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Abstract

We study the task of directly modelling a visually intel-

ligent agent. Computer vision typically focuses on solving

various subtasks related to visual intelligence. We depart

from this standard approach to computer vision; instead we

directly model a visually intelligent agent. Our model takes

visual information as input and directly predicts the actions

of the agent. Toward this end we introduce DECADE, a

dataset of ego-centric videos from a dog’s perspective as

well as her corresponding movements. Using this data we

model how the dog acts and how the dog plans her move-

ments. We show under a variety of metrics that given just

visual input we can successfully model this intelligent agent

in many situations. Moreover, the representation learned by

our model encodes distinct information compared to repre-

sentations trained on image classification, and our learned

representation can generalize to other domains. In particu-

lar, we show strong results on the task of walkable surface

estimation and scene classification by using this dog mod-

elling task as representation learning.

1. Introduction

Computer vision research typically focuses on a few well

defined tasks including image classification, object recogni-

tion, object detection, image segmentation, etc. These tasks

have organically emerged and evolved over time as proxies

for the actual problem of visual intelligence. Visual intel-

ligence spans a wide range of problems and is hard to for-

mally define or evaluate. As a result, the proxy tasks have

served the community as the main point of focus and indi-

cators of progress.

We value the undeniable impact of these proxy tasks in

computer vision research and advocate the continuation of

research on these fundamental problems. There is, how-

ever, a gap between the ideal outcome of these proxy tasks

and the expected functionality of visually intelligent sys-

tems. In this paper, we take a direct approach to the prob-
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Figure 1. We address three problems: (1) Acting like a dog: where

the goal is to predict the future movements of the dog given a se-

quence of previously seen images. (2) Planning like a dog: where

the goal is to find a sequence of actions that move the dog between

the locations of the given pair of images. (3) Learning from a

dog: where we use the learned representation for a third task (e.g.,

walkable surface estimation).

lem of visual intelligence. Inspired by recent work that

explores the role of action and interaction in visual under-

standing [56, 3, 31], we define the problem of visual in-

telligence as understanding visual data to the extent that

an agent can take actions and perform tasks in the visual

world. Under this definition, we propose to learn to act like

4051



a visually intelligent agent in the visual world.

Learning to act like visually intelligent agents, in gen-

eral, is an extremely challenging and a hard-to-define prob-

lem. Actions correspond to a wide range of movements with

complicated semantics. In this paper, we take a small step

towards the problem of learning to directly act like intelli-

gent agents by considering actions in their most basic and

semantic-free form: simple movements.

We choose to model a dog as the visual agent. Dogs

have a much simpler action space than, say, a human, mak-

ing the task more tractable. However, they clearly demon-

strate visual intelligence, recognizing food, obstacles, other

humans and animals, and reacting to those inputs. Yet their

goals and motivations are often unknown a priori. They

simply exist as sovereign entities in our world. Thus we are

modelling a black box where we only know the inputs and

outputs of the system.

In this paper, we study the problem of learning to act and

plan like a dog from visual input. We compile the Dataset

of Ego-Centric Actions in a Dog Environment (DECADE),

which includes ego-centric videos of a dog with her corre-

sponding movements. To record movements we mount In-

ertial Measurement Units (IMU) on the joints and the body

of the dog. We record the absolute position and can calcu-

late the relative angle of the dog’s main limbs and body.

Using DECADE, we explore three main problems in

this paper (Figure 1): (1) learning to act like a dog; (2)

learning to plan like a dog; and (3) using dogs movements

as supervisory signal for representation learning.

In learning to act like a dog, we study the problem of

predicting the dog’s future moves, in terms of all the joint

movements, by observing what the dog has observed up to

the current time. In learning to plan like a dog, we ad-

dress the problem of estimating a sequence of movements

that take the state of the dog’s world from what is observed

at a given time to a desired observed state. In using dogs

as supervision, we explore the potentials of using the dogs

movements for representation learning.

Our evaluations show interesting and promising results.

Our models can predict how the dog moves in various sce-

narios (act like a dog) and how she decides to move from

one state to another (plan like a dog). In addition, we show

that the representation our model learns on dog behavior

generalizes to other tasks. In particular, we see accuracy

improvements using our dog model as pretraining for walk-

able surface estimation and scene recognition.

