
On the convergence of PatchMatch and its variants

Thibaud Ehret

CMLA, ENS Cachan, CNRS,

Université Paris-Saclay, 94235 Cachan, France

thibaud.ehret@cmla.ens-cachan.fr

Pablo Arias

CMLA, ENS Cachan, CNRS,

Université Paris-Saclay, 94235 Cachan, France

pablo.arias@cmla.ens-cachan.fr

Abstract

Many problems in image/video processing and computer

vision require the computation of a dense k-nearest neighbor

field (k-NNF) between two images. For each patch in a query

image, the k-NNF determines the positions of the k most sim-

ilar patches in a database image. With the introduction of

the PatchMatch algorithm, Barnes et al. demonstrated that

this large search problem can be approximated efficiently

by collaborative search methods that exploit the local co-

herency of image patches. After its introduction, several

variants of the original PatchMatch algorithm have been

proposed, some of them reducing the computational time by

two orders of magnitude. In this work we study the conver-

gence of PatchMatch and its variants, and derive bounds on

their convergence rate. We consider a generic PatchMatch

algorithm from which most specific instances found in the

literature can be derived as particular cases. We also derive

more specific bounds for two of these particular cases: the

original PatchMatch and Coherency Sensitive Hashing. The

proposed bounds are validated by contrasting them to the

convergence observed in practice.

1. Introduction

Patch-based methods are among the state-of-the-art in

several image/video processing and computer vision applica-

tions. Often these methods require finding for all patches of

a query image, the (approximate) k nearest neighbors among

the set of patches of a database image. This is referred to as

an approximate k nearest neighbors field (k-ANNF) from

the query image to the database image.

Examples of the application of k-ANNFs can be found for

image completion (and editing) [2, 4], denoising of images

[5] and video [7, 19], video stylization [6, 7], alpha matting

[12], optical flow [3, 11, 14, 20] and stereo-vision [20, 9].

Also in the close field of computer graphics ANNFs of 3D

surface patches have been applied to mesh tracking [16] and

texture transfer [10].

The brute-force computation of the k-NNF scales linearly

with the product of the number of pixels in the query and

the database images, and is therefore prohibitively slow. The

first practical approaches rely on data structures such as hash

tables or partition trees (see [18] and references therein).

The approximate k nearest neighbors of each query patch are

computed independently. Even if these approaches greatly

improve with respect to the brute-force search, they are still

too slow (and moreover scale badly with the patch size) for

many applications such as those requiring user interaction.

The introduction of the PatchMatch algorithm [4] and its

generalized version [5] has represented a breakthrough in

the field. It brings a speed-up of almost two orders of magni-

tude over previous search techniques. The main reason for

this is that PatchMatch performs all queries simultaneously

and in collaboration, exploiting the fact that overlapping

query patches are likely to have overlapping matches in the

database image.

PatchMatch is an iterative algorithm which starts from

a random initial guess for the k-ANNF and gradually re-

fines it. In each iteration, each patch propagates its current

candidates to its neighboring patches on the query image

grid. Additionally, new candidates are searched randomly

in the database image. This is performed by uniformly sam-

pling in a series of concentric squares with decreasing radius

centered at the position of the current best candidate.

Several works have improved the original PatchMatch

algorithm reporting gains of one order of magnitude or even

more. The main theme of these works is to combine Patch-

Match with classical search structures to improve the ran-

dom initialization or the random search. Coherency Sensitive

Hashing (CSH) [17] uses locality sensitive hashing [15] to

improve both the propagation and the random search steps.

KD-trees [8] are used in [21] instead of the random initial-

ization (after reducing the dimensionality of the patches). In

[13] a KD-tree is used for the random search.

In this work we extend and generalize the theoretical

framework of [1] formalizing PatchMatch-like techniques.

We apply it to study their convergence and give upper bounds

on their convergence speed which are tighter than the ones

of [1]. In particular we study the original PatchMatch [4],

11121

its generalization to k nearest neighbors [5] and CSH [17].

Our estimates of a geometric convergence rate confirm the

intuitions that led to the design of these algorithms. They

also provide insight that might help improving current tech-

niques.

We interpret PatchMatch in a general setting, as a collab-

orative optimization tool. While the results in [1] consider

only the original PatchMatch algorithm with one nearest

neighbor, our results apply to k-nearest neighbors and to

more complex PatchMatch algorithms, such as CSH [17],

propagation-assisted KD-trees [13] and RIANN [7].

We start by giving a precise definition of a generic Patch-

Match algorithm in §2. In §3 we analyze the convergence

of the generic PatchMatch, by bounding the probability of

having energies higher than a given threshold after an it-

eration of the algorithm. In §4 we consider two specific

algorithms, the original PatchMatch [4] and CSH [17] and

derive specialized bounds for them. Finally, in §5 we com-

pare the theoretical bound to empirical cases. The proofs of

our results can be found in the supplementary material.

2. Generic fast patch matching algorithm

2.1. Notations

We denote the query image by A and the database image

by B. We write x ∈ A if x ∈ R
d is a patch of the image A

(with this abuse of notation, A is both an image and the set

of its patches). The k-NNF from image A to B is denoted by

ϕ. For a patch x ∈ A the matches associated to x in B are

written as ϕx, which is a set of k distinct patches of B.

