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Abstract

Several works have proposed to learn a two-path neural

network that maps images and texts, respectively, to a same

shared Euclidean space where geometry captures useful se-

mantic relationships. Such a multi-modal embedding can be

trained and used for various tasks, notably image caption-

ing. In the present work, we introduce a new architecture

of this type, with a visual path that leverages recent space-

aware pooling mechanisms. Combined with a textual path

which is jointly trained from scratch, our semantic-visual

embedding offers a versatile model. Once trained under the

supervision of captioned images, it yields new state-of-the-

art performance on cross-modal retrieval. It also allows the

localization of new concepts from the embedding space into

any input image, delivering state-of-the-art result on the vi-

sual grounding of phrases.

1. Introduction

Text and image understanding is progressing fast thanks

to the ability of artificial neural nets to learn, with or with-

out supervision, powerful distributed representations of in-

put data. At runtime, such nets embed data into high-

dimensional feature spaces where semantic relationships

are geometrically captured and can be exploited to accom-

plish various tasks. Off-the-shelf already trained nets are

now routinely used to extract versatile deep features from

images which can be used for recognition or editing tasks,

or to turn words and sentences into vectorial representations

that can be mathematically analysed and manipulated.

Recent works have demonstrated how such deep repre-

sentations of images and texts can be jointly leveraged to

build visual-semantic embeddings [11, 17, 20, 33]. The

ability to map natural images and texts in a shared repre-

sentation space where geometry (distances and directions)

might be interpreted is a powerful unifying paradigm. Not

Figure 1. Concept localization with proposed semantic-visual

embedding. Not only does our deep embedding allows cross-

modal retrieval with state-of-the-art performance, but it can also

associate to an image, e.g., the hamburger plate on the left, a lo-

calization heatmap for any text query, as shown with overlays for

three text examples. The circled blue dot indicates the highest peak

in the heatmap.

only does it permit to revisit visual recognition and caption-

ing tasks, but it also opens up new usages, such as cross-

modal content search or generation.

One popular approach to semantic-visual joint embed-

ding is to connect two mono-modal paths with one or mul-

tiple fully connected layers [20, 17, 39, 10, 2]: A visual path

based on a pre-trained convolutional neural network (CNN)

and a text path based on a pre-trained recurrent neural net-

work (RNN) operating on a given word embedding. Using

aligned text-image data, such as images with multiple cap-

tions from MS-COCO dataset [26], final mapping layers can

be trained, along with the optional fine-tuning of the two

branches. Building on this line of research, we investigate

new pooling mechanisms in the visual path. Inspired by re-

cent work on weakly supervised object localization [45, 7],

we propose in particular to leverage selective spatial pool-

ing with negative evidence proposed in [7] to improve vi-

sual feature extraction without resorting, e.g., to expensive

region proposal strategies. Another important benefit of the

proposed joint architecture is that, once trained, it allows

localization of arbitrary concepts within arbitrary images:

Given an image and the embedding of a text (or any point

of the embedding space), we propose a mechanism to com-

pute a localization map, as demonstrated in Fig. 1.
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The proposed modification to current approaches, along

with additional design and training specifics, leads to a new

system whose performance is assessed on two very different

tasks. We first establish new state-of-the-art performance on

cross-modal matching, effectively composed of two sym-

metric sub-tasks: Retrieving captions from query images

and vice-versa. Without additional fine-tuning, our model

with its built-in concept localization mechanism also out-

performs existing work on the “pointing game” sentence-

grounding task. With its state-of-the-art performance and

its mechanism to localize even unseen concepts, our system

opens up new opportunities for multi-modal content search.

The rest of the paper is organized as follows. We dis-

cuss in Section 2 the related works, on semantic-visual em-

bedding and on weak supervised localization, and position

our work. Section 3 is dedicated to the presentation of our

own system, which couples selective spatial pooling with

recent architectures and which relies on a triplet ranking

loss based on hard negatives. We also show how it can

be equipped with a concept localization module by exploit-

ing without pooling the last feature maps in the visual path.

More details on the system and its training are reported in

Section 4, along with various experiments. On the com-

petitive cross-modal retrieval task, our system is shown to

outperform current state-of-the-art by a good margin. On

the recently proposed task of pointing game, its localization

mechanism offers new state-of-the-art performance with no

need for retraining. In Section 5, we finally summarize the

achievements of our work and outline perspectives.

2. Related Work and Paper Positioning

Deep learning offers powerful ways to embed raw data

into high dimensional continuous representations that cap-

ture semantics. Off-the-shelf pretrained nets are now rou-

tinely used to extract versatile deep features from im-

ages [23, 36, 13] as well as from words and sentences

[29, 32, 4, 25]. There are many strategies either to fine-

tune these deep embeddings or to adapt them through new

learned projections. In the following, we review learning

methods to handle such mono/cross-modal representations,

and we also highlight approaches dealing with spatial local-

ization in this context.

