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Abstract

Objects often occlude each other in scenes; Inferring

their appearance beyond their visible parts plays an impor-

tant role in scene understanding, depth estimation, object

interaction and manipulation. In this paper, we study the

challenging problem of completing the appearance of oc-

cluded objects. Doing so requires knowing which pixels to

paint (segmenting the invisible parts of objects) and what

color to paint them (generating the invisible parts). Our

proposed novel solution, SeGAN, jointly optimizes for both

segmentation and generation of the invisible parts of ob-

jects. Our experimental results show that: (a) SeGAN can

learn to generate the appearance of the occluded parts of

objects; (b) SeGAN outperforms state-of-the-art segmenta-

tion baselines for the invisible parts of objects; (c) trained

on synthetic photo realistic images, SeGAN can reliably

segment natural images; (d) by reasoning about occluder-

occludee relations, our method can infer depth layering.

1. Introduction

Humans have strong ability to make inferences about the

appearance of the invisible and occluded parts of scenes [1,

34]. For example, when we look at the scene depicted in

Figure 1 we can make predictions about what is behind the

coffee table, and can even complete the sofa based on the

visible parts of the sofa, the coffee table, and what we know

in general about sofas and coffee tables and how they oc-

clude each other. Devising algorithms to infer the appear-

ance of what is behind an object exhibits several challenges.

Predicting the appearance of the occluded regions of objects

requires reasoning over multiple intertwined cues. Recog-

nizing if an object is occluded or not is the first challenge

to begin with. Second, knowing what pixels to color re-

quires extending the boundaries of objects from their visi-

ble regions to invisible parts which requires some form of

knowledge about the shapes of objects. The complex rela-

tions between the appearance of objects and the change in

viewpoint and occlusion patterns form the third challenge.

Deformable objects can even make the problem ill-defined.

Fourth, it is challenging to provide large-scale, accurate,
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Figure 1. Our goal is to jointly segment and paint the invisible

regions of objects. For instance, we predict how the sofa looks

like when the occluders (cushions, laptop and coffee table) are

removed. The input to our model is an image and a mask for the

visible regions of objects (shown in blue).

and reliable training data to train models for occlusion rea-

soning.

In this paper, we study the problem of generating the in-

visible parts of objects. Doing so requires segmenting the

invisible part of the object and then generating the appear-

ance of (painting) it. Inspired by the principles of learning-

the-easy-thing-first, we propose SeGAN, a novel model

that combines segmentation and generation and jointly op-

timizes for both of them. More specifically, given an in-

put image and a segmentation for the visible regions of an

object, our proposed GAN-based model learns to predict
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a segmentation for the occluded regions and generate the

appearance by painting the invisible parts. Using segmen-

tation masks of the invisible part as our intermediate step

enables our network to learn about what pixels to paint be-

fore painting them. The generator network then paints the

selected pixels. By jointly learning segmentation and gener-

ation networks SeGAN learns about the interdependencies

between objects, their occlusion patterns, the shape and ap-

pearance of object segments. This allows us to address the

first three challenges.

The key remaining challenge is training data; where can

we find large-scale and accurate training data for what is be-

hind the visible part of images? We argue that the proposed

solution for Amodal segmentation in [55] is not suitable for

our approach. Human judgements for predictions about the

invisible parts of objects is subjective. Also, superimposing

segments of images over other images [27] would result in

unnatural occlusion boundaries. In this paper, we propose

to use photo-realistic synthetic data to learn how to extend

segmentation masks from the visible parts of objects to the

invisible regions and how to generate the appearance of the

invisible part. Doing so allows us to obtain large-scale and

accurate training data for the invisible regions of objects in

images.

Our experiments show that SeGAN can, in fact, segment

and generate the invisible regions of objects. Our results

also show that our proposed segmentation network can learn

to segment the occluded regions of objects and outperforms

various state of the art segmentation baselines. We also

show that our segmentation network can reliably segment

the invisible parts of objects in natural images, when trained

on our photo-realistic training set. By reasoning about oc-

clusion patterns, our model can also make predictions about

occluder-occludee relationships resulting in depth ordering

inferences. Note that SeGAN is category-agnostic and does

not require semantic category information.