Definition 2.1 (Matching energy) The quality of the

matching of a patch x ∈ A is measured by an the energy

function Ux(.) defined for any patch z ∈ R
d with values

between 0 and +∞. We generalize this definition to a set of

patches u by

Ux(u) = max
y∈u

Ux(y). (1)

We assume that the minimum value of Ux is over the sets of

k elements without repetitions is 0.

In practice, the L2 distance in R
d, written as ‖.‖2, is often

used to define as matching energy. To have a minimum value

of 0 over k-sets, we write it as

Ux(z) = ‖x− z‖2 −Kx (2)

where if Nk(x) ∈ B is the actual kth nearest neighbor of x
in B, Kx = ‖x − Nk(x)‖2. It follows that if u is a set of

k distinct patches of B, then Ux(u) > 0. We write ϕx to

denote the worst match in this set, defined by

ϕx = argmax
y∈ϕx

Ux(y), (3)

where Ux(.) is the energy function of Definition 2.1.

The k-NNF ϕ assigns to each x ∈ A a k-set ϕx that

minimizes Ux, i.e. such that Ux(ϕx) = 0. The goal of

PatchMatch algorithms is to find an approximate solution

to this optimization problem. In the following we define

a level-set, written {Uz > α}, for η a k-set of elements

η ∈ {Uz > α} if and only if Uz(η) > α.

The following operator selects the k patches with smaller

energy Ux from a larger set.

Definition 2.2 (Merge operator) We define mergekx as an

operator transforming a set of more than k patches into a

set of exactly k patches satisfying:

|mergekx(u)| = k and

∀p ∈ u\mergekx(u), Ux(p) > Ux(mergekx(u)). (4)

We use basic graph notation in the next sections. Consider

a graph G = (V, E), where V is the set of vertices and E the

set of edges. By y ∼ x we denote that y is parent of x, i.e.

(y, x) ∈ E . We finally write µ(x) for the number of parents

of a node x, i.e.

µ(x) = |{y | y ∼ x}|. (5)

A path of size m from x to z corresponds to a set of vertices

(ci)i=1,...,m ∈ Vm such that c1 = x, cm = z and for all

i ∈ J1,m− 1K, (ci, ci+1) ∈ E . We write P(x, z) for the set

of all paths (of any size) from x to z.

2.2. Propagation graph

In a PatchMatch algorithm all patches in A collabora-

tively search for their matches in B. This collaboration is

achieved through the propagation of candidate matches from

each query patch to other patches in A following a specific

order. This process can be described by defining a directed

acyclic graph over the set of patches of A, which we call the

propagation graph following [1]. The vertices V in the prop-

agation graph G are the set of patches of A, and the directed

edges E describe the propagation relationships: (z, x) ∈ E
means that z propagates matches to x. We associate an ac-

tion function to each edge to allow for the possibility of

applying a transformation to the propagated matches.

Definition 2.3 (Propagation action) An action associated

to an edge e ∈ E in the propagation graph, written Ae, is a

function which takes as argument a patch of an image and

returns a patch. This patch can either be from the same

image or be a new one generated by the action.

The vertices in the propagation graph are indexed using

a topological ordering (such an ordering exists because the

graph is acyclic). The propagation follows this ordering. The

complete definition of the propagation graph is the follow-

ing, and it fully specifies the propagation in a PatchMatch

algorithm.

1122

Definition 2.4 (Propagation graph) A propagation graph,

written G, corresponds to a triplet (V, E , A) where V is

the set of patches of image A, E a set of edges such that

the graph is connected and acyclic and A are the action

functions associated to each edge (Def. 2.3).

For matching image patches, the forward propagation

follows the raster order from the top-left to the bottom-right.

Each patch propagates matches to its neighbors on the right

and down:

E = {(x, y)∈V×V | y = right(x) or y = down(x)} . (6)

The action shifts the candidate patch following the direction

of propagation: if x ∈ A has a candidate z ∈ B, it propagates

right(z) ∈ B to right(x). Thus, A(x, right(x)) = right(·),
and analogously A(x, down(x)) = down(·).

Some variants of PatchMatch add additional edges to this

basic propagation graph seeking to enhance the impact of

the propagation [5, 17]. These additional transitions connect

pairs of patches in A that are similar, and thus good matches

for one of patches in the pair are natural candidates for the

other. The action associated with these new edges is simply

the identity function.

PatchMatch algorithms have also been applied on meshes

[16, 10]. In those cases, the propagation can be defined by

considering a DAG on a subgraph of the mesh.

2.3. Random search

For the specification of a PatchMatch algorithm we need a

mechanism for gathering random samples around the current

candidates.

Definition 2.5 (Random sampling operator) Given a

database image B we define the transition kernel Q such

that for any k-set ϕ of patches from image B, Q(ϕ, ·) is

a probability on the k-sets of patches from B. A set of k
patches drawn from Q(ϕ, ·) will be denoted by Sϕ, i.e.