Metric learning for semantic embedding One way to

learn advanced visual representations is to consider the re-

quired transformation of the raw data as a metric learning

problem. Several methods have been proposed to learn

such metrics. In pairwise approaches, [43] minimizes the

distance within pairs of similar training examples with a

constraint on the distance between dissimilar ones. This

learning process has been extended to kernel functions as in

[28]. Other methods consider triplets or quadruplets of im-

ages, which are easy to generate from classification train-

ing datasets, to express richer relative constraints among

groups of similar and dissimilar examples [40, 12, 3]. This

kind of learning strategies has been also considered for deep

(Siamese) architecture embeddings in the pairwise frame-

work [37], and recently extended to triplets [15].

To embed words in a continuous space as vector rep-

resentations, Mikolov et al.’s “word2vec” is definitively

the leading technique [29]. In recent years, several ap-

proaches have been developed for learning operators that

map sequences of word vectors to sentence vectors includ-

ing recurrent networks [14, 4, 25] and convolutional net-

works [18]. Using word vector learning as inspiration, [21]

proposes an objective function that abstracts the skip-gram

word model to the sentence level, by encoding a sentence to

predict the sentences around it.

In our work, we adopt most recent and effective deep

architectures on both sides, using a deep convolutional

network (ResNet) for images [13] and a simple recurrent

unit (SRU) network [25] to encode the textual information.

Our learning scheme is based on fine-tuning (on the visual

side) and triplet-based optimization, in the context of cross-

modal alignment that we describe now.

Learning cross-modal embedding The Canonical Corre-

lation Analysis (CCA) method is certainly one of the first

techniques to align two views of heterogeneous data in a

common space [16]. Linear projections defined on both

sides are optimized in order to maximize the cross correla-

tion. Recently, non-linear extensions using kernel (KCCA

[24]) or deep net (DCCA [1]) have been proposed. [38]

exploit DCCA strategies for image-text embeddings, while

[44] points out some limitations of this approach in terms of

optimization complexity and overfitting and proposes ways

to partially correct them. [9] proposes some CCA-based

constraint regularization to jointly train two deep nets pass-

ing from one view to the other (text/image).

When considering the specific problem of embedding

jointly images and labels (classification context), [41, 11]

train models that combine a linear mapping of image fea-

tures into the joint embedding space with an embedding

vector for each possible class label. Approaches for the

more advanced task of textual image description (caption-

ing) often rely on an encoder/decoder architecture where

the encoder consists of a joint embedding [20, 17]. Other

works focus on the sole building of such a joint embedding,

to perform image-text matching and cross-modal retrieval

[11, 10, 27, 34].

Our work stems from this latter class. We aim at gen-

erating a joint embedding space that offers rich descriptors

for both images and texts. We adopt the contrastive triplet

loss that follows the margin-based principle to separate the

positive pairs from the negative ones with at least a fixed

margin. The training strategy with stochastic gradient de-

scent has to be carefully adapted to the cross-modality of the
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triplets. Following [10], we resort to batch-based hard min-

ing, but we depart from this work, and from other related

approaches, in the way we handle localization information.

Cross-modal embedding and localization Existing

works that combine localization and multimodal embedding

rely on a two-step process. First, regions are extracted ei-

ther by a dedicated model, e.g., EdgeBox in [39], or by a

module in the architecture. Then the embedding space is

used to measure the similarity between these regions and

textual data. [31, 17] use this approach on the dense cap-

tioning task to produce region annotations. It is also used

for phrase localization by [39] where the region with the

highest similarity with the phrase is picked.

To address this specific problem of phrase grounding,

Xiao et al. [42] recently proposed to learn jointly a simi-

larity score and an attention mask. The model is trained

using a structural loss, leveraging the syntactic structure of

the textual data to enforce corresponding structure in the at-

tention mask.

In contrast to these works, our approach to spatial local-

ization in semantic-visual embedding is weakly supervised

and does not rely on a region extraction model. Instead, we

take inspiration from other works on weakly supervised vi-

sual localization to design our architecture, with no need for

a location-dependent loss.

Weakly supervised localization The task of generating

image descriptors that include localization information has

also been explored. A number of weakly supervised ob-

ject localization approaches extrapolate localization fea-

tures while training an image classifier, e.g., [45, 7, 5]. The

main strategy consists in using a fully convolutional deep

architecture that postpones the spatial aggregation (pooling)

at the very last layer of the net. It can be used both for clas-

sification and for object detection.

We follow the same strategy, but in the context of multi-

modal embedding learning, hence with a different goal. In

particular, richer semantics is sought (and used for training)

in the form of visual description, whether at the scene or at

the object level.