2. Related Works

There is a large body of work on object detection [14, 13,

18, 41, 42, 45], semantic segmentation [31, 2, 3, 28, 36, 53,

7, 35, 30, 24] and instance segmentation [39, 26, 8, 6, 40,

51, 52] using deep learning. These methods are designed

for the visible regions of objects and they are not able to

capture occlusions or provide a depth ordering for objects

in an image. In contrast, our goal is to reconstruct occluded

regions.

Occlusion reasoning has been studied in the literature ex-

tensively. [47] propose a CRF for segmenting partially oc-

cluded objects. [44] infer occlusion edges of polygons that

represent objects. [11] make DPM more robust to occlusion

by inferring whether a cell inside the object bounding box

belongs to the object or not. [16] use scene priors to infer

the label for the occluded background regions. [49] pro-

pose a layered object detection and segmentation method,

where the goal is to infer depth ordering for the detected ob-

jects. [20] propose an occlusion model for object instance

detection based on 3D interaction of objects. [15, 12] pro-

pose methods for detection and pose estimation of occluded

people. [38] learn occluder-occludee patterns to improve

object detectors. [21] synthesize scenes by retrieving seg-

ments from training images, which requires reasoning about

depth layers in the scene. [46] provide a semantic label for

each pixel in an image along with the occlusion ordering

for objects. [5] use top-down information to tackle occlu-

sions in multi-instance segmentation. We differ from all of

these methods in that we complete the segmentation mask

for the occluded objects and generate the appearance for the

occluded regions of each object instance. Also, we show

transfer from synthetic to natural images.

The problem of bounding box completion has been tack-

led by [23], where the goal is to find the full extent of the

object bounding box. Amodal segmentation methods have

been proposed by [55, 27], where they aim to provide a

complete mask for occluded objects. The annotations that

[55] provide is mainly based on the subjective judgment of

the annotators (since the occluded parts of objects are not

visible). In contrast, we modify our scenes by removing

occluders and obtain an accurate groundtruth mask and tex-

ture for the occluded objects. The groundtruth annotation

of [27] is obtained by pasting an object over an arbitrary

image. Our argument is that occlusion relationships are not

arbitrary and follow certain characteristics, and the way that

we collect our occlusion data enables us to better model the

occlusion relationships. Also, in contrast to these methods,

we generate the appearance for the occluded regions.

Conditional Generative Adversarial Networks (cGANs)

[33] have been used for different applications such as pre-

diction of future frames [32], style transfer [25], colorizing

and synthesizing images from edge maps [22], etc. Image

inpainting using cGANs and DCGANs has been explored

by [37] and [50]. In this paper, we combine cGANs with

a convolutional network to segment and paint the occluded

regions of objects simultaneously. Our problem is different

from inpainting since our goal is to paint regions outside the

input mask.

Recently, [4] proposed a regression-based approach to

synthesize images from a given semantic segmentation lay-

out. Our method differ from [4] since their goal is not to

reconstruct occluded regions. Also, our method performs

both segmentation and painting and it is category-agnostic.

3. Model

Our goal is to segment and paint the occluded regions of

objects. The inputs to our model are a segmentation mask

for the visible (non-occluded) regions of an object and an

RGB image. The output is an RGB image where the oc-
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Figure 2. Model architecture. Our network has three parts: segmentor, generator, and discriminator. The input to our model is an RGB

image and a mask for the visible region of an object which is obtained automatically by [51]. The output is an RGB image that shows the

appearance and segmentation for the full object (visible and reconstructed invisible regions). The segmentor part outputs an intermediate

mask (the mask shown in the middle) that represents the full object, which is passed to the generator part of the network.

cluded regions of that object have been reconstructed. The

segmentation masks for visible regions can be obtained au-

tomatically from any instance segmentation method (e.g.,

[51]).

We introduce SeGAN that infers the mask for the oc-

cluded regions and paints those regions in a joint fashion.

Our model has two main parts: (1) segmentation and (2)

painting. The segmentation part provides a mask for the oc-

cluded and non-occluded regions of objects, which is fed

into the painting part of the model. The painting part gen-

erates the appearance for the occluded region of the object.

These two parts of the network are trained jointly. The ar-

chitecture of the model is shown in Figure 2.

