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Abstract

This paper is the first work to propose a network to pre-

dict a structured uncertainty distribution for a synthesized

image. Previous approaches have been mostly limited to

predicting diagonal covariance matrices [15]. Our novel

model learns to predict a full Gaussian covariance matrix

for each reconstruction, which permits efficient sampling

and likelihood evaluation.

We demonstrate that our model can accurately recon-

struct ground truth correlated residual distributions for syn-

thetic datasets and generate plausible high frequency sam-

ples for real face images. We also illustrate the use of these

predicted covariances for structure preserving image de-

noising.

1. Introduction

Deep probabilistic generative models have recently be-

come the most popular tool to synthesize novel data and re-

construct unseen examples from target image distributions.

At their heart lies a density estimation problem, which for

reconstruction models is commonly solved using a factor-

ized Gaussian likelihood. While attractive for its simplicity,

this factorized Gaussian assumption comes at the cost of

overly-smoothed predictions, as shown in Fig. 1d. In con-

trast, this paper introduces the first attempt to train a deep

neural network to predict full structured covariance matri-

ces to model the residual distributions of unseen image re-

constructions. We postulate that the residuals are highly

structured and reflect limitations in model capacity – we

therefore propose to estimate the reconstruction uncertainty

using a structured Gaussian model, to capture pixel-wise

correlations which will in turn improve the sampled recon-

structions, as shown in Fig. 1c and 1f.

Learning in generative models involves some form of

density estimation, where the model parameters are fitted to

generate samples from the target image distribution. This

paper concentrates on methods, such as the Variational Au-

toencoder (VAE) [15, 23], where an explicit representation

of the data density is given by the model, however the re-
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Figure 1: Given an input image (a), a simple diagonal Gaus-

sian likelihood model learns a smooth reconstruction (d),

with an unstructured residual sample (b). When (b) is added

to (d) it generates the unrealistic image (e), demonstrating

a failure to capture residual structure. In contrast, we learn

a structured residual model, with residual samples like (c)

that, when added to (d), generate a plausible and realistic

image (f).

sults could in principle be extended to implicit approaches

in future work. In VAE models, a mapping is learned from

a latent representation to image space. These models com-

monly impose some conditions on the latent space, in the

form of a prior, and the nature of the residual distribution.

It is common practice to use a Gaussian likelihood, as

this provides a simple formulation for maximum likelihood

estimation. However, it is well known that samples from

factorized Gaussian distributions tend to be overly-smooth.

This effect is pronounced in common simplifications of the

likelihood, such as the mean squared error, which assumes

the errors at all pixels are i.i.d (independent and identically

distributed) or a diagonal covariance [15, 4], which allows

some local estimation of noise level but maintains the strong

and flawed assumption that pixels in the residual are uncor-
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related, as shown in Fig. 1b and 1c. These common choices

of likelihood mean that if one were to draw a sample from

any of these models including the noise term, white noise

would be added to the reconstruction, which is unlikely to

ever appear realistic, as shown in Fig. 1e. This empha-

sizes the incoherence of these simplifications, and this is

addressed in this paper.

This work proposes to overcome the problems of factor-

ized likelihoods by training a deep neural network to pre-

dict a more complex residual distribution for samples drawn

from a trained probabilistic generative model. Specifically,

we model the residual distribution as a structured Gaussian

distribution. This work demonstrates that a network to pre-

dict this distribution can be tractably learned through maxi-

mum likelihood estimation of residual images; these predic-

tions generalize well to previously unseen examples. Sam-

ples from this model are plausible, coherent, and can cap-

ture high-frequency details that may have been missed when

training the original model with a factorized likelihood. We

demonstrate the efficacy of this approach by: estimating

ground truth covariances from synthetic data, adding coher-

ent residual samples to face reconstructions from a VAE and

include a further motivating example application for denois-

ing face images.