Sϕ ∼ Q(ϕ, ·). We consider transition kernels with the

property of having a non-zero probability of transitioning to

a k-set of matches with arbitrary positive energy:

Q(ϕ, {Ux < ε}) > 0, ∀ϕ, ∀x ∈ A, ∀ε > 0. (7)

Defined alongside the kernel Q is the worst case transi-

tion probability for an energy level ε at z ∈ A, as the highest

probability of transitioning between two sets of patches with

energy level higher than ε:

C(z, ε) := sup
η∈{Uz>ε}

Q(η, {Uz > ε}). (8)

Lemma 2.6 For all z ∈ A, C(z, .) is a non-increasing func-

tion such that for ε < 0, C(z, ε) ∈ [0, 1[and C(z, ε) = 1
for ε 6 0.

Algorithm 1: Generic patch matching algorithm

1 Initialize propagation graph G
2 Initialize matching ϕ0

3 for n ∈ N do

4 Update candidates

5 for x ∈ V following the topological ordering do

6 ϕn+1/2
x =

mergekx

(
ϕn
x ∪

⋃

y∼x

Ay,xϕ
n+1
y ∪

⋃

y∼x

S2Ay,xϕ
n+1
y

)

7 ϕn+1
x = mergekx

(
ϕn+1/2
x ∪ S1ϕ

n+1/2
x

)

8 end

9 Reverse propagation graph

10 Update propagation graph

11 end

2.4. Algorithm

The generic PatchMatch is presented in Algorithm 1. It

starts by initializing the propagation graph and the candidate

matches. The propagation graph is initialized by defining a

set of edges E and the associated propagation actions A.

The core of the algorithm is the iterative process that

cycles through the nodes in the topological ordering updating

the candidate matches according to the steps 5 and 7. The

update in step 5 is the result of selecting the best k matches

from a set of candidates given by: the current k matches ϕn
x ;

the matches Ay,xϕ
n+1
y propagated from the parent nodes

y ∼ x in the propagation graph; and samples S2Ay,xϕ
n+1
y

gathered around them. We call the latter set of samples

the randomized propagation. In step 7 k random samples

S1ϕ
n+1/2
x around the new current matches are drawn to

finish the update process.

The random samplings S1 and S2 are drawn from tran-

sition kernels Q1 and Q2 which might differ. The parent

nodes y ∼ x precede x in the topological ordering, therefore

they propagate to x the updated candidates ϕn+1
y .

After each iteration the propagation graph is reversed.

The last step considers the possibility of modifying the prop-

agation graph by adding/removing relevant/irrelevant edges.

This is done for example in CSH [17].

3. Convergence of the patch matching algo-

rithms

In this section we study the convergence of the generic

PatchMatch algorithm described in the previous section. We

do so by upper-bounding the probability that the energy Ux

at a node x is larger than a threshold ε after an iteration of

PatchMatch.

1123

3.1. Point­wise energy decay

Our main result is Theorem 3.2 which bounds the decay

of the probability of Ux(ϕ
n+1
x > ε). The propagation makes

this probability smaller, since any of the ancestors of x could

find a candidate that when propagated to x would yields an

energy below ε. Indeed, as a consequence of the propagation,

if ϕx has energy higher than ε after a propagation pass, then

the energies of the ancestors z of x need to be higher than a

series of levels εzx. The violation of any of these restrictions

would cause the propagation of a candidate match to x with

energy Ux below ε. The higher these levels, the smaller the

probability of not sampling random candidates with energies

below them, and thus the smaller P (Ux(ϕ
n+1
x) > ε).

In Lemma 3.1 we show that imposing a lower bound ε
of the matching energy of a node x results in lower bounds

εz,x for all its ancestors z that can be calculated recursively

starting from x and following the reversed propagation or-

dering. In Theorem 3.2 we bound the probability that none

of x’s ancestors draw a random candidate with energy lower

than the corresponding εz,x.

Lemma 3.1 (Constraints propagation) Consider an as-

signment ϕn+1 resulting from an iteration of Algorithm 1.

Then for each pair of nodes x, z ∈ V ,

Ux(ϕ
n+1
x) > ε ⇒ Uz(ϕ

n+1
z) > εz,x, (9)

where the levels εz,x > 0 are as follows. For the ancestors

of x (i.e. P(z, x) 6= ∅) the levels ℓεz,x are defined via the

following recursion starting from x and following the inverse

propagation order:





εz,x = min

{
Uz(θ)

∣∣∣∣∣ θ ∈
⋂

y s.t. z∼y

A−1
z,y({Uy > εy,x})

}

εx,x = ε.
(10)

For the rest of the nodes εz,x = −1.

Once we have established this “allowed” sets for the

ancestors of x, the idea of the proof is to determine the

probability of not escaping the allowed sets in any of the

random searches.

Suppose z is an ancestor of x with a candidate ϕn
z ∈

{Uz > εz,x} (for simplicity assume k = 1). The probabil-

ity of keeping the energy higher than ε after one iteration

decreases because there is a non-zero probability of taking

a random sample outside this level set. The probability of

sampling a candidate in an upper-level set is

P(Sϕn
z ∈ {Uz > l} | ϕn

z ∈ {Uz > l}) =

1∫
{Uz>l}

P(dϕn
z)

∫

{Uz>l}

Q(ϕn
z , {Uz > l})P(dϕn

z). (11)

If we knew the probability distribution of the candidate ϕn
x at

iteration n, we could compute the above probability exactly.

