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Abstract

Unsupervised deep hash functions have not shown sat-

isfactory improvements against their shallow alternatives,

and usually require supervised pretraining to avoid overfit-

ting. In this paper, we propose a new deep unsupervised

hashing function, called HashGAN, which efficiently ob-

tains binary representation of input images without any su-

pervised pretraining. HashGAN consists of three networks,

a generator, a discriminator and an encoder. By sharing

the parameters of the encoder and discriminator, we bene-

fit from the adversarial loss as a data-dependent regular-

ization in training our deep hash function. Moreover, a

novel hashing loss function is introduced for real images,

which results in minimum entropy, uniform frequency, con-

sistent and independent hash bits. Furthermore, we employ

a collaborative loss in training our model, enforcing simi-

lar random inputs and hash bits for synthesized images. In

our experiments, HashGAN outperforms the previous unsu-

pervised hash functions in image retrieval and achieves the

state-of-the-art performance in image clustering on bench-

mark datasets. We also provide an ablation study, showing

the contribution of each component in our loss function.

1. Introduction

Image similarity search in big datasets has gained

tremendous attentions in different applications such as in-

formation retrieval, data mining and pattern recognition

[47]. With rapid growth of image data, it has become cru-

cial to find compact and discriminative representations of

images in huge datasets in order to have efficient storage

and real-time matching for millions of images. Hashing

functions provide an effective solution for this problem by

attributing a binary code to each image, and consequently
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Figure 1: Visualization of HashGAN discriminative repre-

sentations for a query set on MNIST using TSNE projection.

The real and synthesized data are indicated by colored and

gray circles respectively. Some of the synthesized images

are randomly shown from different parts of space.

reducing the similarity search between high dimensional

images to calculating the Hamming distance between their

binary codes [14, 50, 33, 30]. Typically, hash functions

are carefully designed to extract distinctive patterns from

images relevant to their semantic categorizes, while being

robust to various image transformations such as rotation,

translation, scale, and lightning [32, 55, 22].

Generally, hash functions can be divided into supervised

[33, 52, 16, 30] and unsupervised methods [18, 50, 46, 19].

The supervised hashing methods, especially deep hash

functions [27, 8, 59, 55], showed remarkable performance

in representing input data with binary codes. Although,

these deep hash functions take advantages of deep learn-

ing models in representing images with discriminative at-

tributes, they require costly human-annotated labels to train

their large set of parameters. Thus, their performance is

dramatically degraded by getting stuck in bad local minima

when there is not enough labeled data for training.
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The unsupervised hashing methods address this issue by

providing learning frameworks without requiring any super-

visory signals. The unsupervised hashing methods either

use shallow models with hand-crafted features [3, 39, 29, 2]

as inputs, or employ deep architectures for obtaining both

discriminative features and binary hash codes together.

However, the unsupervised shallow functions may not cap-

ture the non-linear similarities between real-world images

due to their low capacity. They also suffer from hand-

crafted features and dimension reductions techniques (e.g.

principle component analysis (PCA)), which are not robust

to noise and image transformations. On the other hand, the

unsupervised deep hash functions usually have insignificant

improvements against the shallow models, since they can

not exploit the power of deep models due to overfitting and

lack of supervision. Some of the unsupervised deep hash

functions tackle this issue by initializing their parameters

using supervised pretraining with large datasets (e.g. Ima-

geNet dataset [6]) [32, 22].

We propose a new unsupervised deep hashing model,

called HashGAN, which nor suffers from shallow hash

functions and hand-crafted features, neither needs the su-

pervised pretraining to have discriminative binary codes.

Our framework jointly learns a hash function with a gen-

erative adversarial network (GAN). In particular, we tie the

discriminator of the GAN with the hash function, employing

the adversarial loss function as a data-dependent regulariza-

tion term in training our deep hash function. Furthermore,

we introduce a novel loss function for hashing real images,

minimizing the entropy of hash bits for each image, maxi-

mizing the entropy of frequency of hash bits, improving the

consistency of hash codes against different image transfor-

mations, and providing independent hash bits. Moreover,

we provide a collaborative loss function, which enforces the

encoder to have the same binary hash code for a synthe-

sized image by the generator, as the binary input variable

provided to the generator while synthesizing the image. We

show that this collaborative loss function is a helpful auxil-

iary task for obtaining discriminative hash codes.