2. Related work

Statistical quantification of uncertainty has been an area

of interest for a long time. Many traditional statistical esti-

mation models provide some measure of uncertainty on the

inferred parameters of a fitted model. An additional source

of uncertainty arises from the distribution of the model

residual, which is often modeled as a spherical or diagonal

Gaussian distribution. A common issue with these models

is the false assumption of independence between pixels in

the reconstruction residual image. Previous work on model-

ing correlated Gaussian noise is limited, it has been used for

small data scenarios [19], for temporally correlated noise

models [24] and in Gaussian processes [22].

The most recent related work on uncertainty predic-

tion for deep generative models has been the prediction of

heteroscedastic Gaussian noise for encoder/decoder mod-

els [13]. This approach is similar to the variational autoen-

coder with a diagonal covariance likelihood [15], but can be

applied when the input and generated output are different,

for example in semantic segmentation tasks. Interestingly,

the maps of predicted variance in [13] correspond well to

high frequency structured image features, similarly to the

VAE with a diagonal noise model (see Fig. 10). These are

structured regions that the model consistently struggles to

accurately predict, which is a further encouragement for our

work.

This paper proposes an approach to predict a structured

uncertainty distribution for generated images from trained

networks. This method is applicable to models that recon-

struct images without embellishing the prediction with de-

tails that were not present in the original input.

Generative adversarial networks (GANs) [8] are an im-

plicit density estimation method widely used for generating

novel images with a great deal of success. Samples from

GANs have been shown to contain fine details and can be

created at very high resolutions [12]. Although, they are

not designed to provide reconstructions, some methods have

been proposed that enable this [17, 21, 6]. Reconstructions

from GAN models contain realistic high frequency details,

however the generated images usually do not resemble well

the inputs. This might be caused by mode-dropping [7],

where parts of the image distribution are not well modeled.

Despite recent work [2] addressing this issue, it remains an

open problem. Furthermore, the residual distribution for re-

construction using GAN models is likely to be highly com-

plex and therefore we do not use a GAN model as a starting

point in this work.

Explicit density methods for learning generative mod-

els use either a tractable [20] or approximate[23] density

to model the image distribution. These models allow maxi-

mization of the likelihood of the set of training observations

directly through reconstruction. These approaches gener-

ate data that is more appropriate for the task this paper ad-

dresses and offer potential likelihood models to learn the

uncertainty of prediction.

To train a network to predict the uncertainty of a re-

construction model, we need to choose a reconstruction

likelihood that is efficient to calculate and allows struc-

tured prediction. PixelCNN [20] and derived work [9] pro-

vide an autoregressive sampling model, where the likeli-

hood of a pixel is modeled by a multinomial distribution

conditioned on the previously generated pixels. Although

these models are capable of producing images with details,

the generation process is computationally expensive. Ap-

proximate density models, such as the Variational Autoen-

coder (VAE) [15, 23], use a variational approximation of the

marginal likelihood of the data under a diagonal Gaussian

likelihood. These models are very efficient to reconstruct

from, and the Gaussian noise model has an efficient likeli-

hood that can be extended to include off-diagonal terms to

allow correlated noise prediction. Therefore, the focus of

this work is on explicit generative models with approximate

likelihoods.

3. Methodology

Many generative models, with a (diagonal) Gaussian

likelihood, define the conditional probability of the target

image, x, given some latent variable, z, as:

pθ(x | z) = N
(

µ(z),σ(z)2 I
)

, (1)
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where x is the target image flattened to a column vector, θ

are the model parameters, and the mean µ(z) and variance

σ(z)2 are (non-linear) functions of the latent variables. This

is equivalent to the forward model:

x = µ(z) + ǫ(z), (2)

where ǫ(z) ∼ N
(

0,σ(z)2I
)

is commonly considered as

unstructured noise inherent in the data. However, recon-

struction errors (or residuals) are often caused by data defi-

ciencies, limitations in the model capacity and suboptimal

model parameter estimation, while the residual itself is gen-

erally highly structured, as shown in Fig. 1. The noise term

is being used mostly to explain failures in the model rather

than just additive noise in the input. The novelty of this

work is to encode coherent information about uncertainty

in the reconstruction in ǫ(z).
For the majority of models, σ2 is never used in practice

when sampling reconstructions; it only adds white noise

that would rarely improve the residual error, as shown in

Fig. 1. Although in some cases σ2 is inferred from the data,

in many cases it is assumed that σ2

i = σ2, a user defined

constant, which simplifies the log likelihood from Eq. 1 to

a sum of squared errors scaled by 1/σ2.