Instead, we bound it by assuming that all the mass of the

distribution of ϕn
z concentrates on a single point: the one

from which it is more unlikely to draw a sample with energy

lower than l. The resulting probability is given by the worst

case transition probability C in (8). This is the main intuition

in the proof of our main result.

Theorem 3.2 (Point-wise convergence) Consider the field

of candidate matches at iteration n, ϕn. Define ϕn+1 by ap-

plying an iteration of the Generic PatchMatch in Algorithm

1. Then, for all ε > 0, for all x ∈ A, we have

P(Ux(ϕ
n+1
x) > ε) 6

P(Ux(ϕ
n
x) > ε)

∏

z∈A

(
C2(z, εz,x)

µ(z)C1(z, εz,x)
)
, (12)

where µ(z) was defined in (5) as the number of parents of

node z and Ci denotes the worst case transition probability

for kernel Qi, as in Eq. (8).

For notational simplicity the product in (12) is over all

patches z ∈ A, but the corresponding Cis are 1 for those z
that are not ancestors of x in the propagation graph.

The result from Theorem 3.2 reflects some of the intu-

itive ideas that led the design of patch matching algorithms.

Due to the propagation, all ancestors of x contribute to the

probability of x of improving its energy. But not all nodes

contribute the same to the bound. The larger εz,x the better,

as the Ci(z, .) are non-increasing functions (Lemma 2.6). It

is therefore important to design the propagation graph and its

actions to maximize the εz,x. The shift propagation actions

introduced in [4] in the patch matching application can be

interpreted under the light of Theorem 3.2 as an heuristic to

maximize the levels εz,x.

Indeed, εz,x is given by the minimum energy Uz in the

intersection of the sets A−1
z,y({Uy > εy,x}) for y in the set

of nodes to which z propagates. Say y is the right neighbor

of z. Then the propagation action from z to y is a right

shift Az,y = right(·). Suppose that the patches are of size

s × s and the matching cost is a function of the sum of

pixel-wise matching errors over the patch (such as any Lp

norm). Since the patches at z and y overlap, the energies

Uy(η) and Uz(A
−1
z,yη) have s(s− 1) terms in common, and

can expected to be similar. Therefore the minimum value

of Uz in A−1
z,y({Uy > εy,x}) should not be much lower than

εy,x. By assuming certain regularity conditions on the image

it is possible to bound the difference between εz,x and εy,x.

This is out of the scope of this paper.

A result that is found in practice is that the rate at which

the energy decreases becomes slower as the matches improve.

Less contributions from other nodes are taken into account

and mostly the random search improves the matching. This

1124

is in agreement with the theory, since as ε decrease, the sizes

of the allowed set increase and the εz,x decrease as well.

According to Theorem 3.2, this results in a slower energy

decrease.

We can also note that adding more edges to the propaga-

tion graph can only improve the convergence rate, requiring

a smaller number of iterations to achieve a desired precision

in the result (in probability). However, having more edges

implies more computation each iteration. The optimal num-

ber of propagation links results from a trade-off between the

computational effort per iteration and its impact on reducing

the energy.

Most variants of PatchMatch use the same propagation

graph and change the random search steps (including the

initialization). This can have a dramatic effect of the con-

vergence. In our bound the choice of the random search

determines the coefficients C1 and C2 which depend directly

on the search transition kernel. Two examples of random

searches will be reviewed in §4.

In the case of the single nearest neighbor (k = 1) the

bound from Theorem 3.2 can be improved. The improve-

ment comes from a better version of the Ci coefficients that

considers the transition probability of mergekx(η∪Siη). The

details are provided in the supplementary material.

3.2. Uniform decay and convergence in the mean

One of the advantages of PatchMatch algorithms is that

the NNF converges rapidly as a whole. We now give bounds

on uniform convergence and convergence in the mean.

Theorem 3.3 Consider the field of candidate matches at

iteration n, ϕn. Define ϕn+1 by applying an iteration of the

Generic PatchMatch in Algorithm 1. Then, for all ε > 0 we

have

P(‖U.(ϕ
n+1
.)‖∞ > ε) 6 P(‖U.(ϕ

n
.)‖∞ > ε)

∏

z∈A

(
C2(z, {Uz > ε})µ(z)C1(z, {Uz > ε})

)
. (13)

Theorems 3.2 and 3.3, together with the assumption (7)

on the transition kernels Qi, imply the convergence in prob-

ability of PatchMatch algorithms. Assumption (7) is nec-

essary to ensure that Ci(z, ε) < 1 for ε > 0. A stronger

convergence can also be shown once we considered tran-

sition kernels Qi having this good property, the following

result shows convergence in the mean, both point-wise and

uniformly for the whole energy field.

Corollary 3.4 Assume that for any pair (η, ξ) of sets of k
candidate matches Q1(η, ξ) > 0 (or Q2(η, ξ) > 0). Let

(ϕn) be a sequence defined by Algorithm 1. Then ∀x ∈
A,E[Ux(ϕ

n
x)] −−−−→

n→∞
0 and E[‖U.(ϕ

n
.)‖∞] −−−−→

n→∞
0.