3. Approach

The overall structure of the proposed approach, shown in

Fig. 2, follows the dual-path encoding architecture of Kiros

et al. [20]. We first explain its specifics before turning to its

training with a cross-modal triplet ranking loss.

3.1. Semantic­visual embedding architecture

Visual path In order to accommodate variable size images

and to benefit from the performance of very deep architec-

tures, we rely on fully convolutional residual ResNet-152

[13] as our base visual network. Its penultimate layer out-

puts a stack of D = 2048 feature maps of size (w, h) =

Figure 2. Two-path multi-modal embedding architecture. Im-

ages of arbitrary size and text of arbitrary length pass through ded-

icated neural networks to be mapped into a shared representation

vector space. The visual path (blue) is composed of a fully con-

volutional neural network (ResNet in experiments), followed by a

convolutional adaptation layer, a pooling layer that aggregates pre-

vious feature maps into a vector and a final projection to the final

output space; The textual path (orange) is composed of a recurrent

net running on sequences of text tokens individually embedded

with an off-the-shelf map (word2vec in experiments).

(W32 ,
H
32 ), where (W,H) is the spatial size of the input im-

age. These feature maps retain coarse spatial information

that lends itself to spatial reasoning in subsequent layers.

Following the weakly supervised learning framework pro-

posed by Durand et al. [7, 6], we first transform this stack

through a linear adaptation layer of 1 × 1 convolutions.

While in WELDON [7] and in WILDCAT [6] the resulting

maps are class-related (one map per class in the former, a

fixed number of maps per class in the latter), we do not ad-

dress classification or class detection here.

Hence we empirically set the number D′ of these new

maps to a large value, 2400 in our experiments. A pool-

ing à la WELDON is then used, but again in the absence of

classes, to turn these maps into vector representations of di-

mension D′. A linear projection with bias, followed by ℓ2
normalization accomplishes the last step to the embedding

space of dimension d.

More formally, the visual embedding path is defined as

follows:

I
fθ07−−→ F

gθ17−−→ G
sPool
7−−−→ h ∈ R

D′ pθ27−−→ x ∈ R
d, (1)

where: I ∈ (0, 255)W×H×3 is the input color image,

fθ0
(I) ∈ R

w×h×D
+ is the output of ResNet’s conv5 pare-

matrized by weights in θ0, gθ1
is a convolution layer with

|θ1| = D × D′ weights and with activation in R
w×h×D′

,

sPool is the selective spatial pooling with negative evidence

defined in [7]:

h[k] = maxG[:, :, k] + minG[:, :, k], k = 1 · · ·D′, (2)

and pθ2
is an ℓ2-normalized affine function

pθ2
(h) =

Ah+ b

‖Ah+ b‖2
, (3)

where θ2 = (A,b) is of size (D′ +1)× d. We shall denote

x = F (I;θ0:2) for short this visual embedding.
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Figure 3. Details of the proposed semantic-visual embedding architecture. An image of size 3 × W × H is transformed into a unit

norm representation x ∈ R
d; likewise, a sequence of T tokenized words is mapped to a normalized representation v ∈ R

d. Training will

aim to learn parameters (θ0,θ1,θ2,φ) such that cross-modal semantic proximity translates into high cosine similarity 〈x,v〉 in the joint

embedded space. Boxes with white background correspond to trainable modules, with parameters indicated on top. In our experiments,

the dimensions are K = 620, D = 2048 and D′ = d = 2400.

Textual path The inputs to this path are tokenized sen-

tences (captions), i.e., variable length sequences of tokens

S = (s1 · · · sT ). Each token st is turned into a vector repre-

sentation st ∈ R
K by the pre-trained word2vec embedding

[29] of size K = 620 used in [21]. Several RNNs have been

proposed in the literature to turn such variable length se-

quences of (vectorized) words into meaningful, fixed-sized

representations. In the specific context of semantic-visual

embedding, [20, 10] use for instance gated recurrent unit

(GRU) [4] networks as text encoders. Based on experi-

mental comparisons, we chose to encode sentences with the

simple recurrent unit (SRU) architecture recently proposed

in [25]. Since we train this network from scratch, we take

its output, up to ℓ2 normalization, as the final embedding of

the input sentence. There is no need here for an additional

trainable projection layer.

Formally, the textual path reads:

S
w2v
7−−→ S

normSRUφ

7−−−−−−−→ v ∈ R
d, (4)

where S = w2v(S) = R
K×T is an input sequence of text

tokens vectorized with word2vec and v is the final sentence

embedding in the joint semantic-visual space, obtained after

ℓ2-normalizing the output of SRU with parameters φ.

3.2. Training

The full architecture is summarized in Fig. 3. The aim

of training it is to learn the parameters θ0:2 of the visual

path, as well as all parameters φ of the SRU text encoder.