In contrast, this paper extends the noise model to use a

multivariate Gaussian likelihood with a full covariance ma-

trix

pθ(x | z) = N
(

µ(z),Σψ(z)
)

, (3)

where Σψ(z) is a (non-linear) function parametrized by ψ;

this is equivalent to ǫ(z) ∼ N
(

0,Σψ(z)
)

. The covari-

ance matrix captures the correlations between pixels to al-

low sampling of structured residuals as demonstrated in our

experiments.

A maximum likelihood approach is used to train the co-

variance prediction. We optimize the log-likelihood with re-

spect toψ keeping the generative model parameters θ fixed:

argmin
ψ

log
(∣

∣Σψ(z)
∣

∣

)

+

(

x− µ(z)
)T(

Σψ(z)
)

−1(

x− µ(z)
)

.

(4)

To simplify notation, in subsequent sections Σ and µ are

used to denote Σψ(z) and µ(z) respectively.

4. Covariance estimation

A deep neural network is used to estimate the covariance

matrix Σ from the latent vector z, henceforth referred to as

the covariance network. This learning task is challenging on

two fronts. It is ill-posed as no ground truth residual covari-

ances are available for real data. Moreover, for each training

example, a full covariance matrix must be estimated from a

single target image. By definition, the covariance matrix is

symmetric and positive definite. Therefore, for an image x

with n pixels, the matrix contains (n2 − n)/2 + n unique

parameters.

For any covariance estimation method there are three as-

pects to consider: (i) how difficult is it to sample from this

covariance? (ii) how difficult is it to compute the terms in

Eq. 4? and (iii) how difficult is it to impose symmetry and

positive definiteness?

The need to draw samples arises from the fact that the co-

variance captures structured information about reconstruc-

tion uncertainty of the generative model. This means that

drawing a sample from N
(

0,Σ
)

and adding that to the

reconstructed output may produce a result that is more rep-

resentative of the target image, as shown in Fig. 1.

Given a decomposition of the covariance matrix: Σ =
MMT, samples can be drawn from N

(

µ,Σ
)

as x =

Mu+µ, where u ∼ N
(

0, I
)

is a vector of standard Gaus-

sian samples.

If Σ is the direct output of the covariance network, it

needs to be inverted to calculate the negative log-likelihood

in Eq. 4. Hence, it is more practical to estimate the precision

matrix Λ = Σ−1 as this term appears directly in the log

likelihood, and the log determinant term can be equivalently

computed as log(|Σ|) = − log(|Λ|).

Cholesky Decomposition We represent the precision ma-

trix via its Cholesky decomposition, Λ = LLT, where L is

a lower triangular matrix, and the covariance network only

explicitly estimates L.

Using the Cholesky decomposition, it is trivial to eval-

uate both terms in the negative log likelihood. The recon-

struction error is yTy, where y = LT(x − µ). The log

determinant is log(|Σ|) = −2
∑n

i log(lii), where lii is the

ith element in the diagonal of L.

Sampling from Σ involves solving the triangular system

of equations LTy = u with backwards substitution, which

requires O(n2) operations.

By construction, the estimated precision matrix Λ is

symmetric. To ensure that it is also positive-definite it

is sufficient to constrain the diagonal entries of L to be

strictly positive, e.g. by having the network estimate log(lii)
element-wise.

However, estimating this matrix directly is only a feasi-

ble solution for datasets with small dimensionality, as the

number of parameters to be estimated increases quadrati-

cally with the number of pixels in x.

Sparse Cholesky Decomposition To scale to larger res-

olution images we can reduce complexity by imposing a

fixed sparsity pattern in the matrix L, and only estimate the

non-zero values of the matrix via the covariance network.