This assumption on Qi is reasonable when the universe

of candidates is finite, such as when searching matching

patches in a database image B. Some variants of PatchMatch

have been used to minimize a field of functions over con-

tinuous parameters (scales and rotations [5], planes in 3D

[9]). The previous corollary does not apply in these cases.

Nevertheless both Theorems 3.2 and 3.3 remain valid even

without assumption (7).

4. Specific PatchMatch algorithms

We now derive more specific bounds for two particular

cases of the generic PatchMatch algorithm found in the

literature.

4.1. The original PatchMatch algorithm

The original PatchMatch algorithm was introduced in [4]

for k = 1, and then generalized to k-nearest neighbors in

[5] (the heap algorithm) together with other generalizations.

Most of them are covered by Theorem 3.2 as they are partic-

ular cases of Algorithm 1. In this section, we derive a more

specific bound for one of these variants.

The field ϕ of k-matches is initialized at random, by

uniform sampling from image B. The propagation graph is

the basic one presented in §2.2, with the shift actions. For

the forward propagation these are A(x, right(x)) = right(·),
A(x, down(x)) = down(·).

We define S1 by taking samples around the current best

candidate (the RS best variant in [5]). In [5] these sam-

ples are drawn from a sequence of transition probabili-

ties. The qth sample is sampled uniformly from a box

of size [−dαq, dαq]2 centered at the current match, for

q = 0, 1, . . . , qmax, α = 0.5 and d = max{W,H} for a

database image B of size W ×H . The number of samples

is chosen so that the smallest box is larger than a pixel. The

first sample is taken uniformly on the whole image B, so

that there is a positive probability of transitioning from and

to any two patches in B. For simplicity, we assume that the

random search operator S1ϕ
n
x draws k independent patches

in B with the same probability distribution Q′(ϕ̃x, .), where

ϕ̃x is the best current match. For all φ ∈ B, the support

of Q′(φ, ·) covers all patches in B, so as in [4, 5], there is

always a positive probability of transitioning between any

two patches in B.

Without loss of generality, to simplify the notation we

consider that the propagation graph is the same for all itera-

tions (i.e. no alternation between iterations).

Proposition 4.1 The specific basic PatchMatch algorithm

described above converges in probability to a NNF which

minimizes the energy, namely

lim
n→∞

P(Ux(ϕ
n
x) > ε) = 0, ∀ε > 0, x ∈ A, (14)

1125

with a geometric convergence rate. Moreover for all ε > 0,

for all x ∈ A, we have that

P(Ux(ϕ
n+1
x) > ε) 6

P(Ux(ϕ
n
x) > ε)

∏

z∈A

(
1− (1− C ′(z, εz,x))

k
)
,

with C ′(z, α) := supη Q
′(η, {Uz > a}). For α > 0 we can

guarantee that C ′(z, α) < 1.

Corollary 4.2 If k = 1 the upper bound can be written as

P(Ux(ϕ
n+1
x) > ε) 6

∏

z∈A

C ′(z, εz,x)P(Ux(ϕ
n
x) > ε).

with C ′(z, α) := supη∈{Uz>a} Q
′(η, {Uz > a}).

Corollary 4.2 allows a direct comparison of our bound

with the bound derived in [1]. Both bounds have the same

structure. However, the energy levels εzx [1] are smaller

than ours causing a looser bound.

4.2. The CSH algorithm

Coherency Sensitive Hashing (CSH) was introduced in

[17]. It uses Locality Sensitive Hashing (LSH) [15] to im-

prove the random search and to add propagation edges.

LSH is a method for nearest neighbors search based on

partitioning the search space using a series of hash functions

h drawn randomly from a family H. Each hash function

partitions the space in “bins” containing points with the

same hash value. The family H has the property that nearby

points collide in the same bin with high probability, while

far away points do so with smaller probability. This is made

precise by the following definition 4.3.

Definition 4.3 A family of functions H = {h : Rd → U},

where U is the set of hashes, is called (R, cR, p1, p2)-
sensitive if for any p, q ∈ R

d (for simplicity of notation,

we write PH(.) = P(. | H))

(1) if ‖p− q‖ 6 R then PH(h(q) = h(p)) > p1,

(2) if ‖p− q‖ > cR then PH(h(q) = h(p)) 6 p2.

This is useful for nearest neighbors search when p1 > p2.

Instead of using directly the elements from H, a second

family of functions G, called an OR family, is created. The

function g ∈ G is based on a set of n random functions

h1, . . . , hn from H such that for all p, q, g(p) = g(q) if and

only if there exist i ∈ J1, nK such that hi(p) = hi(q). This

will be the set of functions used to define the algorithm.

Lemma 4.4 If H is (R, cR, p1, p2)-sensitive then an OR

family G created using n functions from H is (R, cR, 1 −
(1− p1)

n, 1− (1− p2)
n)-sensitive.

