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Abstract

This paper introduces a novel approach to in-painting
where the identity of the object to remove or change is
preserved and accounted for at inference time: Exemplar
GANs (ExGANs). ExGANs are a type of conditional GAN
that utilize exemplar information to produce high-quality,
personalized in-painting results. We propose using exem-
plar information in the form of a reference image of the re-
gion to in-paint, or a perceptual code describing that object.
Unlike previous conditional GAN formulations, this extra
information can be inserted at multiple points within the
adversarial network, thus increasing its descriptive power.
We show that ExGANs can produce photo-realistic person-
alized in-painting results that are both perceptually and se-
mantically plausible by applying them to the task of closed-
to-open eye in-painting in natural pictures. A new bench-
mark dataset is also introduced for the task of eye in-
painting for future comparisons.

1. Introduction

Every day, a large number of pictures are captured and
shared in social networks with a large percentage of them
featuring people-centric content. There is little doubt that
realistic face retouching algorithms are a growing research
topic within the computer vision and machine learning com-
munities. Some examples include red-eye fixing [41] and
blemish removal [7], where patch matching and Poisson
blending have been used to create plausible-looking re-
sults [39]. Full manipulation of the face appearance [23], at-
tribute transferral [35], face frontalization [3 1] or synthetic
make-up [14], are also becoming very popular. However,
humans are very sensitive to small errors in facial structure,

specially if those faces are our own or are well-known to
us [33]; moreover, the so-called “uncanny valley” [27] is a
difficult impediment to cross when manipulating facial fea-
tures.

Recently, deep convolutional networks (DNNs) have
produced high-quality results when in-painting missing re-
gions of pictures showing natural scenery [18]. For the
particular problem of facial transformations, they learn not
only to preserve features such global lighting and skin tone
(which patch-like and blending techniques can also poten-
tially preserve), but can also encode some notion of se-
mantic plausibility. Given a training set of sufficient size,
the network will learn what a human face “should” look
like [19], and will in-paint accordingly, while preserving
the overall structure of the face image.

In this paper, we will focus on the particular problem of
eye in-painting. While DNNs can produce semantically-
plausible, realistic-looking results, most deep techniques do
not preserve the identity of the person in a photograph. For
instance, a DNN could learn to open a pair of closed eyes,
but there is no guarantee encoded in the model itself that the
new eyes will correspond to the original person’s specific
ocular structure. Instead, DNNs will insert a pair of eyes
that correspond to similar faces in the training set, leading
to undesirable and biased results; if a person has some dis-
tinguishing feature (such as an uncommon eye shape), this
will not be reflected in the generated part.

Generative adversarial networks (GANs) are a specific
type of deep network that contain a learnable adversarial
loss function represented by a discriminator network [13].
GANSs have been successfully used to generate faces from
scratch [19], or to in-paint missing regions of a face [18].
They are particularly well-suited to general facial manipu-
lation tasks, as the discriminator uses images of real faces
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to guide the generator network into producing samples that
appear to arise from the given ground-truth data distribu-
tion. One GAN variation, conditional-GANs (or cGANSs),
can constrain the generator with extra information, and
have been used to generate images based on user generated
tags [26]. However, the type of personalization described
above (especially for humans) has not been previously con-
sidered within the GAN literature.

This paper extends the idea of using extra conditional
information and introduces Exemplar GANs (ExXGANSs), a
type of a cGAN where the extra information corresponds di-
rectly to some identifying traits of the entity of interest. Fur-
thermore, we assume that this extra information (or “exem-
plar”) is available at inference time. We believe that this is
a reasonable assumption since multiple images of the same
objects are readily available. Exemplar data is not restricted
to raw images, and we prove that a perceptually-coded ver-
sion of an object can also be used as an exemplar.

The motivation for the use of exemplar data is twofold.
First, by utilizing extra information, EXGANs do not have to
hallucinate textures or structure from scratch, but will still
retain the semantics of the original image. Second, output
images are automatically personalized. For instance, to in-
paint a pair of eyes, the generator can use another exemplar
instance of those eyes to ensure the identity is retained.