Figure 1 illustrates a 2D visualization of HashGAN hash

codes for a query set of real and fake images on MNIST

dataset [28]. As shown, HashGAN not only achieves dis-

criminative representations for real data, but also generates

synthesized images conditioned on their binary inputs, rep-

resenting the semantic categories. Experimental results in-

dicate that our proposed model outperforms unsupervised

hash functions with significant margin in information re-

trieval tasks. Moreover, HashGAN achieves superior or

competitive results compared to the state-of-the-art models

in image clustering tasks. We also explore the effect of each

term in our loss function using an ablation study. Therefore,

our experiments confirm the effectiveness of HashGAN in

unsupervised attribute learning across different tasks. Our

contributions are summarized as follows:

• Proposing a novel framework for unsupervised hash-

ing model by coupling a deep hash function and a gen-

erative adversarial network.

• Introducing a new hashing objective for real im-

ages, regularized by the adversarial and collabora-

tive loss functions on synthesized images, resulting in

minimum-entropy, uniform frequency, consistent, and

independent hash bits.

• Achieving state-of-the-art results compared to alterna-

tives on information retrieval and clustering tasks.

2. Related Works

2.1. Hash Functions

Generally, hash functions can be grouped into super-

vised [33, 11, 52, 31, 16] and unsupervised methods [18,

50, 46, 19]. The supervised methods require class labels

or pairwise similarity ground truths in their learning pro-

cess, whereas the unsupervised approaches need only in-

put samples. With the growing success of deep learning in

different applications, several studies have been published

about supervised deep hash functions [27, 8, 59, 30, 55].

They mostly use pairwise relationships in different variants

of ranking loss functions (e.g. triplet [49], contrastive [17]

objectives) to simultaneously learn discriminative features

and encode hash bits. However, the performance of these

supervised hashing models crucially depends on availabil-

ity of labeled data in the training process.

Among the shallow models, locality sensitivity hashing

(LSH) [13] maps original data into a low dimensional fea-

ture space using random linear projections, and then obtains

binary hash codes. Later in [26, 51], LSH was extended to

kernel-based variants of hash functions. Gong et al. in-

troduced another well-known model, called iterative quan-

tization (ITQ) [14], which uses an alternating optimization

approach for learning efficient projections and performing

binarization. Spectral hashing (SpeH) [50] computes binary

hash codes by implementing spectral graph partitioning us-

ing the similarity information in a feature space. However,

these models suffer from shallow hash functions and inflex-

ible hand-crafted features, which limit their capabilities in

dealing with complex and high dimensional real world data.

In unsupervised deep hashing models, semantic hashing

[40] is one of the early studies, which adopts Restricted

Boltzmann Machine (RBM) [20] model as a deep hash func-

tion, and trains its parameters using an unsupervised learn-

ing approach. Deep Hashing (DH) [10] applies an unsuper-

vised loss function to a hierarchical neural networks to have

quantized, balanced and independent hash code bits. Lin et

al. introduced DeepBit [32] as an unsupervised deep hash-

ing algorithm by defining an objective function based on

quantization loss and balanced and rotation invariant hash
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bits. In addition to quantization and balanced hash bits loss

functions, unsupervised triplet hashing (UTH) [22] employs

an unsupervised triplet loss, which minimizes the distance

of an anchor image and its rotated version (i.e. positive pair)

while maximizing the distance of the anchor image with a

random image (i.e. negative pair). Another method with

two steps is introduced in [21] to learn discriminative bi-

nary representations in an unsupervised manner. A convo-

lutional neural network (CNN) is trained using a clustering

algorithm in the first step, and then the learned cluster as-

signments are used as soft pseudo labels in a triplet ranking

loss for training a deep hash function in the second step.

Our proposed model falls in the category of unsupervised

deep hash functions. But unlike the unsupervised deep hash

functions, which have insignificant improvements over the

shallow alternatives, and/or require supervised pretraining

using a large labeled dataset, HashGAN outperforms unsu-

pervised alternatives with significant margins without any

supervised pretraining.