In CSH, hash functions drawn randomly at each iteration

are used both to define the random search operator S1 and

the randomized propagation operator S2. Let us define the

projection bin of a patch p ∈ R
d as

Bg(p) = {q ∈ B | g(p) = g(q)}. (15)

These projection bins depend on the random choice of the

hash function, and are used to define the candidate set sam-

pling operators. The random search S1 is simply the pro-

jection bin of the query patch x, i.e. S1ϕx := Bg(x). The

randomized propagation is defined as the union of the projec-

tion bins corresponding to the best b propagated candidates,

where b 6 k is a parameter of the method, that is:

S2Ay,xϕy = ∪b
l=1Bg([Ay,xϕy]l), y ∼ x. (16)

Here [Ay,xϕy]l, l = 1, . . . , k are the propagated candidates.

Note that S1ϕx does not depend on the candidate list, but

only on the query patch x. This particularity, together with

the properties of the hashing family H, can be exploited to

derive a tighter upper bound than the one given in Theorem

3.2. CSH also uses hashing over the query image A to

connect similar patches in the propagation graph. Our result

is valid for any propagation graph.

Proposition 4.5 For a (R, cR, p1, p2)-sensitive family of

hashing functions such that R > maxz∈A Kz (see Defi-

nition 2.1), the sequence (ϕn) defined by the CSH algorithm

converges in probability to a minimizer of the total energy,

lim
n→∞

P(Ux(ϕ
n
x) > ε) = 0, ∀ε > 0, x ∈ A, (17)

with a geometric convergence rate. Moreover for all ε > 0,

for all x ∈ A,

P(Ux(ϕ
n+1
x) > ε) 6 P(Ux(ϕ

n
x) > ε) (18)

∏

z∈A

C2(z, ℓ
ε
z,x)

µ(z)f(p1, εz,x), (19)

where f(α, β) = (1− αk) if β > 0, 1 otherwise.

In practice it is possible to compute an (R, cR, p1, p2)-
family of hash functions such that p1 is large enough to

outperform the transition kernels used by the original Patch-

Match algorithm. This explains the improved convergence

rate of CSH reported in [17].

5. Experiments and discussion

We show experiments comparing the convergence pre-

dicted by the theory with the one found in practice, for

the case of the original PatchMatch algorithm with k = 1
[4]. The code to reproduce the experiments is available at

https://github.com/pariasm/pm-bound.

1126

https://github.com/pariasm/pm-bound

Figure 1: We represent here the εz,xs for two different points

x (top and bottom rows) and for ε = 1 (left) and ε = 15
(right). The point x is the bottom right pixel.

5.1. Computation of theoretical bound

Given an energy value ε and a patch x in the query image

A, the computation of the bound requires computing the

energy levels εz,x and the worst case transition probability

C1(z, εz,x) for all ancestors z of x. The ancestors are all

pixels located above and to the left of x during the forward

propagation, and below and on the right of x during the

backward pass. The original PatchMatch algorithm does not

consider a randomized propagation S2Az,yϕ
n+1
y , thus in the

following we will drop the subindex for C1 and Q1.

The computation of the levels εz,x is straightforward.

We loop on the ancestors starting from x. Following the

inverse propagation ordering we apply the recursion (10).

The inverse actions A−1
z,y are one pixel shifts in the opposite

direction to the propagation. For instance if z propagates to

y at his right, then A−1
z,y{Uy > εy,x} results from shifting to

the left all elements of {Uy > εy,x} ⊆ B.

Figure 1 shows examples of the resulting εz,x at two im-

age locations and for ε = 1 and ε = 15. The larger the εz,x
the smaller the coefficient C(z, εz,x) and the faster the con-

vergence. We can see that the levels εz,x at different points

x can be very different. Moreover, increasing ε increases the

levels εz,x locally around x.

To compute the worst case transition probability

C(z, εz,x), we compute for all η ∈ {Uz > εz,x} the proba-

bility of drawing a sample from the upper-level set. As in

the original PatchMatch, we take n independent samples fol-

lowing a sequence of uniform distributions Siη ∼ Qi(η, ·)
on square boxes centered at η with a decreasing sequence of

radii.1 For the worst case transition, we need the n samples

1This scheme differs from the one considered in Proposition 4.1, which

takes k equally distributed samples Sη ∼ Q′(η, ·). But the theory applies

0 50 100 150 200 250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ǫ=1

ǫ=2

ǫ=5

0 50 100 150 200 250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ǫ=1

ǫ=2

ǫ=5

Figure 2: The different theoretical bounds are compared to

the empirical one at the position of the two points from Fig-

ure 1 for different values of ε. The plots show the probability

than the energy is above different energy levels. The line

without marker corresponds to the empirical probability. The

line marked with a circle corresponds to the bound presented

in [1]. The line marked with a star correspond to the bound

presented in this paper.

to be in {Uz > εz,x}, thus:

C(z, εz,x) = max
η∈{Uz>εz,x}

n∏

i=1

Qi(η, {Uz > εz,x}). (20)

For each sampling radius r, the probability Qi(·, {Uz >

εz,x}) can be computed efficiently via a convolution of the

indicator function of the upper-level set with a box kernel of

size 2r + 1× 2r + 12. We use an integral image implemen-

tation to speed-up the computation.