The sparsity pattern depends on the type of data being

modeled. For image data, we propose that lij is only non-

zero if i ≥ j and i and j are neighbours in the image plane,

where pixels i and j are neighbours if a patch of size f
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Figure 2: Left, an example of the sparsity patterns in the

band-diagonal lower-triangular matrices L, that are esti-

mated by our model. Right, the precision matrix Λ = LLT.

centred at i contains j. These reduces the maximum number

of non-zero elements in the matrix L to n((f2 − 1)/2 + 1),
where f << n.

The resulting sparse matrix L is both lower-triangular

and band-diagonal as shown in Fig. 2. This leads to a preci-

sion matrix Λ with a similar sparsity pattern with additional

bands.

With a sparsity pattern of this form, our uncertainty

model for each image can be interpreted as a Gaussian Ran-

dom Field on its residual. A zero value in the precision

matrix for pixels i and j implies that they are condition-

ally independent given all the other pixels. Similar Markov

properties have been extensively used to model images [3].

With this representation the terms in the negative log

likelihood can be evaluated efficiently, without the need to

build the full dense matrix. Similarly, sampling can be per-

formed by solving a sparse system of equations. Moreover,

this approach is amenable to parallelization on the GPU, as

each patch can be evaluated independently.

5. Results

We evaluate our model on two custom synthetic datasets

to demonstrate the capability of our model to accurately

describe known residual distributions. We also demon-

strate our model on gray-scale cropped face images from the

CelebA [18] dataset for sampling high frequency details to

improve reconstructions. Finally, we show some examples

of image denoising that takes advantage of the predicted co-

variance to better preserve structure. Results of our model

evaluated on the CIFAR10 [16] dataset can be found in the

supplemental material. All our models are implemented in

Tensorflow [1] and they are trained on a single Titan X GPU

using the Adam [14] optimizer. Unless otherwise stated, the

input data for all the experiments is normalized in [−1, 1].

5.1. Synthetic datasets

The goal of the two synthetic experiments is to evaluate

the feasibility of training a covariance network to accurately

estimate the residual distribution, where the true mean and

covariance matrix are available for validation purposes.

Since the goal here is to evaluate the covariance predic-

tion network, we simplify these experiments by bypassing

Figure 3: Reconstructions with samples from Σ. Each im-

age corresponds to a different spline on the test dataset. The

ground-truth spline is depicted in blue, and the estimated

one in orange.

the use of a generative model, and directly predicting Σ

from µ. This means that the input to our covariance predic-

tion network is µ.

Each dataset contains 35,000 training examples and

1,000 test examples. In all the experiments, the test exam-

ples are reconstructed by drawing a sample from the esti-

mated covariance and adding it to the true mean µ.

Both datasets are constructed by generating a set of µ,

and then adding a random sample of correlated noise to

them: x ∼ N (µ,Σ), where Σ is a function of µ. There-

fore, the added noise is dependent on the structure in the

image, which imitates the situation on real data. This also

reflects the main assumption of our model: that there is suf-

ficient information in the latent variables z (or in µ for the

synthetic experiments) to estimate the residual distribution

Σ.

We emphasize that despite the true covariance matrices

being known for these synthetic experiments, we do not use

them at train time. We train the prediction network using

the objective in Eq. 4, which makes no use of the true co-

variance and mimics the situation with real datasets.

5.1.1 Splines

The first synthetic dataset is composed of one dimensional

signals, with 50 points per example. Each spline is com-

prised of a low frequency component and a correlated high-

frequency one. The high-frequency component is produced

by a unique covariance matrix per example, that is gener-

ated by a deterministic function that takes as input the low-

frequency signal. For more details please refer to the sup-

plemental material.

The covariance prediction network is a multi-layer per-

ceptron (MLP) with two layers of 100 units with relu acti-

vations and batch normalization [11], and a final layer with

1275 units. The final layer directly outputs the lower trian-

gular part of the matrix L, which does not use our proposed

sparsity approach. The model is trained with a learning rate

of 1e-4 for 200 epochs.