2.2. Applications of GAN

Goodfellow et al. proposed a powerful generative model,

called generative adversarial networks (GAN) [15], which is

able to synthesize realistic images with great details. Partic-

ularly, GAN objective includes a two-player minimax game

between two networks, a generator and a discriminator. The

discriminator aims to distinguish between the real and syn-

thesized (i.e. fake) images, and the generator maps samples

from arbitrary distribution (i.e. random noise) to the dis-

tribution of real images, trying to synthesize fake images

that fool the discriminator. Several studies [7, 38] further

addressed problems such as the unstable training process

of GAN and noisy and blurry synthesized images, resulting

in higher quality images. Moreover, some works [35, 37]

tried to improve the quality and diversity of generated im-

ages by conditioning on the supervisory signals like class

labels and text descriptions, and incorporating these su-

pervised information into the generative and discriminative

pathways. In addition, GAN has been adopted in supervised

and semi-supervised tasks to use the input data distribution

as a generalization force, and enhance the classification re-

sults [44, 41, 38]. Unlike these supervised/semi-supervised

studies, our model employs GAN in the unsupervised hash-

ing task, and does not require any supervisory signals like

class labels and image captions.

3. Unsupervised Deep Generative Adversarial

Hashing Network

In this section, we first introduce HashGAN by show-

ing its architecture and explaining the intuition behind the

model. Then, we define its loss function and describe the

effect of each term in our learning framework.
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Figure 2: HashGAN architecture, including a genera-

tor (green), a discriminator (red) and an encoder (blue),

where the last two share their parameters in several layers

(red⊕blue=purple). The arrows on top represent the loss

functions.

3.1. HashGAN Architecture

Our proposed HashGAN model consists of three com-

ponents, a generator, a discriminator and an encoder. The

generator is supposed to synthesize images that fool the dis-

criminator by mapping samples from a random distribution

to the real data distribution. The discriminator is expected

to distinguish the synthesized images from real ones. The

encoder is designed to map the images to discriminative

binary hash codes. As shown in Figure 2, the discrimi-

nator and encoder share all of their parameters except for

the weights of their last layer. The inputs of generator are

also the concatenation of samples from two random distri-

butions, including binary and uniform random variables.

In order to train the discriminator parameters, we use the

standard adversarial loss function in GAN models. The pa-

rameters of encoder are trained via a hashing loss on real

data and an ℓ2-norm loss on fake data. The hashing loss en-

sures having quantized, balanced, consistent and indepen-

dent hash codes for real images, and the ℓ2-norm loss is de-

termined to have similar hash codes as the generator binary

inputs for synthesized images. To train the parameters of

generator, we utilize the feature matching loss, introduced

in [41], to match the statistics of the real and fake images.

To do so, the expected value of the features in the last hid-

den layer of discriminator (encoder) network is selected in

the feature matching loss function.

HashGAN architecture has several advantages in our un-

supervised deep learning framework. First, tying the dis-

criminator and encoder is very useful in unsupervised train-
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ing of our deep hash function, because the adversarial loss

can be considered as a data-dependent regularization term

in training HashGAN, which avoids overfitting and getting

stuck in bad local minima. From another point of view, the

encoder pathway utilizes the information in the data distri-

bution, which is discovered in the latent variables of dis-

criminator.

It has been shown that interpolations in the input space

of the generator produce semantic variations along data dis-

tribution [38, 9]. Hence, training the encoder to utilize these

information hidden in the input variables of generator is

helpful in learning discriminative binary codes. The feature

matching loss and the ℓ2-norm loss for training the genera-

tor and encoder networks can be considered as collaborative

loss functions, which aim to use the generator binary in-

puts as the pseudo-hash-labels for the synthesized images,

while they have similar statistics with the real images. This

novel approach fits our unsupervised hashing problem, and

it is different with the conventional conditional GAN mod-

els [35, 37], which need supervisory signals.

3.2. HashGAN Loss Function

Consider there are N images in the gallery set, denoted

by X = {xi|i = 1, · · · , N}, which are used in training our

deep hash function. We utilize a multi-layer hash encoder

to map the input images into the K-bit hash codes. To do

so, there are K independent sigmoid functions in the last

layer of our encoder network. Thus, the output of encoder

for each image is represented by ti = E(xi), which shows

the composition of K independent probabilities as tik =
P (bik = 1|xi;WE), where tik and bik are the k-th output

of encoder and binary hash code for the i-th image, and

WE indicates the encoder parameters. Note that the binary

hash codes are simply computed using bik = 1(tik > 0.5),
where 1(.) is the indicator function.