5.2. Experimental validation

To validate the theory we contrast the predicted evolution

of the matching energy with the empirical evolution. Since

PatchMatch is a randomized algorithm, we estimate for a

given energy level ε the probability that the energy is above

ε for each iteration. The empirical probability is computed

by running N iterations of PatchMatch a number of trials

M . For a patch x ∈ A we define Un,m
x the matching energy

at iteration n of trial m. Then the empirical probability of

Ux > ε is estimated as

P̂ (x, ε, n) = P̂(Ux(ϕ
n
x) > ε) =

1

M

M∑

m=1

1(Un,m
x > ε).

The theoretical bound on this probability is given by

B(x, ε, n) = P(Ux(ϕ
0
x) > ε) ·K(x, ε)n, (21)

where K(x, ε) =
∏

z∈A C(z, εz,x). The candidates in the

original PatchMatch are initialized by sampling uniformly

over the database image B, thus the initial probabilities can

the same as long as C is in accordance with the sampling procedure.
2The kernel needs to be normalized by the area of the portion of the

kernel that fits in the image domain.

1127

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

centered search

uniform search

Figure 3: The effect of the random search. If we simplify

the random search and make it uniform, then convergence is

slower and the bound is tight. In this experiment, we match

two random noise images. See text for details.

be easily computed as the area ratio between the upper-level

set {Ux > ε} and the image domain B.

In Figure 2 we plot the estimated probabilities P̂ (x, ε, n)
together with the theoretical bound B(x, ε, n) for a patch

x ∈ A and several values of ε. As expected, the estimated

probability is below the worst case bound. For smaller ε the

bound becomes looser. For example: for the energy to be

below than ε = 1 with a probability of 0.2, the theoretical

bound predicts 178 iterations but in practice 60 were needed.

For k = 1, the gap between the theoretical bound and

the empirical decay is mainly due to upper-bounding the

transition probability (11) by the worst case probability C.

To verify this we use a simplified random search: the sample

Sη is taken uniformly over B (as in the initialization). In

this way, we eliminate the dependence between the sample

Sη and the current candidate η, and we have that P(Sϕn
z ∈

{Uz > l} | ϕn
z ∈ {Uz > l}) is the area ratio between the

upper level set and the domain of image B, regardless of ϕn
z .

We generate two images of random noise. The query

image A is of size 24× 24. It contains q = 20× 20 = 400
patches of size 5 × 5. The database image B is of size

104 × 104, thus containing p = 100 × 100 = 104 patches.

As before, we compute the empirical probabilities P̂ and the

bound for the bottom right patch. We show two results: one

using only the uniform random search, and another one using

the original centered random search. The plots correspond

to an energy level of ε = 0.5, and only the unique global

minimum is below ε. When using the uniform search, the

empirical decay matches the theoretical prediction. The

centered search shows a faster convergence.

This experiment also shows that the theoretical bound

captures the main intuition behind the design of the Patch-

Match algorithm: if a region of image B is an exact copy of

image A (or of a region in image A) it becomes very likely

to find the copied region in the database image. Due to the

propagation, as soon as one node in A finds its match, it

will be propagated to all other nodes. In this case, one can

compute exactly the probability that all the ancestors of x
miss the copied region. The probability of missing the global

0 50 100 150 200 250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ǫ=1

ǫ=2

ǫ=5

0 50 100 150 200 250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ǫ=1

ǫ=2

ǫ=5

Figure 4: Comparison between the “average” and worst-case

C. The curve with the diamonds corresponds to the “average”

C whereas the stars show the worst case C.

optimum is 1− 1/p. The probability that all q ancestors of

x miss the optimum is therefore (1− 1/p)q . This coincides

with the theoretical bound.

As a final experiment we show results obtained computing

C as an “average” transition probability instead of the worst

case. This average transition results from assuming in (11)

that ϕn
x is distributed uniformly over the upper-level set.

Figure 4 compares the predictions of this average C with the

worst case C. While we do not have theoretical guaranties

on the average C, its behavior that is much closer to the

empirical case.

6. Conclusions

We presented a theoretical analysis of the convergence

of PatchMatch algorithms. For an energy level ε, we show

that the probability of having an energy above ε converges to

0 with the number of iterations, and we provide worst case

bounds on the convergence rate. Our analysis applies to the

case of k nearest neighbors, and to most variants of Patch-

Match proposed in the literature. We give specific bounds

for two of these algorithms: the original PatchMatch [4, 5]

and CHS [17]. For the case of the original PatchMatch (with

k = 1) we validate our results by comparing the predicted

convergence rate with the one found in practice. The setting

of our framework is rather general: the task of patch match-

ing is viewed as an optimization problem where the goal is

to minimize several non-convex energies Ux over the same

domain. This might allow the application of these techniques

to similar optimizations problems in other areas. For the case

of matching patches, it would interesting to precise the link

between the regularity of the images and the convergence

rate, at least for certain simple models of images.

