs, to

provide ‘good’ projections. Put simply, a neural network

based discriminator tries to map the real and fake samples

into a space where it is easy to tell them apart. Any projec-

tion in this space will have significantly more information,

since the two classes of samples are better separated in this

space. Suppose the output of some intermediate layer of

the neural network can be expressed as the function fθ� ,

while the overall discriminator is the function f �
θ� . Then,

instead of matching the distributions of Pd and Gθ(Pz), we

train our generator to match the distributions of fθ�(Pd) and

fθ�(Gθ(Pz)). The two objectives, which are optimized inde-

pendently of each other are:

min
θ

1

|Ω̂|

�
ω∈Ω̂

W 2
2 (fθ�(D)ω, fθ�(F)ω(θ)),

min
θ�

E[− log(f �
θ�(D))] + E[− log(1− f �

θ�(F))],

for D ∼ Pd,F ∼ Gθ(Pz). We find that this heuristic is ro-

bust to different discriminator architectures. This is demon-

strated empirically in Sec. 4.4.

4. Experimental Results

In this section, we present results to (1) compare the train-

ing of a generator with our method (henceforth called the

sliced Wasserstein Generator, or SWG) to other generative

models, and to (2) show how our method is stable across

different architectures of the generator and discriminator.

We use several datasets for our experiments. These are sum-

marized in Tab. 1. Baselines are the GAN in its “-log D”

incarnation [31], and the Wasserstein GAN (with gradient

penalty) from [9].

4.1. Effect of sample size

In our first experiment we investigate the upper bound of

Corollary 1. We compute empirically for different datasets,
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Figure 3. Limited sample estimate of the sliced Wasserstein distance

as a function of the sample size.
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Figure 4. Training with different sample sizes on MNIST. The

dashed lines denote E[W̃ 2

2 (P̂d, P̂
�

d)].

and show in Fig. 3, how E[W̃ 2
2 (P̂d, P̂

�
d)] decreases with the

number of samples used for estimation. To obtain this quan-

tity we take two sets of n samples, each from the data distri-

bution Pd. We then compute the sliced Wasserstein distance

between those sets in the manner described in Alg. 1. We

observe that E[W̃ 2
2 (P̂d, P̂

�
d)] decreases roughly via O(n−1).

Using Corollary 1, this implies that W̃ 2
2 (Pd,P

∗
f ) decreases

in O(n−1) for the optimal solution P
∗
f .

To test the quality of this loss estimate, we train a fully

connected deep net based generator on the sliced Wasserstein

distance with different sample sizes for the MNIST dataset.

Each configuration was trained 5 times with randomly set

seeds, and the averages with error bars are presented in Fig. 4.

During training, at every iteration, gradients are computed

using 10,000 random projections. We emphasize the small

GAN W GAN SWG

C
o

n
v

C
o

n
v

+
B

N
F

C
F

C
+

B
N

Figure 5. MNIST samples after 40k training iterations for differ-

ent generator configurations. Batch size = 250, Learning rate

= 0.0005, Adam optimizer

error bars which highlight the stability of the proposed ap-

proach.

The generator is able to produce good images in all four

cases. This shows that, in practice, a set of as few as 128 sam-

ples is good enough for simple distributions. The generator

is able to beat E[W̃ 2
2 (P̂d, P̂

�
d)] (dashed black line) on the loss,

indicating that it has probably converged in all cases. As

the number of samples increases, we see this bound getting

tighter.

4.2. Stability of Training

To demonstrate the stability of the proposed approach,

four different generator architectures are trained with our

method as well as the two aforementioned baselines using

exactly the same set of hyperparameters. One generator is

composed of fully connected layers while the other is com-

posed of convolutional and deconvolutional layers. For each

generator we assess its performance when using and when

not using batch normalization [12]. The architectures are

described in more detail in Appendix D. For this experiment,

only the GAN and Wasserstein GAN use a discriminator,

while our approach relies on random projections instead.

Further note that these architectures are arbitrarily chosen,

and this comparison is only intended to show how the train-

ing stability compares across different methods, as well as

how the sliced Wasserstein loss correlates with the generated

samples. This is not to compare the best possible samples

from different training methods.