Our HashGAN model employs a generator network,

which maps the samples from a random distribution to the

data distribution. As mentioned earlier, the random input

of generator is concatenation of binary and uniform ran-

dom variable as zi = [z′i,b
′
i], where z

′
i ∼ U(0, 1) shows

the uniform random noise and b
′
i ∼ B indicates the bi-

nary random noise. While the real images are shown by

xi, the synthesized images by the generator are represented

by x̂i = G(zi). We also obtain the encoder outputs for the

synthesized images as t̂i = E(x̂i) = E(G(zi)).

The discriminator of HashGAN is supposed to determine

whether its input image is a real or a synthesized sample. A

sigmoid function is considered as the last layer of discrim-

inator, computing the probabilities pi = D(xi) = P (yi =
1|xi;WD) and p̂i = D(G(zi)) = P (yi = 1|x̂i;WD),
where pi and p̂i are the probabilities of being real (yi = 1)

for the i-th real and synthesized images respectively.

Now, we are able to define the loss function in our learn-

ing framework. The total loss function is summation of the

adversarial loss, hashing loss, and collaborative loss for the

real and synthesized images:

Ltotal = Ladv + Lhash + Lcol . (1)

Following, we describe each term of the loss function in

more details, and explain the role of each one in achieving

discriminative binary hash codes. As proposed in [15], the

adversarial loss in GAN models is designed as a minimax

play between the discriminator and the generator models,

in which the discriminator is trained to correctly distinguish

the real and synthesized images, and the generator is trained

to synthesize fake images that fool the discriminator. The

adversarial loss function for training our discriminator has

the following form:

max
D

E
x∼P (x)

[
log(D(x))

]
+ E

z∼P (z)

[
log(1−D(G(z))

]

(2)

where the goal is to train the discriminator D to distinguish

the real image x from the synthesized sample G(z). The

adversarial loss is maximized w.r.t. the discriminator to in-

crease the log-likelihood of correct predictions on real im-

ages and decrease the log-likelihood of mis-prediction on

fake samples.

The hashing objective for real data contains four losses,

including minimum-entropy, uniform frequency, consistent,

and independent bits loss functions. The following equation

shows these loss functions:

min
E

−

N∑

i=1

K∑

k=1

tik log tik + (1− tik) log(1− tik)

︸ ︷︷ ︸

minimum entropy bits

+

K∑

k=1

fk log fk + (1− fk) log(1− fk)

︸ ︷︷ ︸

uniform frequency bits

+

N∑

i=1

K∑

k=1

‖tik − t̃ik‖
2
2

︸ ︷︷ ︸

consistent bits

+ ‖WL⊤

E W
L
E − I‖22

︸ ︷︷ ︸

independent bits

, (3)

where t̃ik = P (bik|x̃i;WE) is the k-th encoder output for

the i-th real image, transformed by translation, rotation,

flipping, or noise, fk = 1/N
∑N

i=1 tik is the frequency of

the k-th hash bit code over sampled images, and W
L
E is the

weights of the last layer on the encoder network.

The first term in the hashing loss function is equiva-

lent to entropy of each hash bit, and minimizing this term

pushes hash bits for each image toward 0 or 1. Thus, the

minimum-entropy bits loss function reduces the quantiza-

tion loss without using the sign function. Considering fk
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as the empirical frequency of each hash bits, the second

term in this loss function is a negative of entropy for the

bits frequency. By maximizing (i.e. minimizing negative

of) the entropy of bits frequency, the encoder tends to have

balanced hash codes. The third term in the loss function

constrains the encoder to extract similar hash codes for an

image and its transformed variants, making the encoder ro-

bust to the transformations. Finally, the last term in this loss

function pushes the encoder to have independent hash bits.

We also take advantages of the synthesized images in

training the encoder network by a ℓ2-norm loss function,

which minimizes the distance of encoder outputs and gen-

erator binary inputs. Following equation shows the ℓ2-norm

loss on the synthesized data:

min
E

E
z∼P (z)

[
‖E(G(z))− b

′‖22
]
, (4)

where b
′ is the binary random variable in the generator in-

put z = [z′,b′]. Using this ℓ2-norm loss function, the en-

coder network is able to provide similar hash codes for the

synthesized images, which share the same binary attributes

b
′, but vary due to different uniform random variables z′.