Reconstructions for this dataset are obtained by adding a

sample from Σ to µ. We show results for reconstructions in

Fig. 3, where the uncertainty model is able to add a plausible
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− log p(x |Σ(µ)) KL ||Σ(µ)−Σgt||2

Ground

truth
18.65 ± 0.75 - -

Diagonal

model
42.64 ± 0.83 72.06 ± 0.30 3.81 ± 1.21

Ours 21.12 ± 0.79 3.56 ± 0.18 1.26 ± 0.74

Table 1: Quantitative comparison of reconstructions

on the splines dataset. KL denotes the KL diver-

gence DKL(N
(

0,Σ(µ)
)

|| N
(

0,Σgt

)

), where Σgt is the

ground truth covariance matrix, and Σ(µ) is the estimated

covariance. Our model obtains significant improvements

under all metrics over a diagonal covariance model.

Ground Truth Estimated

Figure 4: Estimated covariance matrices for the spline

dataset. Each row corresponds to a different spline exam-

ple on the test set. Our model is able to learn the variations

in the structured residual distributions.

high-frequency component to the input µ.

Quantitative results are presented in Table 1. We com-

pare with a covariance network that only estimates a diago-

nal covariance matrix. As the ground-truth covariances con-

tain off-diagonal structure, the diagonal model is bound to

fail in representing it. Our model achieves a negative log

likelihood similar to the one evaluated using the real covari-

ance matrices.

As we have access to the ground-truth covariance ma-

trices for each test example, we can directly compare the

estimated covariance with the ground-truth ones. We show

qualitative results in Fig. 4. Note how the model is able to

recover most of the off-diagonal values in the covariance.

5.1.2 Ellipses

The second synthetic dataset was built to evaluate the co-

variance prediction network for images and to highlight the

µ x µ+ ǫ

Figure 5: Reconstructions from our model, left column: in-

put µ, middle column: original x, and right column: recon-

struction using a sample from the learned residual distribu-

tion, where ǫ ∼ N
(

0,Σ
)

.

− log p(x |Σ(µ)) KL ||Σ(µ)−Σgt||2

Ground

truth
-286 ± 2.8 - -

Diagonal

model
-149 ± 3.3 707 ± 7.2 1.80 ± 0.21

Ours -259 ± 2.7 113 ± 2.6 1.06 ± 0.34

Table 2: Quantitative comparison on the ellipses dataset

(see Table 1 for a description of the metrics). Our model

is able to better model the real covariance matrices with its

more complex uncertainty distribution.

limitations of estimating a dense matrix L.

We generate a dataset of synthetic gray-scale 16×16 im-

ages. For each example, the mean image contains an ellipse

with random width, height, position and rotation angle. The

prototype covariance matrix for this dataset generates lines

and is rotated by the same random rotation angle that was

used for the ellipse, thus generating random lines that are

aligned with the ellipse.

For this dataset, estimating directly a dense Cholesky

matrix L requires 32,896 values per image. Even at this

limited image size we were unable to train a dense predic-

tion model. Instead, we use the sparse prediction model

with a neighborhood of size 5 × 5. The model was trained

for 200 epochs with a learning rate of 1e-3,

Reconstructions of the test set are shown in Fig. 5, where

we show results of taking a sample from Σ which is added

to µ. The covariance prediction network is successful in

mapping the uncertainty distribution from the mean µ. The

samples from the covariance exhibit high-frequency detail

that matches the true residual. A quantative comparison

with a diagonal Gaussian model is presented in Table 2. Our
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Ground Truth Estimated

Figure 6: Covariance matrices estimated by our model,

where each row corresponds to a different ellipse example

on the test set. Much of the structure of the real covariance

matrices is recovered.

model achieves a negative log likelihood similar to the one

evaluated using the real covariance matrices.

Examples of ground-truth and estimated covariances are

shown in Fig. 6 and illustrate the accuracy of the covariance

prediction. The covariance structure for this model is more

complex than the one for the splines, and yet the model is

still able to recover it effectively with our sparse estimation

of the Cholesky matrix.