Finally, ExGANSs differ from the original formulation of
a cGAN in that the extra information can be used in multiple
places; either as a form of perceptual loss, or as a hint to the
generator or the discriminator. We propose a general frame-
work for incorporating this extra exemplar information. As
a direct application, we show that using guided examples
when training GANs to perform eye in-painting produces
photo-realistic, identity-preserving results.

2. Related Work

Previous approaches to opening closed eyes in pho-
tographs have generally used example photos, such as a
burst of photographs of a subject in a similar pose and light-
ing conditions [2], and produced final results with a mixture
of patch matching [4], blending [30], or warping [37]. How-
ever, this technique does not take full advantage of semantic
or structural information in the image, such as global illumi-
nation or the pose of the subject. Small variations in light-
ing or an incorrect gaze direction produce uncanny results,
as seen in Fig. 1.

Besides classic computer vision techniques, recent re-
search has focused on using deep convolutional net-
works to perform a variety of facial transformations [!1].
Specifically within this body of work, the applications of
GANSs [13] to faces are numerous [15, 24, 40]. Many GANs
are able to generate photo-realistic faces from a single low-
dimensional vector [20], pushing results out of the uncanny
valley and into the realm of reality. Fader networks [21]

(a) (b) (c) (d

Figure 1: Comparison between the commercial state of the
art eye opening algorithm in Adobe Photoshop Elements [ 1]
(c) and the proposed ExGAN technique (d). The exemplar
and original images are shown in (a) and (b), respectively.

expand on this idea by training in such a way as to make
each element of the low-dimensional noise vector corre-
spond to a specific face attribute, such as beards or glasses.
By directly manipulating these elements, parts can be trans-
ferred or changed on demand, including opening or closing
a mouth or changing a frown into a smile. However, identity
is not preserved with this technique.

In-painting has been studied extensively, both with and
without deep networks [5, 38, 29]. Exemplar In-painting [6]
is an iterative algorithm that decomposes an image into its
structural and textured components, and holes are recon-
structed with a combination of in-painting and texture syn-
thesis. This technique has been used to remove large ob-
jects from images [9, 10], and its effectiveness has been
compared to deep methods, where it is shown that Exem-
plar In-painting struggles with complex or structured in-
painting [42]. More recently, cGANs [26] have been used
with success when in-painting natural images, by using ex-
tra information such as the remaining portions of an image
to in-paint.

The generator network in a GAN learns to fill in missing
regions of an image, and the discriminator network learns
to judge the difference between in-painted and real images,
and can take advantage of discontinuities between the in-
painted and original regions. This forces the generator to
produce in-painted results that smoothly transition into the
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original photograph, directly sidestepping the need for any
pixel blending. Besides the general case of in-painting
scenes, GANs have also been used to in-paint regions of
a face [12]. At inference time, these GANs must rely on
information that is present only in the training set, and are
incapable of personalized face in-paintings, unless that par-
ticular face also exists in the training set.

Finally, of particular relevance is the work on multi-view
face synthesis, and specifically the approaches that attempt
to preserve the identity of a given face. In the face identifi-
cation regime, pose invariance is particularly important, and
previous work has focused on developing various identity-
preserving objectives. One approach inputs a set of training
images containing multiple views of the same face [44], and
attempts to generate similar views of a separate input face
at inference time. An identity-preserving loss is proposed
in [17], which uses a perceptual distance of two faces on
the manifold of the DNN outlined in [43] as an objective
to be minimized. However, unlike the aforementioned ap-
proaches, we make the assumption that a reference image
will be available at inference time. Like these approaches,
a perceptual code can be generated from the reference face,
but we also propose that just providing the generator the raw
reference image can also help with identity preservation.

3. Exemplar GANs for in-painting

Instead of relying on the network to generate images
based only on data seen in the training set, we introduce
ExGANSs, which use a second source of related informa-
tion to guide the generator as it creates an image. As more
datasets are developed and more images are made available
online, it is reasonable to assume that a second image of
a particular object exists at inference time. For example,
when in-painting a face, the reference information could be
a second image of the same person taken at a different time
or in a different pose. However, instead of directly using
the exemplar information to produce an image (such as us-
ing nearby pixels for texture synthesis, or by copying pix-
els directly from a second photograph), the network learns
how to incorporate this information as a semantic guide to
produce perceptually-plausible results. Consequently, the
GAN learns to utilize the reference data while still retaining
the characteristics of the original photograph.