2. Related Work

To the best of our knowledge there is little to no work

that directly models dog behavior. We mention past work

that is most relevant.

Visual prediction. [51, 30] predict the motion of objects in

a static image using a large collection of videos. [29] infer

the goals of people and their intended actions. [35] infer

future activities from a stream of video. [9] improve track-

ing by considering multiple hypotheses for future plans of

people. [11] recognize partial events, which enables early

detection of events. [14] perform activity forecasting by

integrating semantic scene understanding with optimal con-

trol theory. [16] use object affordances to predict the fu-

ture activities of people. [49] localize functional objects by

predicting people’s intent. [42] propose an unsupervised

approach to predict possible motions and appearance of ob-

jects in the future. [17] propose a hierarchical approach to

predict a set of actions that happen in the future. [33] pro-

pose a method to generate the future frames of a video. [15]

predict the future paths of pedestrians from a vehicle cam-

era. [36] predict future trajectories of a person in an ego-

centric setting. [22] predict the future trajectories of objects

according to Newtonian physics. [41] predict visual repre-

sentations for future images. [52] forecast future frames by

learning a policy to reproduce natural video sequences. Our

work is different from these works since our goal is to pre-

dict the behavior of a dog and the movement of the joints

from an ego-centric camera that captures the viewpoint of

the dog.

Sequence to sequence models. Sequence to sequence

learning [38] has been used for different applications in

computer vision such as representation learning [37], video

captioning [40, 50], human pose estimation [44], motion

prediction [20], or body pose labeling and forecasting

[8, 44]. Our model fits into this paradigm since we map

the frames in a video to joint movements of the dog.

Ego-centric vision. Our work is along the lines of ego-

centric vision (e.g., [7, 32, 18, 19]) since we study the

dog’s behavior from the perspective of the dog. However,

dogs have less complex actions compared to humans, which

makes the problem more manageable. Prior work explores

future prediction in the context of ego-centric vision. [55]

infer the temporal ordering of two snippets of ego-centric

videos and predict what will happen next. [26] predict plau-

sible future trajectories of ego-motion in ego-centric stereo

images. [13] estimates the 3D joint position of unseen body

joints using ego-centric videos. [34] use online reinforce-

ment learning to forecast the future goals of the person

wearing the camera. In contrast, our work focuses on pre-

dicting future joint movements given a stream of video.

Ego-motion estimation. Our planning approach shares

similarities with ego-motion learning. [54] propose an un-

supervised approach for camera motion estimation. [45]

propose a method based on combination of CNNs and

RNNs to perform ego-motion estimation for cars. [21] learn

a network to estimate relative pose of two cameras. [39]

also train a CNN to learn depth map and motion of the

camera in two consecutive images. In contrast to these ap-

proaches that estimate translation and rotation of the cam-
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era, we predict a sequence of joint movements. Note that

the joint movements are constrained by the structure of the

dog body so the predictions are constrained.

Action inference & Planning. Our dog planning model

infers the action sequence for the dog given a pair of images

showing before and after action execution. [3] also learn

the mapping between actions of a robot and changes in the

visual state for the task of pushing objects. [27] optimize

for actions that capture the state changes in an exploration

setting.

Inverse Reinforcement Learning. Several works (e.g.,

[1, 4, 34]) have used Inverse Reinforcement Learning (IRL)

to infer the agent’s reward function from the observed be-

havior. IRL is not directly applicable to our problem since

our action space is large and we do not have multiple train-

ing examples for each goal.

Self-supervision. Various research explores representation

learning by different self-supervisory signals such as ego-

motion [2, 12], spatial location [6], tracking in video [47],

colorization [53], physical robot interaction [31], inpainting

[28], sound [25], etc. As a side product, we show we learn a

useful representation using embeddings of joint movements

and visual signals.

3. Dataset

We introduce DECADE, a dataset of ego-centric dog

video and joint movements. The dataset includes 380 video

clips from a camera mounted on the dog’s head. It also in-

cludes corresponding information about body position and

movement. Overall we have 24500 frames. We use 21000

of them for training, 1500 for validation, and 2000 for test-

ing. Train, validation, and test splits consist of disjoint

video clips.