In order to train the generator network, we used the fea-

ture matching loss instead of directly optimizing the out-

put of the discriminator via the traditional adversarial loss

function. The feature matching loss requires the generator

to synthesize images that have similar statistic to the real

images. We consider the last hidden layer of discrimina-

tor, denoted by F , as the source of statistic, and define the

following loss function:

min
G

‖E
x∼P (x)F(x)− E

z∼P (z)F(G(z))‖22 , (5)

where F is also the last hidden layer of encoder network,

affecting the hash codes and the adversarial probability. The

feature matching loss provides more stability in training our

model, and leads the synthesized images to share statistic

with real data. This is very helpful in collaborating with

ℓ2-norm loss, making the pseudo-hash-labels for fake data

effective on obtaining discriminative binary representations

for real images.

In order to train our HashGAN model, we are able to use

stochastic learning techniques. Thus, we alternatively train

the generator and tie the discriminator and the encoder net-

works. In particular, we optimize the parameters of discrim-

inator and encoder jointly using the adversarial, hashing and

ℓ2-norm loss functions in one step, and train the parameters

of generator using the feature matching loss in the next step.

4. Experiments

We perform several experiments to evaluate the perfor-

mance of our proposed model on multiple datasets. The

quality of hash codes extracted by HashGAN is explored

in image retrieval and clustering tasks. We also investigate

the effect of each component in our loss function using an

ablation study.

Implementation details: We use almost similar archi-

tectures for HashGAN to the Improved-GAN networks in

[41]. We avoid pooling layers and use strided convolu-

tional layers, utilize weight normalization [42] to stabilize

the training process, consider ReLU and leaky-ReLU non-

linearities [34] as the activation function of convolutional

layers in our discriminator and encoder. For image pre-

processing, we only normalize the image intensities to be

in the range of [0, 1] or [−1, 1], and consequently use sig-

moid and TanH functions in the last layer of our gener-

ator. A zero mean Gaussian noise with standard devia-

tion of 0.15 is also added to the input images of our dis-

criminator/encoder. Moreover, we set the learning rate to

9 × 10−4 and linearly decrease it to 3 × 10−4, and adopt

Adam [23] as our optimization method with the hyper-

parameters β1 = 0.5, β2 = 0.999, ǫ = 1e − 08. Since our

hashing task is unsupervised, we did not tune any hyper-

parameters for adjusting the effect of our losses in differ-

ent datasets, and use the default setting. In particular, we

set the weights for the adversarial (Ladv), feature match-

ing (Lfeat), independent bits (LindBit), uniform frequency

bits (LuniFrqBit), consistent bits (LconsBit) loss functions

equal to 1, and the weight of ℓ2-norm loss (L2) equal to

0.1. For LminEntrpBit in the hash loss function, the weight

is selected from λminEntrpBit = {10−3, 10−2} based on

the final epoch loss value in the training process. Besides,

we first train HashGAN without the hash and ℓ2-norm loss

functions by setting its weight equal to zero for one tenth

of the maximum epoch, since the obtained hash codes in

the first iterations may not be reliable for training the en-

coder parameters. We use Theano toolbox [1] for writing

our code, and run the algorithm in a machine with one Titan

X Pascal GPU.

Datasets: We compare our model with unsupervised

hash functions in the image retrieval task on CIFAR-10 [24]

and MNIST [28]. Furthermore, we analyze the discrimina-

tive capability of HashGAN binary codes in the image clus-

tering task on MNIST, USPS, FRGC [56] and STL-10 [5]

datasets. Following, we describe each dataset briefly.

CIFAR-10 dataset [24] contains 60K 32×32 colored im-

ages balanced across 10 classes (i.e. airplane, automobile,

bird, cat, deer, dog, frog, horse, ship and truck).

MNIST dataset [28] includes 70K 28×28 gray scale im-

ages of hand written digits (0-9) across 10 classes.

USPS is a dataset of 11K 16× 16 gray scale handwritten

digits from USPS postal service, with unbalanced distribu-

tion across the ten digits.

FRGC contains 2, 462 facial images from randomly se-

lected 20 subjects on this dataset [56]. Similar to [56], we

crop the images to 32× 32 colored facial images.
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Dataset
CIFAR-10 MNIST

S
u

p
er

.