5.2. CelebA

We now show results of employing the covariance pre-

diction network on a real images dataset: CelebA [18]. The

aligned and cropped version of the dataset is used, where a

further cropping and resizing to 64×64 is performed and the

images are converted from RGB to gray-scale. The dataset

consists of 202,599 images of faces, which we split into

182,637 for training and 19,962 for testing as recommended

by the authors.

We train both an Autoencoder (AE) [5] and a VAE on

this dataset using the architecture in [21]. The Autoencoder

is trained with a mean squared error, and it serves to show

the performance of our model when using as input a z from

an uncontrolled latent space. We then trained two covari-

ance prediction networks, one for each model, to estimate

the residual uncertainty from the latent variables, z. These

networks have an initial block that is similar to the decoder

of the VAE and a second block with four convolutional lay-

ers. The output of the networks is the sparse Cholesky de-

composition of the precision matrix with a neighborhood

of size 7 × 7 pixels. The sparsity imposed on the matrix

means that instead of estimating 8, 390, 656 values as out-

Input AE AE-Ours VAE VAE-Ours

Figure 7: Comparison of image reconstructions for the

different models. The AE and VAE both generate over-

smoothed images. For both the AE and VAE, our model

adds plausible high-frequencies from a single sample drawn

from the predicted uncertainty distribution.

Model NLL − log p(x | z)

AE [5] - -

VAE [15] −5378± 931 −6079± 936

Ours-AE - −8242± 433

Ours-VAE −7753± 1323 −8386± 1339

Table 3: Quantitative comparison of density estimation er-

ror. NLL denotes the upper bound of the marginal negative

log likelihood, lower is better. The residuals are structured,

thus the diagonal model produces poor estimations. Our

estimation method is able to significantly improve over the

AE and VAE simplified noise model.

put, the network only needs to estimate 102, 400. The co-

variance networks are trained with a learning rate of 1e-3

for 50 epochs. Additional implementation details are given

in the supplemental material.

Example reconstructions for the VAE and the AE mod-

els are shown in Fig. 7. Reconstructions from both methods

suffer from the over-smoothing effects of using a simplified

Gaussian likelihood and in both cases high frequency de-

tails are lost. By adding a random sample of the predicted

residual distribution our method is able to recover plausible

high-frequency details, resulting in more realistic looking

images. The added detail corresponds to important face fea-

tures, which is lost by both autoencoder models, like teeth

and hair.

A quantitative comparison of using either the predicted

covariance or a diagonal covariance for calculating the neg-

ative log-likelihood of the reconstructions µ is presented in
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µ

Ours

Figure 8: Samples from a β-VAE with residual samples

from our model. The covariance network predicts plausi-

ble structured residuals for the synthesized images.

Figure 9: Samples drawn with our model while interpolat-

ing on the latent space, from the top-left input to the bottom-

right one. Using a fixed noise vector u, samples are drawn

from our model as x = µ + Mu, where the covariance

Σ = MMT . The residuals are smoothly interpolated for

the different images, which suggests that the estimated co-

variance matrices also vary smoothly.

Table 3. The reported values for VAE-based methods fol-

low the protocol described in [4], where the upper bound of

the marginal negative log likelihood is evaluated by numer-

ically integrating over z with 500 samples per image. For

VAE and our model using as base a VAE, the − log p(x | z)
term is evaluated imposing zero variance in z.

Images generated by decoding samples from the prior

distribution on the latent space of a β-VAE with added

residuals from our model are shown in Fig. 8. We found

that the VAE with a diagonal Gaussian likelihood overfitted

the reconstruction error, thus neglecting the KL term for the

prior on the latent space, which in turn produces low qual-

ity samples. Instead, we trained our structured uncertainty

network on a β-VAE [10] with β = 5. This corresponds

to increasing the weight of the KL term on a VAE, which is

known to improve sample quality. Our model is able to gen-

erate structured residuals of similar quality as those whose

z was created by encoding an image. The covariance net-

work is still able to learn meaningful structured uncertainty

for the VAE model, as shown in the supplemental material.