We use a GoPro camera on the dog’s head to capture the

ego-centric videos. We sub-sample frames at the rate of 5

fps. The camera applies video stabilization to the captured

stream. We use inertial measurement units (IMUs) to mea-

sure body position and movement. Four IMUs measure the

position of the dog’s limbs, one measures the tail, and one

measures the body position. The IMUs enable us to capture

the movements in terms of angular displacements.

For each frame, we have the absolute angular displace-

ment of the six IMUs. Each angular displacement is repre-

sented as a 4 dimensional quaternion vector. More details

about angular calculations in this domain and the method

for quantizing the data is explained in detail in Section 7.

The absolute angular displacements of the IMUs depend

on what direction the dog is facing. For that reason, we

compute the difference between angular displacements of

the joints, also in the quaternion space. The difference of

the angular displacements between two consecutive frames

(that is 0.2s in time) represents the action of the dog in that

timestep.

An Arduino on the dog’s back connects to the IMUs and

records the positional information. It also collects audio

data via a microphone mounted on the dog’s back. We syn-

chronize the GoPro with the IMU measurements using au-

dio information. This allows us to synchronize the video

stream with the IMU readings with microsecond precision.

We collect the data in various outdoor and indoor scenes:

living room, stairs, balcony, street, and dog park are exam-

ples of these scenes. The data is recorded in more than 50

different locations. We recorded the behavior of the dog

while involved in certain activities such as walking, follow-

ing, fetching, interaction with other dogs, and tracking ob-

jects. No annotations are provided for the video frames, we

use the raw data for our experiments.

4. Acting like a dog

We predict how the dog acts in the visual world in re-

sponse to various situations. Specifically, we model the

future actions of the dog given a sequence of previously

seen images. The input is a sequence of image frames

(I1, I2, . . . , It), and the output is the future actions (move-

ments) of each joint j at each timestep t < t0  N :

(ajt+1, a
j
t+2, . . . , a

j
t+N ). Timesteps are spaced evenly by

0.2s in time. The action a
j
t is the movement of the joint

j, that along with the movements of other joints, takes us

from image frame It to It+1. For instance, a23 represents

the movement of the second joint that takes place between

image frames I3 and I4. Each action is the change in the

orientation of the joints in the 3D space.

We formulate the problem as classification, i.e. we quan-

tize joint angular movements and label each joint movement

as a ground-truth action class. To obtain action classes,

we cluster changes in IMU readings (joint angular move-

ments) by K-means, and we use quaternion angular dis-

tances to represent angular distances between quaternions.

Each cluster centroid represents a possible movement of

that joint.

Our movement prediction model is based on an encoder-

decoder architecture, where the goal is to find a mapping

between input images and future actions. For instance, if

the dog sees her owner with a bag of treats, there is a high

probability that the dog will sit and wait for a treat, or if the

dog sees her owner throwing a ball, the dog will likely track

the ball and run toward it.

Figure 2 shows our model. The encoder part of the model

consists of a CNN and an LSTM. At each timestep, the

CNN receives a pair of consecutive images as input and

provides an embedding, which is used as the input to the

LSTM. That is, the LSTM cell receives the features from

frames t and t + 1 as the input in a timestep, and receives

frames t + 1 and t + 2 in the next timestep. Our experi-

mental results show that observing the two frames in each

timestep of LSTM improves the performance of the model.
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Figure 2. Model architecture for acting. The model is an encoder-decoder style neural network. The encoder receives a stream of image

pairs, and the decoder outputs future actions for each joint. There is a fully connected layer (FC) between the encoder and decoder parts to

better capture the change in the domain (change from images to actions). In the decoder, the output probability of actions at each timestep

is passed to the next timestep. We share the weights between the two ResNet towers.

The CNN consists of two towers of ResNet-18 [10], one for

each frame, whose weights are shared.

The decoder’s goal is to predict the future joint move-

ments of the dog given the embedding of the input frames.