Samples obtained from the resulting generator are visu-
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CIFAR-10 (32x32) LSUN Bedrooms (64x64) CelebA (64x64)

(a) G: DCGAN, D: DCGAN (with layernorm)

(b) G: DCGAN, D: DCGAN with 64 filters in each layer (with layernorm)

(c) G: DCGAN, D: DCGAN with 2x filters (with layernorm)

(d) G: DCGAN with extra Conv2D layers, D: DCGAN (with layernorm)

Evolution of the sliced Wasserstein distance through training
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Table 2. The SWG succeeds in training different architectures (a through d) on different datasets with same hyperparameters. Samples

collected after 20 epochs of training with batch size = 64, learning rate = 0.0001, Adam optimizer

alized in Fig. 5. We observe that only the SWG is able to

produce meaningful samples in every configuration. Surpris-

ingly, even the Wasserstein GAN fails in one of the config-

urations. The SWG is more robust in this setting than the

Wasserstein GAN, while needing less computation since the

Wasserstein GAN requires multiple discriminator updates

per generator update. This is more expensive than the extra

computation required for sorting in SWG.

To analyze this result more carefully, in Fig. 6, we show

how two metrics, namely the symmetrized KL divergence,

and the sliced Wasserstein distance, evolve over the train-

ing iterations. These results are averaged over 5 runs, and

plotted with error bars that represent the standard devia-

tion. The KL divergence is computed using the ITE toolbox

from [33]. The sliced Wasserstein distance is calculated as

the mean computed with a fixed set of 100,000 projection

directions. We show this for the convolutional generator

with and without batch norm. SWG is extremely stable, with

the KL divergence improving through training. The Wasser-

stein GAN shows very high variance. We do not speculate
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Figure 6. Training progress on MNIST for the Conv + BN and

Conv generators. Estimated using 500 samples each from both

distributions.

here about the cause, but merely state the observation that

the training objective is not very stable. The GAN diverges

through training. This is a known behavior of GANs.

4.3. Effectiveness of the sliced Wasserstein distance

From Fig. 5 and Fig. 6, we observe how the sliced Wasser-

stein distance correlates with sample outputs. The GAN

performs poorly on this metric even though it produces good

images. By inspection of the resulting samples, it is clear

that the GAN suffers from mode collapse around the digit 1.

Although the images are sharp, they lack sample diversity.

Because of this, the generated distribution is at a greater

sliced Wasserstein distance from the true distribution.

The sliced Wasserstein distance appears to be less harsh

on sample quality, and, because of this, the WGAN and the

SWG are able to achieve a better performance. Since the

WGAN and the SWG are optimizing different interpretations

of the same distance, this is perhaps not surprising.

The SWG produces good, diverse samples, and is able

to perform best on this distance. Interestingly, the divergent

behavior of the GAN is observable early on when using

the sliced Wasserstein distance. Our experiments indicate

that the sliced Wasserstein distance is a good measure for

distance between two distributions, taking into account both,

the sample quality, and the sample diversity.

4.4. Scaling to high dimensional distributions

In this section and in Tab. 2, we present results on the

CIFAR-10, LSUN Bedrooms, and CelebA datasets (columns

in Tab. 2 using the training method described in Sec. 3.2.

Along with a generator, we also use a discriminator and we

match distributions in the penultimate layer of the discrimi-

nator. To show the robustness of our approach, we train with

Projections Batch Size Time (s)

5000 64 0.06

5000 256 0.146

10000 64 0.072

10000 256 0.17

WGAN 64 0.046

WGAN 256 0.13

Table 3. Comparison of time required for generator updates

different architectures (rows in Tab. 2) while keeping the

same hyperparameters across all experiments. The discrimi-

nator is trained once per generator update for these experi-

ments. With a single default setting of hyperparameters, we

succeed in training all architectures across all datasets.

The base architecture for both the generator and discrimi-

nator is the DCGAN [29]. Like [9] we use layer normaliza-

tion [3] in the discriminator. We make modifications to this,

for instance using twice as many filters in each layer of the

discriminator, or using a constant 64 filters in every layer.

We also test a deeper generator by adding 2 convolutional

layers of stride 1 for one experiment.

We experiment with more discriminator training frequen-

cies (i.e., number of generator updates per discriminator

update) and show results in Appendix C.

4.5. Training time comparison

We compared the time per iteration for a generator update

in the SWG to a WGAN iteration. Both use Tensorflow v1.4

on a NVIDIA Tesla P-100 GPU. The results are summarized

in Tab. 3. Due to sorting, SWG is slower by a factor of

about 1.5 on the configurations tested. However, we do not

require multiple discriminator updates per generator update,

and therefore our approach is actually faster than the WGAN

per generator update.

5. Conclusions

In this paper we proposed to use the sliced Wasserstein

distance for generative modeling. We illustrated its efficacy

on the MNIST dataset [18], the CIFAR-10 dataset [17], the

CelebA dataset [21], and the LSUN dataset [35], and showed

stable results that are competitive with existing techniques.

Our implementation is publicly available1.
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