The segmentation part of the network is a CNN that takes

a four-channel tensor as input, where three channels corre-

spond to the RGB image, and there is a single channel for

the segmentation mask of the visible region of an object.

The mask for the visible region is obtained automatically

(refer to Section 5 for details). The idea is to use the infor-

mation from visible regions to segment and paint the invisi-

ble regions. We modify ResNet-18 [19] to generate a mask

image as output (the output of the last convolutional layer).

Then, the mask output is fed into an ROI pooling layer. The

ROI pooling layer is followed by a fully connected layer

with the output size of 3364 (58 ⇥ 58), and refer to its out-

put by o. An upsampling layer converts o to 256⇥ 256. We

denote the output of the upsampling layer by O. Our final

result is more accurate when we use upsampling.

The painting part of the network generates the invisible

or occluded regions of the object. This part is a condi-

tional generative adversarial network (cGAN) [33], which

consists of a generator and a discriminator.

The input to the generator, M , is computed as follows:

M(I,O, V ) =

I " V +R" (O − V ) +B " (J −O − V ), (1)

where " is element-wise multiplication, I and V are the in-

put RGB image and input binary visible mask (SV), J is an

all-one matrix of size 256⇥256, and R and B are 256⇥256
images, where their first and third channels are 1s, respec-

tively, and the rest of their channels are 0s. All of the binary

masks in the above equation are repeated three times to form

a 3 channel image. Basically, in the generator’s input, the

mask for the invisible region (which is provided by the seg-

mentation part of the network) is red, and the region outside

the mask is blue.

We adopt Unet [43] for the generator network, which is

an encoder-decoder with skip connections from encoders to

the corresponding layers in the decoder. The discriminator

network includes four convolutional layers, followed by one

sigmoid layer. The architecture for this part is similar to that

of the Pix2Pix network [22].

The loss function for our model is a combination of the

losses for segmentation and painting. For segmentation, we

define a customized loss function using binary cross entropy

loss that is computed on the prediction of the network and

the groundtruth for the full object binary mask (referred to

as SF). In Section 4, we explain how we obtain accurate

groundtruth for the occluded regions. Ideally, the segmen-

tation part should learn 1) not to change the mask for the

pixels in SV (mask for visible regions) and 2) to predict the

mask for the pixels in SI (mask for invisible regions) cor-
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rectly. The binary cross entropy loss is defined as:

LS
ent(g, o) = −

1

n

X

ij∈S

(gij log(oij)+(1−gij)log(1−oij)),

(2)

where S is a subset of pixels (e.g., pixels of the visi-

ble region), gij and oij are pixels at location (i, j) of the

groundtruth SF and predicted mask, respectively, and n =
|S|.

Our loss function for segmentation is defined as:

Lsegm(g, o) = λbgL
SF
ent(g, o)+λSV L

SV
ent(g, o)+λSIL

SI
ent(g, o),

(3)

where SF is the set of pixels in the image patch not in SF ,

or in other words the pixels that do not belong to either vis-

ible or invisible parts of the object. A sigmoid function is

applied to the predicted output so we obtain a real number

between 0 and 1. The intuition for defining this objective is

to differentiate among making mistakes in segmenting the

visible region, invisible region and the background.

The loss function for painting is defined as follows:

LcGAN (G,D) = Ex∼pdata(x),z∼pz(z)[logD(G(x, z))]

+ Ex∼pdata(x),z∼pz(z)[log(1−D(x,G(x, z))], (4)

where G and D are the generator and the discriminator net-

works, respectively, x is the input and z is a random Gaus-

sian noise vector, which is mainly used for regularizing the

generator network.

Previous approaches found L1 and L2 distance losses to

be helpful for GANs [37, 22], thus the final loss function for

the adversarial part is defined as:

L∗(G) = LcGAN (G,D) + λLL1(G) (5)

The loss function for our SeGAN end-to-end model,

Lfull, is defined as:

Lfull = λL∗L∗(G) + Lsegm(g, o) (6)

4. Dataset

In this paper, we introduce DYCE, a dataset of syn-

thetic occluded objects. This is a synthetic dataset with

photo-realistic images and natural configuration of objects

in scenes. All of the images of this dataset are taken in in-

door scenes. The annotations for each image contain the

segmentation mask for the visible and invisible regions of

objects. The images are obtained by taking snapshots from

our 3D synthetic scenes. A few examples of images and

their annotations are shown in Figure 3.