The decoder receives its initial hidden state and cell from

the encoder. At each timestep, the decoder outputs the ac-

tion class for each of the joints. The input to the decoder

at the first timestep is all zeros, at all other timesteps, we

feed in the prediction of the last timestep, embedded by a

linear transformer. Since we train the model with fixed out-

put length, no stop token is required and we always stop

at a fixed number of steps. Note that there are a total of

six joints; hence our model outputs six classes of actions at

each timestep.

Each image is given to the ResNet tower individually and

the features for the two images are concatenated. The com-

bined features are embedded into a smaller space by a linear

transformation. The embedded features are fed into the en-

coder LSTM. We use a ResNet pre-trained on ImageNet [5]

and we fine-tune it under a Siamese setting to estimate the

joints movements between two consecutive frames. We use

the fine-tuned ResNet in our encoder-decoder model.

We use an average of weighted class entropy losses, one

for each joint, to train our encoder-decoder. Our loss func-

tion can be formulated as follows:

L(o, g) =
1

NK

NX

t=1

KX

i=1

1

f i
gi

log o(t)ig(t)i , (1)

where g(t)i is the ground-truth class for i-th joint at

timestep t, o(t)igi is the predicted probability score for gi-th

class of i-th joint at timestep t, f i
gi

is the number of data

points whose i-th joint is labeled with gi, K is the number

of joints, and N is the number of timesteps. The 1
fi
gi

fac-

tor helps the ground-truth labels that are underrepresented

in the training data.

5. Planning like a dog

Another goal is to model how dogs plan actions to ac-

complish a task. To achieve this, we design a task as fol-

lows: Given a pair of non-consecutive image frames, plan a

sequence of joint movements that the dog would take to get

from the first frame (starting state) to the second frame (end-

ing state). Note that a traditional motion estimator would

not work here. Motion estimators infer a translation and

rotation for the camera that can take us from an image to

another; in contrast, here we expect the model to plan for

the actuator, with its set of feasible actions, to traverse from

one state to another.

More formally, the task can be defined as follows. Given

a pair of images (I1, IN ), output an action sequence of

length N − 1 for each joint, that results in the movement

of the dog from the starting point, where I1 is observed, to

the end point, where IN is observed.

Each action that the dog takes changes the states of the

world, and therefore planning for the next steps. Thus,

we design a recurrent neural network, containing an LSTM

that observes the actions taken by the model in previous

timesteps for the next timestamp action prediction. Figure 3

shows the overview of our model. We feed-forward image

frames I1 and IN to individual ResNet-18 towers, concate-

nate the features from the last layer and feed it to the LSTM.

At each timestep, the LSTM cell outputs planned actions for

all six joints. We pass the planned actions for a timestep as

the input of the next timestep. This enables the network to

plan the next movements conditioned on the previous ac-

tions. As opposed to making hard decisions about the pre-
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Figure 3. Model architecture for planning. The model is a com-

bination of CNNs and an LSTM. The inputs to the model are two

images I1 and IN , which are N − 1 time steps apart in the video

sequence. The LSTM receives the features from the CNNs and

outputs a sequence of actions (joint movements) that move the dog

from I1 to IN .

viously taken actions, we pass the action probabilities as the

input to the LSTM in the next timestep. A low probability

action at the current timestep might result in a high proba-

bility trajectory further along in the sequence. Using action

probabilities prevents early pruning to keep all possibilities

for the future actions.

We train this recurrent neural network using a weighted

cross entropy loss over all time steps and joints as described

in Equation 1. Similar to the acting problem, we use a dis-

cretized action space, which is obtained using the procedure

described in Section 7.

6. Learning from a dog.

While learning to predict the movements of the dog’s

joints from the images that the dog observes we obtain an

image representation that encodes different types of infor-

mation. To learn a representation, we train a ResNet-18

model to estimate the current dog movements (the change in

the IMUs from time t−1 to t) by looking at the images that

the dog observes in time t−1 and t. We then test this repre-

sentation, and compare with a ResNet-18 model trained on

ImageNet, in a different task using separate data. For our

experiments we choose the task of walkable surface estima-

tion [23] and scene categorization using SUN397 dataset

[48]. Figure 4 depicts our model for estimating the walka-

ble surfaces from an image. To showcase the effects of our

representation, we replace the ResNet-18 part of the model

shown in blue with a ResNet trained on ImageNet and com-

pare it with a ResNet trained on DECADE.