To evaluate the generalization of the model to different

regions in the latent space, we show in Fig. 9 the result of

Model MSE

DAE 5.13e-3 ± 2.52e-3

Ours 2.99e-3 ± 7.98e-4

Table 4: Quantitative comparison for denoising in terms of

mean squared error (MSE) with respect to the noise-free

input. Our model is on average able to produce better results

than an Autoencoder trained for denoising.

interpolating between an image and its x-flipped mirror im-

age. The generated images are plausible and the sampled

residuals are consistent across the interpolated images.

To further highlight the differences between the diagonal

and predicted covariance noise models, the variance maps

for both are shown in Fig. 10. The diagonal model must ex-

plain all the errors with variance, while our model is able to

explain some with correlations. The effect of this is evident

when sampling from the estimated Σ.

5.3. Denoising Example

One possible application of the covariance prediction

network is image denoising, as shown in Fig. 11. We hy-

pothesize that our predicted covariance matrices will only

span the space of valid face residuals, thus projecting a

noisy residual in that space will remove the noise. Here,

the noisy image is reconstructed using a VAE, that was

not trained with noisy data. The difference between the

noisy input and the reconstruction is computed, and pro-

jected onto Σ̂, which is created by taking the 1000 eigen-

vectors of Σ with the largest eigenvalues. The projected

difference is added to the VAE reconstruction to produce

the final denoised image. A comparison is shown with an

Autoencoder trained explicitly for denosing with the same

architecture as the VAE. Note how the use of the structure

covariance model is able to filter the noise to generate plau-

sible structured high-frequency details, while the denoising

Autoencoder fails to recover those details.

Quantitative results for this experiment are shown in Ta-

ble 4, where MSE is reported for the first 2000 images in

the test set. Our model achieves significantly lower error

than an Autoencoder trained specifically for this task.

6. Conclusions

In this paper, we have demonstrated what we believe is

the first attempt to train a deep neural network to predict

structured covariance matrices for the residual image dis-

tribution of unseen image reconstructions. Our results show

that ground truth covariances can be learned for toy data and

good samples generated for celebA data. A further motivat-

ing experiment is also shown for denoising face images.

An interesting question is whether we can train a gener-

ative model and covariance network in tandem to produce

better reconstructions. We postulate that a better residual
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Input µ σ2 diag(Σ) ǫσ2 ǫΣ µ+ ǫσ2 µ+ ǫΣ

Figure 10: Variance maps for different inputs, where µ and σ2 are predicted by a diagonal covariance VAE, and diag(Σ) is

the diagonal of our estimated covariance matrix. Residual predictions are sampled as ǫσ2 ∼ N
(

0,σ2I
)

for the VAE, and

ǫΣ ∼ N
(

0,Σ
)

for our model. The diagonal noise estimation model mistakenly identifies teeth or skin wrinkles as variance,

whereas the covariance model properly identifies them as regions with high covariance, yet low variance.

Original Input DAE Ours VAE-Recons Difference Proj. difference

x µ+ f(s) µ s = x− µ f(s)

Figure 11: Denoising experiment, left column: original image without noise, second column: image with added noise, third

column: denoising autoencoder (DAE) result, fourth column: our result, fifth column: VAE reconstruction from the noisy

input, sixth column: difference between the VAE reconstruction and the noisy input, right column: the difference projected

on Σ̂, the matrix constructed with 1000 eigenvectors of Σ. Our result is the sum of the projected difference and the VAE

reconstruction. Our model is able to recover fine details that are lost with the DAE approach.

model would improve the reconstructions, as it may con-

sider plausible but different realizations of high frequency

image features as likely. However, there may be some ef-

fort required to keep the two networks consistent and addi-

tional investigations are needed into priors on the predicted

covariances.

Another questions is what is the best input data to use for

the covariance network. Is it best to learn directly from z or

µ or some other pre-learned function of either of these?

Finally, in this work we have only examined the residual

image distribution for reconstruction models trained with

a Gaussian likelihood. An interesting avenue to explore

would be a structured pixel uncertainty distribution for other

reconstruction error metrics, such as perceptual loss.
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