We propose two separate approaches to ExGAN in-
painting. The first is reference-based in-painting, in which a
reference image r; is used in the generator as a guide, or in
the discriminator as additional information when determin-
ing if the generated image is real or fake. The second ap-
proach is code-based in-painting, where a perceptual code
c; is created for the entity of interest. For eye in-painting,
this code stores a compressed version of a person’s eyes in a
vector ¢; € RY, which can also be used in several different
places within the generative and discriminator networks.

Formally, both approaches are defined as a two-player
minimax game, where each objective is conditioned on ex-
tra information, similar to [26]. This extra information can
be the original image with patches removed, r;, or c;, or
some combination of these. An additional content loss term
can be added to this objective. The framework is gen-
eral, and can potentially be applied to tasks other than in-
painting.

3.1. Reference image in-painting

Assume that for each image in the training set x;,
there exists a corresponding reference image r;. There-
fore the training set X is defined as a set of tuples
X ={(x1,r1), ..., (Xpn,ry)}. For eye in-painting, r; is
an image of the same person in x;, but potentially taken in a
different pose. Patches are removed from x; to produce z;,
and the learning objective is defined as:

mé,n mgx V(Da G) = ]Exi,r,,wpdm(x,r) [IOg D(Xia rz)] +

EI‘i~Pr7G(')NPz [10g 1- D(G(Z77 rz))] +
|G (zi,ri) — xi| |1
(1)

This objective is similar to the standard GAN formulation
in [13], but both the generator and discriminator can take an
example as input.

For better generalization, a set of reference images R;
corresponding to a given x; can also be utilized, which ex-
pands the training set to the set of tuples comprised of the
Cartesian product between each image-to-be-in-painted and
its reference image set, X = {x; X Ry, ..., X, X Rp}.

3.2. Code in-painting

For code-based in-painting, and for datasets where the
number of pixels in each image is ||, assume that there
exists a compressing function C(r) : Rl — RN, where
N « |I|. Then, for each image to be in-painted z; and
its corresponding reference image r;, a code ¢; = C(r;) is
generated using a r;. Given the codified exemplar informa-
tion, we define the adversarial objective as:

mén mgx V(D’ G) = ]Exivci ~Pdata (X, €) [log D(XZ’ C'L)] +

Ec;mpe,c()mp, 108 1 — D(G(z4,¢;))] +
|G (zi, ci) — xil[1 + ||C(G(zi, ¢;) — cil2
2)

The compressing function can be a deterministic func-
tion, an auto-encoder, or a general deep network that
projects an example onto some manifold. The final term
in Eq. 2 is an optional loss that measures the distance of the
generated image G(z;, c;) to the original reference image r;
in a perceptual space. For a deep network, this corresponds
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Figure 2: General architecture of an Exemplar GAN. The
overall training flow can be summarized as (1) mark the
eyes from the input image; (2) in-paint the image with the
reference image or code as a guide; (3) compute the gradient
of the generator’s parameters via the content/reconstruction
loss between the input image and the in-painted image; (4)
compute the gradient of the discriminator’s parameters with
the in-painted image, another real, ground truth image, and
the reference image or code; (5) backpropagate the discrim-
inator error through the generator. Optionally, (6) the gen-
erator’s parameters can also be updated with a perceptual
loss. For reference-based Exemplar GANSs, the compress-
ing functions C(I) are the identity function.

to measuring the distance between the generated and refer-
ence images on a low-dimensional manifold. Note that if
the generator G is originally fully-convolutional, but takes
c; as input, its architecture must be modified to handle an
arbitrary scalar vector.

3.3. Model architecture

The overall layout for both code- and reference-based
ExGANS is depicted in Fig. 2. For most experiments, we
used a standard convolutional generator, with a bottleneck
region containing dilated convolutions, similar to the gen-
erator proposed in [18], but with a smaller channel count
in the interior layers of the network, as generating eyes is
a more restricted domain than general in-painting. The in-
put to the generator is an RGB image with the portions to
in-paint removed, stacked with a one-channel binary mask
indicating which regions to fill. The generator could take an
additional four channels: the RGB values of the reference
image (with no missing regions), and another 1-channel
mask indicating the eye locations. All eye locations are de-
tected prior to training and stored with the dataset.