7. Experiments

We evaluate our models on (1) how well they can predict

the future movements of the dog (acting), (2) how accu-

rately they can plan like a dog, and (3) how well the repre-

sentation learned from dog data generalizes to other tasks.

ResNet

DeConv

DeConv

DeConv

+

+

+

Conv

Figure 4. Model architecture for walkable surface estimation.

We augment the last four layers of ResNet with Deconvolution and

Convolution layers to infer walkable surfaces.

7.1. Implementation details

We use inertial measurement units (IMUs) to obtain the

angular displacements of the dog’s joints. The IMUs that

we use in this project process the angular displacements in-

ternally and provide the absolute orientation in quaternion

form at average rate of 20 readings per second. To synchro-

nize all IMUs together, we connect all the IMUs to the same

embedded system (Raspberry pi 3.0). We use a GoPro on

the dog’s head to capture ego-centric video, and we sub-

sample the images at a rate of 5 frames per second. To sync

the GoPro and Raspberry pi, we use audio that has been

recorded on both instruments.

The rate of the joint movement readings and video

frames are different. We perform interpolation and aver-

aging to compute the absolute angular orientation for each

frame. For each frame of the video, we compute the aver-

age of IMU readings, in quaternion space, corresponding to

a window of 0.1 second centered at the current frame.

To factor out the effects of global orientation change we

use the relative orientations rather than the absolute ones.

We compute the difference of absolute angular orientations

corresponding to consecutive frames after calculating the

average of quaternions for each frame. The reason for using

quaternions, instead of Euler angles, is that subtracting two

quaternions is more well-defined and is easily obtained by:

q2 − q1 = q−1
1 q2

We use K-means clustering to quantize the action space
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Model Test Accuracy

Nearest Neighbor 13.14
CNN - regression 12.73
Our Model – Single Tower 18.65
Our Model 20.69

Table 1. Inferring the action between two consecutive frames.

(space of relative joint movements). The distance function

that we use for K-means clustering is defined by:

dist(q1, q2) = 2arccos(hq1, q2i)

The reason for formulating the problem as classification

rather than regression is that our experimental evaluations

showed that CNNs obtain better results for classification (as

opposed to regression to continuous values). The same ob-

servation has been made by [43, 46, 24], where they also

formulate a continuous value estimation problem as classi-

fication.

We treat each joint separately during training. It is more

natural to consider all joints together for classification to re-

spect the kinematic constraints, however it should be noted

that: (1) It is hard to collect enough training data for all

possible joint combinations (3910 different joint configu-

rations appear in our training data); (2) By combining the

losses for all joints, the model encodes an implicit model

of kinematic possibilities; (3) Our experiments showed that

per-joint clustering is better than all-joint clustering.

To visualize the dog movements we use a 3D model of a

dog from [57]. Their model is a 3D articulated model that

can represent animals, such as dogs. For visualization, we

apply the movement estimates from the model to the dog

model.

Learning to Act. The input to the acting network, ex-

plained in Section 4, are pairs of frames of size 224 ⇥ 224
and the output is a sequence of movements predicted for fu-

ture actions of the dog. The input images are fed into two

ResNet-18 towers with shared weights. The outputs of the

ResNets (the layer before the classification layer), which are

of size 512, are concatenated into a vector of size 1024. The

image vector is then used as the input to the encoder LSTM.

The encoder LSTM has a hidden size of 512, and we set the

initial hidden and cell states to all zeros.

The hidden and cell state of the last LSTM cell of the

encoder are used as the initialization of the hidden and cell

state of the LSTM for the decoder part. There is a fully

connected layer before the input to the decoder LSTM to

capture the domain change between the encoder and the de-

coder (encoder is in the image domain, while the decoder in

the joint movement domain).

The output of each decoder LSTM cell is then fed into

6 fully connected layers, where each one estimates the ac-

tion class for each joint. We consider 8 classes of actions

for each joint. We visualized our training data for differ-

ent number of clusters and observed that 8 clusters provide

a reasonable separation of clusters, does not result in false

clusters, and clusters correspond to natural movements of

the limbs.