There are two advantages of a synthetic 3D dataset. First,

we can obtain a 2D dataset of the desired size, and there is

no restriction over the number of training samples we can

Image Visible	Masks	(SV) Invisible	Masks	(SI)

Figure 3. Example images of the dataset. The first column shows

the images captured from 3D synthetic scenes. The second col-

umn shows the segmentation mask for the visible regions. Each

instance is encoded by a different color. The third column shows

the invisible regions. For example, in the second row, the cush-

ions occlude the sofa. Therefore, the regions behind the cushions

have grey color in the third column, which means that those pixels

belong to the grey sofa in the second column.

generate. Second, we can move the camera to any loca-

tion to capture interesting patterns of occlusion. We use the

scenes of [54] to generate our dataset.

4.1. Generating 2D Images from 3D Scenes

For generating the images, we change the location and

the viewpoint of the camera in order to get a variety of im-

ages. For each scene, we generate 500 images from differ-

ent viewpoints of the camera. We restrict the areas that the

camera can be located. We move the camera in locations

that the head of a person can be located in order to obtain

common patterns of occlusion that people observe. We also

restrict the orientation of the camera such that the camera

points to objects in the scenes. Otherwise, the dataset will

contain many images with no objects (for example, images

depicting a portion of a wall).

The procedure for generating the segmentation mask for

the visible and invisible regions of objects is as follows. For

each object, we generate an image with all other objects

removed. Then, we compare this image with the original

image, where no object is removed from the scene. The

pixels that are the same in both images are the visible pixels

of this particular object. To obtain the mask for the invisible

region, we subtract the mask of the visible region from the

mask of the full object.

4.2. Statistics

The number of the synthetic scenes that we use is 11,

where we use 7 scenes for training and validation, and 4

scenes for testing. Overall there are 5 living rooms and 6
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kitchens, where 2 living rooms and 2 kitchen are used for

testing. On average, each scene contains 60 objects and the

number of visible objects per image is 17.5 (by visible we

mean having at least 10 visible pixels). There is no common

object instance in train and test scenes.

5. Experiments

Our model performs segmentation and painting jointly.

Hence, in this section, we evaluate our model from these

two perspectives. In addition, we show results of general-

ization to natural images. Finally, we present our evaluation

for the depth layering task. Our training and test sets in-

clude 41924 and 27617 objects depicted in 3500 and 2000

images, respectively.

5.1. Implementation details

The segmentation part is initialized by the weights of

ResNet-18 [19] that are pre-trained on ImageNet [9]. We

use random initialization for the painting part of the net-

work.

All input images and their masks are resized to 500⇥500.

We used bilinear interpolation for resizing. Thus, the seg-

mentation mask might contain values in the interval (0, 1).
To obtain bounding boxes for the ROI pooling layer we

expand the box around the input SV masks by a random

ratio between 10-30% from each side. Note that we ig-

nore the portions that lie outside the image. We compute

the segmentation loss on groundtruth segmentation masks

of size 58 ⇥ 58 (for each object, we crop the image us-

ing the expanded bounding box and scale the cropped im-

age to 58 ⇥ 58). Then, we upsample the predicted mask

to 256⇥ 256 using a bilinear upsampling layer and use the

256 ⇥ 256 mask as the input to the painter network. We

do not train the upsampling layer. The generator outputs a

three channel 256 ⇥ 256 image, which includes the RGB

values for the full object (invisible and visible regions).

We use the following coefficients in the loss function:

λbg = 1, λSV = 5, λSI = 3, λL1 = 100, and λL∗ = 0.1.

These values are obtained using a validation set. Also, to

help the network to converge, we first train the segmentation

network and the generator network jointly and then train the

whole network end to end.

5.2. Evaluation

Segmetation & Painting. We evaluate our model, SeGAN,

in two settings. First, we use the output of the Multipath

network [51], which is a state-of-the-art model for gener-

ating the segmentation mask for objects as our input mask

for the visible regions (SV masks). Secondly, to factor out

the effects of SV segmentation approach from our results,

we also show the results using the groundtruth mask as the

input for the visible region of the object.