The discriminator is similar to the global/local discrimi-
nator developed in [18]. This discriminator processes both

the whole face (the global region) and a zoomed-in por-
tion of the image that contains the eyes (the local region).
Having a global adversarial loss enforces overall semantic
consistency, while the local adversarial loss ensures detail
and sharpness in the generated output. The outputs of the
global and local convolutional branches are concatenated
and passed through a final sigmoid. An additional global
branch is added to the discriminator if a reference image is
being used as input to D. In this case, the outputs of all
three branches are concatenated.

Next, because of the possibility that the generator net-
work could take c; as input in Eq. 2, we tested an alternative
architecture to the fully-convolutional generator. This gen-
erator uses an encoder-decoder architecture, with 4 down-
sampling and upsampling layers, and with a 256 dimen-
sional fully-connected bottleneck layer. The bottleneck is
concatenated with the eye code, resulting in an overall di-
mensionality of 512 at the output of the bottleneck. The eye
code can also be used in the perceptual loss term of Eq. 2.
Furthermore, the code can be appended to the penultimate,
fixed-size output of the discriminator. Because the 256 di-
mensions of the code is much larger than the two outputs
of the original discriminator, we experimented with feeding
the global and local outputs and the code through a small
two-layer fully-connected network before the final sigmoid
in order to automatically learn the best weighting between
the code and the convolutional discriminator. For the re-
mainder of this paper, any reference to code-based ExGANs
used this architecture.

To generate c;, we trained a separate auto-encoder for the
compressing function C, but with a non-standard architec-
ture. During training of C, the encoder took a single eye as
input, but the decoder portion of the autoencoder split into
a left and right branch with separate targets for both the left
and right eyes. This forces the encoder to learn not to dupli-
cate features common to both eyes (such as eye color), but
to also encode distinguishing features (such as eye shape).
In general, each eye was encoded with a 128 dimensional
float vector, and these codes were combined to form a 256
dimensional eye code.

Unless otherwise specified, ELU [8] activations were
used after all convolution layers. We also implemented one-
sided label smoothing [32] with probability 0.05. A full
listing of model architectures is given in the supplemental
material.

4. Experiment setup

ExGANSs require a dataset that contain pairs of images
for each object, but these types of datasets are not as com-
mon. We observed that we require a large number of unique
identities for sufficient generalization. High resolution im-
ages taken in a variety of environments and lighting condi-
tions permits an EXGAN to be able to in-paint eyes for a

7905



0.030 - Reconstructmn }oss comparison

— No exemplar
- - Reference-based
----- Code-based

0.025

0.020

L1 Loss

0.015

0.010
0

Figure 3: Training reconstruction loss comparison between
non-exemplar and Exemplar GANs.

wide variety of input photographs. In addition, including
images without distractors and in non-extreme poses im-
proved the quality and sharpness of the generated eyes. We
were not able to utilize the CelebA [25] dataset as it only
contains 10K unique identities. Furthermore, the photos
in CelebA were usually taken in unnatural environments,
such as red carpet photographs or movie premieres. The
MegaFace [28] dataset provides a more suitable training
set, but many images do not contain human faces and those
that do include faces with sunglasses or in extreme poses.
We desired a finer-grained control over certain aspects of
our dataset, such as ensuring that each image group con-
tained the same individual with high confidence and that
there were no distracting objects on the face.

In order to circumvent the limitations of pre-existing
datasets, we developed an internal training set of roughly
2 million 2D-aligned images of around 200K individuals.
For each individual, at least 3 images were present in the
dataset. Every image in the training set contained a person
with their eyes opened to force the network to only learn to
in-paint open eyes.

For external replication purposes we developed an eye
in-painting benchmark from high-quality images of celebri-
ties scraped from the web. It contains around 17K individ-
ual identities and a total of 100K images, with at least 3
photographs of each celebrity. An additional, we created
a publicly-available benchmark called Celeb-ID'. Note that
the network was only trained on our internal dataset, thereby
making it impossible for our network to overfit to any im-
ages shown in this paper as we did not use any celebrity
images during training.