We pre-train the ResNets by fine-tuning them for the task

of estimating the joint actions, where we use a pair of con-

secutive frames as input and we have 6 different classifica-

tion layers corresponding to different joints.

Learning to Plan. For the planning network, the input is

obtained by concatenation of the ResNet-18 features for the

source and destination input images (a vector of size 2048).

A fully connected layer receives this vector as input and

converts it to a 512 dimensional vector, which is then used

as the first time step input for the LSTM. The LSTM output

is 48 dimensional (6 joints ⇥ 8 action class). The output is

followed by a 48⇥512 fully connected layer. The output of

the fully connected layer is used as the input of the LSTM

at the next timestep.

Learning from a dog. To obtain the representation, we

train a ResNet-18 model to estimate the dog movements

from time t − 1 to time t by looking at the images at time

t − 1 and t. We use a simple Siamese network with two

ResNet-18 towers whose weights are shared. We concate-

nate the features of both frames into a 1024-dimensional

vector and use a fully connected layer to predict the final

48 labels (6 IMUs each having 8 class of values). Table 1

shows our results on how well this network can predict the

current (not future) movements of the dog. The evaluation

metric is the class accuracy described below. We use this

base network to obtain our image representation. We also

use this network for initializing our acting and planning net-

works.

7.2. Evaluation metrics

We use different evaluation metrics to compare our

method with the baselines.

Class Accuracy: This is the standard metric for classifica-

tion tasks. We report the average per class accuracy rather

than the overall accuracy for two reasons: 1) The dataset

is not uniformly distributed among the clusters and we do

not want to favor larger clusters over smaller ones, and 2)

Unlike the overall unbalanced accuracy, the mean class ac-

curacy of a model that always predicts the mode class is not

higher than chance.

Perplexity: Perplexity measures the likelihood of the

ground-truth label. Perplexity is commonly used for se-

quence modeling. We report perplexity for all of the base-

lines and models that are probabilistic and predict a se-

quence. If our model assigns probability p to a sequence

of length n, the perplexity measure is calculated as p
1

n .
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Figure 5. Qualitative Results: Learning to Act. Our model sees 5 frames of a video where a man begins throwing a ball past the dog. In

the video the ball bounces past the dog and the dog turns to the right to chase the ball. Using just the first 5 frames our model correctly

predicts how the dog turns to the right as the ball flies past.

Model Test Accuracy Perplexity

Nearest Neighbor 12.64 N/A

CNN 19.84 0.2171
Our Model–1 tower 18.04 0.2023
Our Model–1 frame/timestep 19.28 0.242
Our Model 21.62 0.2514

Table 2. Acting Results. We observe a video sequence of 5 frames

and predict the next 5 actions.

7.3. Results

Learning to act like a dog. Table 2 summarizes our exper-

imental results for predicting the future movements of the

dog using the images the dog observes. We compare our

method with two baselines in terms of both test set accu-

racy and perplexity. The Nearest Neighbors baseline uses

the features obtained from a ResNet18 network trained on

ImageNet. The CNN baseline concatenates all the images

into an input tensor for a ResNet18 model that classifies the

future actions. We also report two ablations of our model.

The 1 tower ablation uses the model depicted in Figure 2

but only uses one ResNet-18 tower with both frames con-

Model Test Accuracy Perplexity

Nearest Neighbor 14.09 N/A

CNN 14.61 0.1419
Our Model 19.77 0.2362

Table 3. Planning Results. Planning between the start and end

frame. We consider start and end images that are 5 steps apart.

catenated (6 channels) as the input. We also compare our

model with an ablation that only uses one image at each

timestep instead of looking at two. Our results show that

our model outperforms the baselines. Our ablations also

show the importance of different components in our model.

Figure 5 shows an example where a man is throwing a ball

past the dog. Our model correctly predicts the future dog

movements (the bottom row) by only observing the images

the dog observed in the previous time steps (the first row).

The second row shows the set of images the dog actually

observed. These images were not shown to the algorithm

and are depicted here to better render the situation.