After obtaining segmentation masks from Multipath, we

find the segmentation mask that corresponds to the visible

region of the groundtruth training object. The segmentation

mask that has the largest intersection over union with the

visible region of the groundtruth mask is selected as the in-

put mask during training. For evaluation, we consider all

masks generated by Multipath.

We evaluate our model using three metrics for segmen-

tation and two for painting. For segmentation, we evaluate

how well we predict (1) the mask for the occluded regions

(SI), (2) the mask for non-occluded regions (SV), and (3)

the mask for the full object (SF=SV [ SI). The intuition for

evaluating the mask for visible regions is to check whether

our approach distorts the input mask when the object is not

occluded. For all of these settings, we compute intersection

over union between the predicted mask of the model and

the groundtruth mask. For evaluating painting, we use L1

and L2 distance of the predicted output and the ground truth

image.

Table 1 summarizes our results for segmentation. First,

our method (referred to as ‘SeGAN w/ predicted SV’) sig-

nificantly outperforms Multipath for the task of predicting

masks for the full object (SF) and invisible regions (SI).

It is interesting to see that our method improves the seg-

mentation of the visible regions (SV) as well. We have two

variations of the Multipath network as our baselines: one

trained only on natural images data (trained on MS COCO

dataset [29]) and one trained on the combination of natu-

ral images data and our synthetic images (trained to predict

occluded and visible regions). Another baseline is IBBE

[27] (an amodal segmentation method), which is fine-tuned

on our synthetic data. We also compare with Pix2Pix [22],

where it receives the same inputs as our model and gener-

ates the appearance for the full object. Using groundtruth

masks (SeGAN w/ GT SV) shows that our method will per-

form even better if it receives more accurate masks for the

visible regions as the input. Figure 4 shows qualitative seg-

mentation results of our method.

We now evaluate our network on appearance generation

(painting). Our first baseline is a nearest neighbor method.

We feed the image into ResNet-18 pretrained on ImageNet

and obtain features from the layer before the classification

layer. Similarly, we feed the mask image for the visible re-

gion into ResNet and obtain features for the mask as well.

We concatenate these features. For each test example, we

find the training image and mask that has the smallest dis-

tance (L2 distance on the concatenated features).

As another baseline, we use the Context-Encoder net-

work [37]. The main task of their network is to complete a

cropped patch of an image using the context around it, so

we crop a box around the object but leave the visible pix-

els unchanged. In other words, we remove all the pixels on

the image patch that can potentially belong to the invisible
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Model Training Data Input Mask Loss Mask Visible [ Invisible Visible Invisible

IBBE [27] natural and synthetic SV SF 31.0 25.2 5.1

Multipath [51] natural and synthetic SV SF 36.0 34.8 12.3

Multipath [51] natural SV SV 50.3 49.3 9.4

Pix2Pix [22] natural and synthetic SV SF 52.3 49.6 11.9

SeGAN (ours) w/ predicted SV natural and synthetic SV SF 66.4 60.1 19.1

SeGAN (ours) w/ GT SV synthetic SV SF 76.4 63.9 27.6
Table 1. Segmentation evaluation. We compare our method with [27], [51], and [22] on the synthetic test data. SV and SF refer to the

mask for visible regions of objects and the full object, respectively. We evaluate how well we predict ‘Visible’ regions, ‘Invisible’ regions

and their combination. The bottom row is not comparable with other rows since it uses groundtruth information.

Image SV,	GT SF,	GT SF,	Ours

Image SV,	Predicted SF,	GT SF,	Ours

Figure 4. Qualitative results of segmentation. We show the results using groundtruth for the visible region (SV, GT) in the first two rows,

and using the predicted mask in the last two rows. The groundtrouth for the full object (SF, GT), and our predicted mask for the full object

(SF, Ours) are also shown.

regions and calculate the loss on the full object.

As our last baseline, we train the Pix2Pix network [22]

on our dataset by feeding just the pixels for the visible part

of the image as an input and calculating the loss on the full

object (visible and invisible regions). The network is sup-

posed to learn to generate the appearance of the full object.

Table 2 shows the results for painting. Our model outper-

forms all of the baselines methods. Again, for factoring out

the performance of the SV prediction methods we repeat all

of the experiments with groundtruth SV masks. The quali-

tative results for this experiment can be seen in Figure 5.