Acknowledgment

Work partly financed by IDEX Paris-Saclay IDI 2016,

ANR-11-IDEX-0003-02, Office of Naval research grant

N00014-17-1-2552, DGA Astrid project «filmer la Terre» no

ANR-17-ASTR-0013-01, MENRT and Fondation Mathéma-

tique Jacques Hadamard

1128

References

[1] P. Arias, V. Caselles, and G. Facciolo. Analysis of a varia-

tional framework for exemplar-based image inpainting. Mul-

tiscale Modeling & Simulation, 10(2):473–514, 2012. 1, 2, 6,

7

[2] P. Arias, G. Facciolo, V. Caselles, and G. Sapiro. A varia-

tional framework for exemplar-based image inpainting. Inter-

national Journal of Computer Vision, 93(3):319–347, 2011.

1

[3] L. Bao, Q. Yang, and H. Jin. Fast edge-preserving patchmatch

for large displacement optical flow. Image Processing, IEEE

Transactions on, 23(12):4996–5006, Dec 2014. 1

[4] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman.

Patchmatch: a randomized correspondence algorithm for

structural image editing. ACM Transactions on Graphics-

TOG, 28(3):24, 2009. 1, 2, 4, 5, 6, 8

[5] C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkelstein.

The generalized patchmatch correspondence algorithm. In

Proceedings of the Europ. Conf. on Computer Vision (ECCV),

pages 29–43. Springer, 2010. 1, 2, 3, 5, 8

[6] C. Barnes, F.-L. Zhang, L. Lou, X. Wu, and S.-M. Hu.

Patchtable: Efficient patch queries for large datasets and ap-

plications. In ACM Transactions on Graphics (Proc. SIG-

GRAPH), Aug. 2015. 1

[7] N. Ben-Zrihem and L. Zelnik-Manor. RIANN: Approximate

Nearest Neighbor Fields in Video. In Proceedings of the

IEEE Int. Conf. on Computer Vision and Pattern Recognition

(CVPR), 2015. 1, 2

[8] J. L. Bentley. Multidimensional binary search trees used

for associative searching. Communications of the ACM,

18(9):509–517, 1975. 1

[9] M. Bleyer, C. Rhemann, and C. Rother. Patchmatch stereo -

stereo matching with slanted support windows. In Proceed-

ings of the British Machine Vision Conference (BMVA), pages

14.1–14.11. BMVA Press, 2011. 1, 5

[10] X. Chen, T. Funkhouser, D. B. Goldman, and E. Shechtman.

Non-parametric texture transfer using meshmatch. Technical

Report Technical Report 2012-2, Adobe, November 2012. 1,

3

[11] D. Fortun, P. Bouthemy, and C. Kervrann. Sparse aggregation

framework for optical flow estimation. In Proceedings of

the 5th Int. Conf. on Scale Space and Variational Methods in

Computer Vision (SSVM), pages 323–334. Springer, 2015. 1

[12] K. He, C. Rhemann, C. Rother, X. Tang, and J. Sun. A global

sampling method for alpha matting. In Computer Vision

and Pattern Recognition (CVPR), 2011 IEEE Conference on,

pages 2049–2056. IEEE, 2011. 1

[13] K. He and J. Sun. Computing Nearest-Neighbor Fields via

Propagation-Assisted KD-trees. In Proceedings of the IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR),

pages 111–118. IEEE, 2012. 1, 2

[14] M. Hornáček, F. Besse, J. Kautz, A. Fitzgibbon, and C. Rother.

Highly overparameterized optical flow using PatchMatch Be-

lief Propagation. In Proceedings of the 13th Europ. Conf. on

Computer Vision (ECCV), pages 220–234. Springer, 2014. 1

[15] P. Indyk and R. Motwani. Approximate nearest neighbors:

towards removing the curse of dimensionality. In Proceedings

of the 30th Annual ACM Symp. on Theory of Computing,

pages 604–613. ACM, 1998. 1, 6

[16] M. Klaudiny and A. Hilton. Cooperative patch-based 3D

surface tracking. In Proceedings of the Conf. for Visual Media

Production (CVMP), pages 67–76, 2011. 1, 3

[17] S. Korman and S. Avidan. Coherency sensitive hashing.

In Proceedings of the IEEE Int. Conf. on Computer Vision

(ICCV), pages 1607–1614. IEEE, 2011. 1, 2, 3, 6, 8

[18] N. Kumar, L. Zhang, and S. Nayar. What is a good nearest

neighbors algorithm for finding similar patches in images? In

Proceedings of the Europ. Conf. on Computer Vision, pages

364–378. Springer, 2008. 1

[19] C. Liu and W. T. Freeman. A high-quality video denoising

algorithm based on reliable motion estimation. In Proceed-

ings of the Europ. Conf. on Computer Vision, pages 706–719.

Springer, 2010. 1

[20] J. Lu, H. Yang, D. Min, and M. N. Do. Patch match filter:

Efficient edge-aware filtering meets randomized search for

fast correspondence field estimation. In Proceedings of the

IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), pages 1854–1861, 2013. 1

[21] I. Olonetsky and S. Avidan. TreeCANN - kd-tree Coherence

Approximate Nearest Neighbor algorithm. In Proceedings of

the Europ. Conf. on Computer Vision (ECCV), pages 602–615.

Springer, 2012. 1

1129