P
re

tr
ai

n

mAP (%) mAP@1000 (%) mAP (%) mAP@1000 (%)

Model 16 32 64 16 32 64 16 32 64 16 32 64

S
h

al
lo

w

KMH [18] 13.59 13.93 14.46 24.08∗ 23.56∗ 25.19∗ 32.12 33.29 35.78 59.12∗ 70.32∗ 67.62∗

✗

SphH [19] 13.98 14.58 15.38 24.52∗ 24.16∗ 26.09∗ 25.81 30.77 34.75 52.97∗ 65.45∗ 65.45∗

✗

SpeH [50] 12.55 12.42 12.56 22.10∗ 21.79∗ 21.97∗ 26.64 25.72 24.10 59.72∗ 64.37∗ 67.60∗

✗

PCAH [46] 12.91 12.60 12.10 21.52∗ 21.62∗ 20.54∗ 27.33 24.85 21.47 60.98∗ 64.47∗ 63.31∗

✗

LSH [13] 12.55 13.76 15.07 12.63∗ 16.31∗ 18.00∗ 20.88 25.83 31.71 42.10∗ 50.45∗ 66.23∗

✗

ITQ [14] 15.67 16.20 16.64 26.71∗ 27.41∗ 28.93∗ 41.18 43.82 45.37 70.06∗ 76.86∗ 80.23∗

✗

D
ee

p

DH [10] 16.17 16.62 16.96 - - - 43.14 44.97 46.74 - - - ✗

DAR [21] 16.82 17.01 17.21 - - - - - - - - - ✗

DeepBit [32] - - - 19.43 24.86 27.73 - - - 28.18 32.02 44.53 ✓

UTH [22] - - - 28.66 30.66 32.41 - - - 43.15 46.58 49.88 ✓

HashGAN [ours] 29.94 31.47 32.53 44.65 46.34 48.12 91.13 92.70 93.93 94.31 95.48 96.37 ✗

Table 1: Image retrieval results (mAP and mAP@1000) of unsupervised hash functions on CIFAR-10 and MNIST datasets,

when the number of hash bits are 16, 32 and 64. The usage of supervised pretraining is shown for each model using the

tick sign. The results of alternative models are reported from the reference papers, except for the ones marked by (∗) on top,

which are obtained by us running the released code.

STL-10 database [5] includes 13K colored images across

10 classes (i.e. airplane, bird, car, cat, deer, dog, horse,

monkey, ship and truck). The images are resized to 32×32.

4.1. Image Retrieval

Alternative models: For image retrieval, we compare

our method with the previous unsupervised hash functions

including K-means hashing (KMH) [18], spherical hash-

ing (SphH) [19], spectral hashing (SpeH) [50], PCA-based

hashing (PCAH) [46], locality sensitivity hashing (LSH)

[13], iterative quantization (ITQ) [14], deep hashing (DH)

[10], discriminative attributes representations (DAR) [21],

DeepBit [32] and unsupervised triplet hashing (UTH) [22].

Evaluation metrics: We evaluate the performance of

HashGAN compared to the aforementioned unsupervised

hashing functions using precision and mean average pre-

cision (mAP). We follow the standard protocol for both

MNIST and CIFAR-10 datasets, and randomly sample 1000
images (100 per class) as the query set and use the remain-

ing data as the gallery set. In particular, we report the results

of the image retrieval in terms of precision@1000, mAP,

and mAP@10001, where precision@1000 is the fraction of

correctly retrieved samples from the top 1000 retrieved sam-

ples in gallery, mAP is the mean of the average precision of

query images over all the relevant images, mAP@1000 is

mAP calculated over the top 1000 ranked images from the

gallery set. The reported results are the average of 5 exper-

imental results.

Performance comparison: Table 1 shows the mAP and

mAP@1000 results of HashGAN and other alternative mod-

1Note that comparisons in some of the previous studies are confusing,

as they comapre mAP results of baseline models with mAP@1000 results

of other models. To avoid such confusion, we provide evaluations in terms

of both of these metrics, separately.

els across different hash bit sizes. To better compare the

models, we divide the hash functions into two groups of

shallow and deep models, and indicate whether they use su-

pervised pretraining or not. The results demonstrate that

our model consistently outperforms other models with sig-

nificant margins across different number of bits, datasets

and metrics. Although, HashGAN gives better performance

with more number of hash bits, its performance has small

drops with less hash bits. Interestingly, the unsupervised

deep hash functions, which use supervised pretraining via

ImageNet dataset, show better results on CIFAR-10 dataset

compared to the shallow models, but have relatively lower

performance on MNIST dataset. This shows that pretraining

on ImageNet dataset is more helpful for CIFAR-10 than for

MNIST, which is not that surprising, given that ImageNet

data distribution looks more similar to the CIFAR-10 image

distribution than MNIST. However, our model does not re-

quire any supervised pretraining, and consequently is not

affected by pretraining biases, and achieves superior results

on both datasets.