Model Input L1 L2

Nearest Neighbor (NN) Image + SVp 0.20 0.12

Context-Encoder [37] Image 0.18 0.09

Pix2Pix [22] Image + SVp 0.15 0.09

SeGAN (ours) Image + SVp 0.11 0.06

SeGAN (ours) Image + SVgt 0.05 0.02
Table 2. Painting evaluation. We use L1 and L2 distances as the

evaluation metric so lower numbers are better. p and gt subscripts

refer to predicted masks (by [51]) and groundtruth, respectively.

We also performed a human study using Mechanical
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Input Image GT Pix2Pix SeGAN (Ours) Input Image GT Pix2Pix SeGAN (Ours)

Figure 5. Qualitative results of painting. We show the input image, the groundtruth object (without any occlusion) and the result of

Pix2Pix [22] network.

Turk. Table 3 shows how often the result of a particular

method is chosen as the best generated image.

Model NN Pix2Pix [22] SeGAN (ours)

Chosen as best 0.46% 29.74% 69.78%
Table 3. Human study results. We show how often the subjects

select the generated images of our method versus two baselines:

nearest neighbor (NN) and Pix2Pix [22].

Generalization to natural images. We now evaluate

whether our model generalizes to natural images when it

is trained on our synthetic data. A major issue is that there

is no dataset of natural images that provides large-scale and

accurate mask annotations and texturing for both occluded

and non-occluded regions of objects. [55, 27] construct

datasets for object occlusion, but occlusion patterns of [27]

are unnatural, and the dataset of [55] does not include the

appearance for the occluded regions. Therefore, we report

the results only for the segmentation task.

To evaluate the performance of our model on natural im-

ages, we construct a dataset using PASCAL 3D dataset [48].

PASCAL 3D associates a 3D CAD model to each object

instance in the dataset and it also provides annotations in

terms of azimuth, elevation and distance of the camera with

respect to the objects. Therefore, we can project the 3D

CAD model onto the image and obtain the segmentation

mask for full objects. Note that the projection does not have

any occlusion information so it generates the mask for the

full object (SF) as if it is not occluded by any object. On

the other hand, datasets such as [17] provide the segmenta-

Image SV	(MultiPath) Full	object

Figure 6. Qualitative results of generalization to natural im-

ages. We show the prediction for the visible region using Multi-

path (SV) and segmentation and painting results of our method.

tion mask for the visible region of the objects. Hence, we

can obtain the mask for the occluded regions by subtract-

ing these masks from the mask we obtain by projecting the

CAD models. We use five indoor categories of PASCAL

3D dataset (i.e. bottle, chair, diningtable, sofa, and tvmon-

itor) for our experiments. As before, we run Multipath on

these natural images to obtain the segmentation masks for
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Model Vis. [ Invis. Visible Invisible

Multipath [51] (natural) 46.8 58.9 13.9

Multipath [51] (natural+syn.) 46.3 54.0 8.4

Ours w/ predicted SV 47.3 58.1 18.7

Ours w/ GT SV 50.7 58.9 23.1
Table 4. Evaluation of generalization to natural images. The

input masks of our network are SV masks, and the groundtruth

mask for the loss function is SF.

the visible regions.

Table 4 shows the results of generalization to natural im-

ages. Although, our method only uses synthetic occlusion

information for training, it is still able to provide accurate

results on natural images. More importantly, our method

outperforms Multipath on segmentation of the invisible re-

gions (SI), while there is only a slight degradation in the

performance for the visible regions. Combining natural and

synthetic data makes the performance worse. It probably

makes the training more difficult. Example predictions of

our method on natural images are shown in Figure 6.

Depth layering. The final experiment for evaluating our

network is depth layering i.e. it infers the depth layers for

a pair of objects with respect to the camera. Depth layering

can be inferred from occlusion relationships since typically

the occluder is in front of the occludee and is closer to the

camera. The groundtruth data for this problem can be eas-

ily obtained from our dataset since we have access to the

occlusion relationships in the data.

For this task, we first predict the segmentation mask for

the full object (SF) using our network. Then amongst the

rest of the objects in this scene we find the ones, whose seg-

mentation mask for visible region (SV) intersects with the

predicted mask for the invisible region (SI). An object q

occludes object p if intersection over union of the segmen-

tation mask for the visible region (SV) of object q with the

segmentation mask of the invisible region (SI) of object p

is above a threshold. The threshold that we use is 5%.