Learning to plan like a dog. Table 3 shows our experi-

mental results for the task of planning. The nearest neigh-
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Model Angular metric All joints

Random 131.70 4e-4

CNN-acting 63.42 8.67

Our model-acting 59.61 9.49

CNN-planning 76.18 0.14

Our model-planning 63.14 3.66

Table 4. Continuous evaluation and all-joint evaluation. Lower is

better in the first column. Higher is better in the second column.

bor baseline concatenates the image features obtained from

a ResNet-18 trained on ImageNet and searches for a plan of

the required size that corresponds to the closest feature. The

CNN baseline concatenates the input source and destination

images into an input tensor that feeds into a ResNet-18 that

predicts a plan for the required size. Our results show that

our model outperforms these baselines in the challenging

task of planning like a dog both in terms of accuracy and

perplexity.

To better understand the behavior of the model, for both

acting and planning, we show the performance in terms of

a continuous angular metric and also for all joints in Ta-

ble 4. The angular metric compares the mean of the pre-

dicted cluster with the actual continuous joint movements

in groundtruth (arccos(2(qpred.qgt)
2−1)), where qpred and

qgt are the predicted and groundtruth quaternion angles, re-

spectively. The all-joint metric calculates the percentage of

correct predictions, where we consider a prediction correct

if all joints are predicted (classified) correctly.

Learning from a dog. We test our hypothesis about the

information encoded in our representation learned from

mimicking dogs behaviour by comparing our representation

with a similar one trained for image classification on Ima-

geNet on a third task. We chose the task of walkable surface

estimation and scene classification.

1) Walkable surface estimation. The goal for this task

is to label pixels that correspond to walkable regions in an

image (e.g., floor, rug, and carpet regions). We use the

dataset provided by [23]. In our dataset, we have some

sequences of dog walking in indoor and outdoor scenes.

There are various types of obstacles (e.g., furniture, people,

or walls) in the scenes that the dog avoids. We conjecture

that the learned representation for our network should pro-

vide strong cues for estimating walkable surfaces.

The definition of walkable surfaces for humans and dogs

is not the same. As an example, the area under the tables are

labeled as non-walkable for humans and walkable for dogs.

However, since our dog is large-size dog, the definition of

walkability is roughly the same for humans and the dog.

We trained ResNet-18 on ImageNet and then finetuned

it on the walkable surface dataset as our baseline. We per-

formed the same procedure for using our features (trained

for the acting task). For finetuning both models, we just

update the weights for the last convolutional layer (green

Model Pre-training task IOU

ResNet-18 ImageNet Classification 42.88
ResNet-18 Acting like a dog 45.60

Table 5. Walkable surface estimation. We compare the result of

the network that is trained on ImageNet with the network that is

trained for our acting task. The evaluation metric is IOU.

block in Figure 4).

Table 5 shows the results. Our features provide a sig-

nificant improvement, 3%, over the ImageNet features. We

use IOU as the evaluation metric. This indicates that our

features have some information orthogonal to the ImageNet

features.

2) Scene classification. We perform an additional scene

recognition experiment using SUN 397 dataset [48]. We

used the same 5-instance training protocol used by [2]. The

representation learned by us obtains the accuracy of 4.48

(as a point of reference [12] achieves 1.58 and [2] achieves

0.5-6.4 from their representations, and the chance is 0.251).

This is interesting since our dataset does not include many

of the scene types (gas station, store, etc).

8. Conclusion

We study the task of directly modeling a visually intel-

ligent agent. Our model learns from ego-centric video and

movement information to act and plan like a dog would in

the same situation. We see some success both in our quan-

titative and qualitative results. Our experiments show that

our models can make predictions about future movements

of a dog and can plan movements similar to the dog.

This is a first step towards end-to-end modelling of in-

telligent agents. This approach does not need manually la-

beled data or detailed semantic information about the task

or goals of the agent. We can use this model on a wide va-

riety of agents and scenarios and learn useful information

despite the lack of semantic labels.

For this work, we limit ourselves to only considering vi-

sual data. However, intelligent agents use a variety of input

modalities when interacting with the world including sound,

touch, smell, etc. We are interested in expanding our models

to encompass more input modalities in a combined, end-to-

end model. We also limit our work to modelling a single,

specific dog. It would be interesting to collect data from

multiple dogs and evaluate generalization across dogs. We

hope this work paves the way towards better understanding

of visual intelligence and of the other intelligent beings that

inhabit our world.
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