During a training epoch, for each individual, one image
was inpainted and a second, different image was used ei-
ther as an example for the network, or used to generate c;.
The generator and discriminator were trained for a variable

https://bdol.github.io/exemplar.gans

number of epochs (depending on the dataset size), but in
general, we stopped training after the network saw 2M im-
age pairs. Each training run took about 3 days to train on
two Tesla M40 GPUs.

Each objective was optimized using Adam [20] and with
parameters 51, 82 = 0.9,0.999. In order to emphasize the
viability of exemplar in-painting, only L1 distance was used
for the reconstruction loss, and binary cross-entropy was
used for the adversarial loss. We did not use any learning
rate tricks such as gradient regularization [3] or a control-
theory approach [20]. The hyperparameters swept included
all learning rates, the relative weight of the discriminator
network, the weight assigned to the perceptual loss, and at
which points in the network to use a reference image or the
eye code. A full table of various results for all experiments
is given in the supplemental material.

5. Results

In order to best judge the effects of both code- and
reference-based ExGANs, we avoided mixing codes and
reference images in a single network. Throughout this sec-
tion, we compare and contrast the results of three mod-
els: (1) a non-exemplar GAN, with an architecture identical
to the global/local adversarial net of [18], with the only
difference being a smaller channel count in the generator,
(2) our best reference image Exemplar GAN and (3) our
best code-based Exemplar GAN. We tried multiple other
GAN architectures, but the model introduced in [18&] pro-
duced the best non-exemplar results. Note that each GAN
in this comparison has the same base architecture and hy-
perparemters, with the exception of the code-based GAN,
which uses an encoder-decoder style generator. Interest-
ingly, the same learning rate could be used for both types of
generators, most likely because they had a similar number
of parameters and depth. In this particular setup, the per-
ceptual loss had little overall effect on the final quality of
the generator output; instead, better results were generated
when using the eye code directly in the generator itself.

In Fig. 3, we show the effect of exemplars on the over-
all reconstruction loss. With the addition of eye codes, the
content loss of the non-exemplar GAN is decreased by 8%,
while adding reference images decreased the L1 loss by
17%. During training, models that had a low overall con-
tent loss and at least a decreasing adversarial loss tended to
produce the best results. Training runs with a learning rate
of le-4 for both the generator and discriminator resulted in
the most well-behaved loss decrease over time. However,
for eye in-painting, we determined that the content loss was
not entirely representative of the final perceptual quality, an
issue discussed further in Section 5.1.

Next, in Fig. 4, we compare the perceptual results gen-
erated by exemplar and non-exemplar GANs. As is evident
in the figure, each of the ExGANSs produce superior qualita-
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Model | L1 MS-SSIM  Inception ~ FID
Internal benchmark
Non-exemplar | 0.018 5.05E-2 3.96 11.27
Reference 0.014 3.97E-2 3.82 7.67
Code 0.015 4.15E-2 3.94 8.49
Celeb-ID
Non-exemplar | 7.36E-3  8.44E-3 3.72 15.30
Reference 7.15E-3  7.97E-3 3.56 15.66
Code 7.00E-3  7.80E-3 3.77 14.62

Table 1: Quantitative results for the 3 best GAN models.
For all metrics except inception score, lower is better.

tive results, with the code-based exemplar model resulting
in the most convincing and personalized in-paintings.
Finally, in Figs. 5 and 8, we show additional qualitative
results on the celebrity validation set, generated by an Ex-
GAN that uses a code-based exemplar in both the generator
and discriminator with no perceptual loss. Both the local
and global in-painted images are shown along with the ref-
erence image used for in-painting. It is evident that the net-
work matches the original eye shape and accounts for pose
and lighting conditions in the in-painted image. In some
cases, such as in Fig. 7, the network did not match the iris
color exactly, most likely because a mismatch in the eye
shape would incur a higher content or adversarial loss. We
describe some solutions to this problem in Section 6.

5.1. Content loss vs. perceptual loss

In general, the content or adversarial losses were not one-
to-one proxies for perceptual quality, as discussed in [22].
In many cases, a network with a low content loss produced
training results that looked perceptually worse than another
network with a slightly higher content loss. As an example,
refer to Fig. 6, which includes the output of the same net-
work for different values of the L1 losses. Although it may
be that this effect is simply an example of overfitting, we
also observed poor results for lower loss values on the train-
ing set. This observation justifies the fact that perceived
quality and raw pixel difference are only correlated up to
a certain point. In order to combat this effect, we stopped
training early as a form of regularization.