Table 2 indicates the results of precision@1000 for

HashGAN and some of the unsupervised hash functions.

Similar to Table 1, HashGAN achieves superior results in

comparison with the alternative shallow and deep mod-

els. The improvements of our model are consistent across

both MNIST and CIFAR-10 datasets and different hash code

sizes, showing the effectiveness of our learning framework

in dealing with different conditions. We also compare

HashGAN with the baselines using precision-recall curves

on CIFAR-10 dataset. Figure 3 clearly demonstrates bet-

ter performance for HashGAN consistently across different

number of bits.

Moreover, we visualize the HashGAN’s top 10 retrieved

images for some query data on CIFAR-10 dataset, when the
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(a) 16 bits (b) 32 bits (c) 64 bits

Figure 3: Precision-Recall curves on CIFAR-10 database for HashGAN and five baselines with 16, 32, and 64 hash bits.

Dataset
CIFAR-10 MNIST

precision@1000 (%) precision@1000 (%)

Model 16 32 64 16 32 64

S
h

al
lo

w

KMH [18] 18.83 19.72 20.16 51.08∗ 53.82∗ 54.13∗

SphH [19] 18.90∗ 20.91∗ 23.25∗ 46.31∗ 54.74∗ 62.50∗

SpeH [50] 18.83 19.72 20.16 51.08∗ 53.75∗ 54.13∗

PCAH [46] 18.89 19.35 18.73 51.79∗ 51.90∗ 48.36∗

LSH [13] 16.21 19.10 22.25 31.95∗ 45.05∗ 55.31∗

ITQ [14] 22.46 25.30 27.09 61.94∗ 68.80∗ 71.00∗

D
ee

p

DH [10] 16.17 16.62 16.96 - - -

DAR [21] 24.54 26.62 28.06 - - -

HashGAN [ours] 41.76 43.62 45.51 93.52 94.83 95.60

Table 2: Image retrieval results (precision@1000) of unsu-

pervised hash functions on CIFAR-10 and MNIST datasets,

when the number of hash bits are 16, 32 and 64. The re-

sults of alternative models are reported from the reference

papers, except for the ones marked by (∗) on top, which are

obtained by us running the released code.

hash bit size is 32. Figure 4 illustrates these results, qual-

itatively showing that our hash function is able to extract

semantic binary attributes.

4.2. Ablation Study

We perform an ablation study to examine the contri-

bution of each loss component in the achieved results.

We evaluate this experiment across LindBit, L2, LconsBit,

LuniFrqBit and Ladv+Lfeat+L2. Note that in the absence

of adversarial loss, the feature matching and ℓ2-norm losses

are also excluded due to their co-dependencies with the ad-

versarial loss. We exclude loss components one at a time,

measuring the difference in precision@1000 on MNIST and

CIFAR-10 datasets (See Fig. 5). The first observation is

that all of the loss components contribute in improving the

results. Furthermore, the figure shows the strong effect

of Ladv + Lfeat + L2 as the key components in avoid-

Query Retrieved

Figure 4: Top 10 retrieved images for query data by Hash-

GAN on CIFAR-10 dataset with 32 bits hash code.

ing overfitting. In other words, employing GAN in our

model has the highest practical contribution, and removing

the discriminator and generator degrades the performance

substantially. It also demonstrates that the presence of uni-

form frequency loss is very important. Examining the re-

sults achieved in the absence of this loss demonstrates that

some of the binary codes collapse to either zero or one,

reducing the capacity of the assigned hash bit size. The

relative analysis of the results in each dataset demonstrates

that consistency loss is more effective in CIFAR-10 than in

MNIST. This is expected as we only use noise for image

transformation on MNIST since the images are centered and

scaled, but rely on extra transformations including transla-

tions and horizontal flipping for CIFAR-10. The figure also

demonstrates considerable contribution from the ℓ2-norm

loss, showing the effectiveness of our framework in using

the synthesized images for training the encoder network.

The lowest effect is provided by the independent bit loss.