As the baseline for this task, we use the method of [10],

which infers depth map from a single image. To obtain

the depth layering result for this method, for each image,

we project the groundtruth segmentation mask for the visi-

ble region (SV) onto the output of the depth estimation and

compute the average depth value for all the pixels that are

inside the mask. This will be the estimated depth for this

object. Then, for each pair of occluding objects we com-

pare their depth, and the one that has a lower depth will be

closer to the camera and, therefore, we consider it as the

occluder.

The evaluation metric is defined as the average ratio of

the number of correct predictions over the number of occlu-

sion pairs for each image.

We report the average over all images in the test dataset.

The number of occlusion pairs in our test set is 4M pairs.

Single Image Depth [10] Ours

60.18 84.04
Table 5. Depth layering results. We compare our depth layering

results with the results of [10], which estimates depth from single

RGB images. We modify [10] to use masks.
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Figure 7. Qualitative results of depth layering. We predict that

the object shown with the orange mask is closer to the camera than

the object shown with the green mask.

The result for this task is shown in Table 5. This task has

been evaluated on the synthetic data since we have accu-

rate depth and occlusion information. Figure 7 shows the

qualitative results of depth layering.

There are several reasons why our model is more accu-

rate. First, in many cases the occluder and occludee do not

differ enormously in depth, which makes it difficult for the

baseline to infer the occlusion relationship. Second, the pre-

dicted depth map is computed over the entire image. Hence,

many low-level details have been removed while our pre-

dicted mask is for a specific object and does not lose much

information around the occlusion boundaries. Third, our

network predicts the invisible regions of the object, but the

depth estimator does not have this capability.

6. Conclusion

In this paper, we address the problem of segmentation

and appearance generation for the invisible regions of ob-

jects. We introduced SeGAN, which is a Generative Ad-

versarial Network that generates the appearance and seg-

mentation mask for invisible and visible regions of objects.

Getting large-scale and accurate training data for this task is

challenging. Our solution is to use photo-realistic synthetic

data where we can obtain the exact boundaries of the invis-

ible regions. Our experimental evaluations show that our

model outperforms segmentation baselines, while it gener-

ates the appearance (as opposed to a binary mask). We also

showed that our method outperforms GAN-based baselines

for appearance generation and painting. We show gener-

alization to natural images when the method is trained on

synthetic scenes. Moreover, we evaluate our model for the

task of depth layering and show improvements over a single

image depth estimation baseline.
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[24] P. Krähenbühl and V. Koltun. Learning to propose objects.

In CVPR, 2015. 2

[25] C. Li and M. Wand. Precomputed real-time texture synthesis

with markovian generative adversarial networks. In ECCV,

2016. 2

[26] K. Li, B. Hariharan, and J. Malik. Iterative instance segmen-

tation. In CVPR, 2016. 2

[27] K. Li and J. Malik. Amodal instance segmentation. In ECCV,

2016. 2, 5, 6, 7

[28] G. Lin, C. Shen, , and I. van den Hengel, Anton Reid. Ef-

ficient piecewise training of deep structured models for se-

mantic segmentation. In CVPR, 2016. 2

[29] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollr, and C. L. Zitnick. Microsoft coco: Common

objects in context. In ECCV, 2014. 5

[30] Z. Liu, X. Li, P. Luo, C.-C. Loy, and X. Tang. Semantic im-

age segmentation via deep parsing network. In ICCV, 2015.

2

[31] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015. 2

[32] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale

video prediction beyond mean square error. In ICLR, 2016.

2

[33] M. Mirza and S. Osindero. Conditional generative adversar-

ial nets. ArXiv, 2014. 2, 3

[34] N. Newcombe, J. Huttenlocher, and A. Learmonth. Infants

coding of location in continuous space. Infant Behavior and

Development, 1999. 1

[35] H. Noh, S. Hong, and B. Han. Learning deconvolution net-

work for semantic segmentation. In ICCV, 2015. 2

[36] G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille.

Weakly-and semi-supervised learning of a dcnn for semantic

image segmentation. In ICCV, 2015. 2
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