In addition, we measured several perceptual metrics over
the course of each model’s training run, including MS-
SSIM [36], inception score [32], and FID score [16]. Nei-
ther the MS-SSIM score nor the inception score correlated
strongly with perceptual quality. We believe that the in-
ception score specifically did not correlate as it is based on
scores from the interior layers of GoogleNet [34], a net
trained for image classification. As all generated images
belong to the same class, the network activations did not
vary enough with the fine-grained details around an eye.
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Figure 4: Comparison between (a) ground truth, (b) non-
exemplar and (c, d) exemplar-based results. An ExGAN
that uses a reference image in the generator and discrimina-
tor is shown in column (c), and an EXGAN that uses a code
is shown in column (d).
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Figure 5: Results generated with a code-based Exemplar
GAN. Columns represent: (a) reference image, (b) image
to in-paint, (c) ground-truth global image, (d) in-painted
global image, (e) ground-truth local image, (f) in-painted
local image.

() (b) ©

Figure 6: Comparison between (a) the ground-truth image
(b) results from a model trained to epoch 10, with L1 loss
0.01457 and (c) results from a model at epoch 18, with L1
loss 0.01386. Despite the lower content loss, the model
trained for longer produces blurrier results. The FID score
is a better metric of perceptual quality; in this model the
FID score at epoch 10 is 7.67, while at epoch 18 it is 10.55.

The FID score did correlate strongly with perceived
quality. For the images in Fig. 6, the FID score (which is
in fact a distance) increased along with the blurriness in
the image. We therefore postulate that for eye in-painting
in general, the best metric to compare models is the FID
score, as it most accurately corresponds with sharpness and
definition around the generated eye. A list of metrics for
the three best GAN models (non-exemplar, code-based, and
reference-based) is given in Table 1.

In order to further verify our method, we performed a
perceptual A/B test to judge the quality of the obtained re-
sults. The test presented two pairs of images of the same
person: one pair contained a reference image and a real
image, while the other pair contained the same reference
image and a different, in-painted image. The photographs
were selected from our internal dataset, which offered more
variety in pose and lighting than generic celebrity datasets.
The participants were asked to pick the pair of images that
were not in-painted. 54% of the time, participants either
picked the generated image or were unsure which was the
real image pair. The most common cause of failure was due
to occlusions such as glasses or hair covering the eyes in the
original or reference images. We suspect that with further
training with more variable sized masks (that may overlap
hair or glasses) could alleviate this issue.
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Figure 7: Failure cases of our models include not fully pre-
serving the iris color (top row) or not preserving the shape
(bottom row), especially if the face to in-paint has one oc-
cluded eye.

6. Conclusions and Future Work

Exemplar GANSs provide a useful solution for image gen-
eration or in-painting, when a region of that image has some
sort of identifying feature. They provide superior percep-
tual results because they incorporate identifying informa-
tion stored in reference images or perceptual codes. A
clear example of their capabilities is demonstrated by eye
in-painting. Because Exemplar GANSs are a general frame-
work, they can be extended to other tasks within computer
vision, and even to other domains.

In the future, we wish to try more combinations of
reference-based and code-based exemplars, such as using
a reference in the generator but a code in the discrimina-
tor. In this work, we kept each approach separate in order
to show that both approaches are viable, and to highlight
the differences of the results of models using references or
codes. Because we observed that the in-painting quality was
sensitive to the mask placement and size, in the future we
will try masks that are not square (such as ellipsoids) so
that the generator can utilize the remaining context around
the eye. In addition, we believe that assigning a higher-
weighted loss to the eye color via iris tracking will result
in a generated eye color that more closely matches the ref-
erence image. Finally, we believe that applying Exemplar
GAN:Ss to other in-painting tasks, such as filling in missing
regions from a natural but uniquely identifiable scene, will
lead to superior results.

(a) (b) ©

Figure 8: Additional closed-eye-opening results generated
with a reference-based Exemplar GAN. Column (a) is the
reference image, and column (c) is the in-painted version of
the images in column (b) generated with an Exemplar GAN.
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