4.3. Image Clustering

One way to measure whether the hash function is effec-

tive in extracting distinctive codes is to evaluate their per-

formance in clustering tasks. Hence, we assess HashGAN’s
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Dataset MNIST USPS FRGC STL-10

Model NMI ACC NMI ACC NMI ACC NMI ACC

S
h

al
lo

w

K-means 0.500 0.534 0.450 0.460 0.287 0.243 0.209∗ 0.284

N-Cuts [43] 0.411 0.327 0.675 0.314 0.285 0.235 - -

SC-LS [4] 0.706 0.714 0.681 0.659 0.550 0.407 - -

AC-PIC [58] 0.017 0.115 0.840 0.855 0.415 0.320 - -

SEC [36] 0.779 0.804 0.511 0.544 - - 0.245∗ 0.307

LDMGI [57] 0.802 0.842 0.563 0.580 - - 0.260∗ 0.331

D
ee

p

NMF-D [45] 0.152 0.175 0.287 0.382 0.259 0.274 - -

DEC [53] 0.816 0.844 0.586 0.619 0.505 0.378 0.284∗ 0.359

JULE-RC [56] 0.913 0.964 0.913 0.950 0.574 0.461 - -

DEPICT [12] 0.917 0.965 0.927 0.964 0.610 0.470 0.303∗ 0.371∗

HashGAN [ours] 0.913 0.965 0.920 0.958 0.602 0.465 0.316 0.394

Table 3: Clustering performance of HashGAN and several other algorithms on four image datasets based on accuracy (ACC)

and normalized mutual information (NMI). The results of alternative models are reported from the reference papers, except

for the ones marked by (∗) on top, which are obtained by us running the released code.

Figure 5: The difference in the precision@1000, when each

of the loss components are excluded from the HashGAN’s

objective function on MNIST and CIFAR-10 datasets.

ability in clustering, by using the extracted hash codes as

low dimensional input features for K-means and compare

the results with alternative clustering models.

Alternative Models: We compare our clustering method

with several baselines and state-of-the-art clustering algo-

rithms, including K-means, normalized cuts (N-Cuts) [43],

large-scale spectral clustering (SC-LS) [4], agglomerative

clustering via path integral (AC-PIC) [58], spectral embed-

ded clustering (SEC) [36], local discriminant models and

global integration (LDMGI) [57], NMF with deep model

(NMF-D) [45], task-specific clustering with deep model

(TSC-D) [48], deep embedded clustering (DEC) [53], joint

unsupervised learning (JULE-RC) [56] and DEPICT [12].

Evaluation metrics: To compare the clustering results

of our model with previous studies, we rely on the two pop-

ular metrics used to evaluate clustering: normalized mutual

information (NMI), and accuracy (ACC). NMI provides a

measure of similarity between two data with the same la-

bel, which is normalized between 0 (lowest similarity) to 1

(highest similarity) [54]. To calculate ACC we find the best

mapping between the predicted clusters and the true labels,

following the approach proposed by [25].

Performance comparison: Table 3 gives the evaluation

results for our clustering method and the mentioned algo-

rithms in terms of NMI and ACC across MNIST, USPS,

FRGC, and STL-10 datasets. The results demonstrate that

our method (HashGAN + K-means) achieves superior or

competitive results compared to the state-of-the-art clus-

tering algorithms. Note that our method is not specially

designed for clustering, since we only run K-means algo-

rithm on the HashGAN representations without backpropa-

gating clustering error through the network. The table also

indicates clear advantage of deep models compared with

shallow models, emphasizing the importance of deep rep-

resentations in image clustering. Overall, this experiment

demonstrates the effectiveness of HashGAN model in ex-

tracting discriminative representations on different datasets

in completely unsupervised manner.

5. Conclusion

This paper introduced HashGAN, an unsupervised deep

hashing model, composed of a generator, a discriminator

and an encoder. We defined a novel objective function to

efficiently train our deep hash function without any super-

vision. Using the tied discriminator and encoder, we em-

ployed the adversarial loss as a data-dependent regulariza-

tion for unsupervised learning of our hash function. Our

novel hashing loss also led to quantized, balanced, consis-

tent and independent hash bits for real images. Further-

more, we introduced a collaborative loss to use the syn-

thesized images in training our hash function. HashGAN

outperformed unsupervised hashing models in information

retrieval with significant margin, and achieved state-of-the-

art results in image clustering.
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