The goal is to create a joint embedding space for images

and sentences such that closeness in this space can be in-

terpreted as semantic similarity. This requires cross-modal

supervision such that image-to-text semantic similarities are

indeed enforced.1

1Note that mono-modal supervision can also be useful and relatively

easier to get in the form, e.g., of categorized images or of categorized sen-

Contrastive triplet ranking loss Following [20], we re-

sort to a contrastive triplet ranking loss. Given a training set

T =
{

(In, Sn)
}N

n=1
of aligned image-sentence pairs – the

sentence describes (part of) the visual scene – the empirical

loss to be minimized takes the form:

L(Θ;T) =
1

N

N
∑

n=1

(

∑

m∈Cn

loss(xn,vn,vm)

+
∑

m∈Dn

loss(vn,xn,xm)
)

, (5)

where Θ = (θ0,θ1,θ2,φ) are the parameters to learn,

xn = F (In;θ0:2) is the embedding of image n, vn =
normSRUφ(w2v(Sn)) is the embedding of sentence n,

{Sm}m∈Cn
is a set of sentences unrelated to n-th im-

age, {Im}m∈Dn
is a set of images unrelated to n-th sen-

tence. The two latter sets are composed of negative (“con-

strastive”) examples. The triplet loss is defined as:

loss(y, z, z′) = max
{

0, α− 〈y, z〉+ 〈y, z′〉
}

, (6)

with α > 0 a margin. It derives from triplet ranking losses

used to learn metrics and to train retrieval/ranking systems.

The first argument is a “query”, while the second and third

ones stand respectively for a relevant (positive) answer and

an irrelevant (negative) one. The loss is used here in a sim-

ilar way, but with a multimodal triplet. In the first sum of

Eq. 5, this loss encourages the similarity, in the embedding

space, of an image with a related sentence to be larger by a

margin to its similarity with irrelevant sentences. The sec-

ond sum is analogous, but centered on sentences.

tences. Both are indeed used implicitly when relying on pre-trained CNNs

and pre-trained text encoders. It is our case as well as far as the visual path

is concerned. However, since our text encoder is trained from scratch, the

only pure text (self-)supervision we implicitly use lies in the pre-training

of word2vec.
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Mining hard negatives In [20, 17], contrastive examples

are sampled at random among all images (resp. sentences)

in the mini-batch that are unrelated to the query sentence

(resp. image). Faghri et al. [10] propose instead to focus

only on the hardest negatives. We follow the same strategy:

For each positive pair in the batch, a single contrastive ex-

ample is selected in this batch as the one that has the highest

similarity with the query image/sentence while not being as-

sociated with it. This amounts to considering the following

loss for the current batch B =
{

(In, Sn)
}

n∈B
:

L(Θ;B) =
1

|B|

∑

n∈B

(

max
m∈Cn∩B

loss(xn,vn,vm)

+ max
m∈Dn∩B

loss(vn,xn,xm)
)

. (7)

Beyond its practical interest, this mining strategy limits the

amount of gradient averaging, making the training more dis-

cerning.

3.3. Localization from embedding

As described in Section 2, several works on weak super-

vised localization [45, 7] combine fully convolutional ar-

chitectures with specific pooling mechanisms such that the

unknown object positions in the training images can be hy-

pothesized. This localization ability derives from the ac-

tivation maps of the last convolutional layer. Suitable lin-

ear combinations of these maps can indeed provide one

heatmap per class.

Based on the pooling architecture of [7] which is in-

cluded in our system and without relying on additional

training procedures, we derive the localization mechanism

for our semantic-visual embedding. Let’s remind that in our

case, the number of feature maps is arbitrary since we are

not training on a classification task but on a cross-modal

matching one. Yet, one can imagine several ways to lever-

age these maps to try and map an arbitrary vector of the joint

embedding space into an arbitrary input image. When this

vector is the actual embedding of a word or sentence, this

spatial mapping should allow localizing the associated con-

cept(s) in the image, if present. Ideally, a well-trained joint

embedding should allow such localization even for concepts

that are absent from the training captions.

To this end, we propose the following localization pro-

cess (Fig. 4). Let I be an image and G its associated D′

feature maps (Eq. 1). This stack is turned into a stack

G′ ∈ R
w×h×d of d heatmaps using the linear part of the

projection layer pθ2
:2

G′[i, j, :] = AG[i, j, :], ∀(i, j) ∈ J1, wK × J1, hK, (8)

which is a 1× 1 convolution. Given v ∈ R
d the embedding

of a word or sentence (or any unit vector in the embedded

2In other words, the pooling is removed. Bias and normalization being

of no incidence on the location of the peaks, they are ignored.

Figure 4. From text embedding to visual localization. Given

the feature maps G associated to an image by our semantic-visual

architecture and the embedding of a sentence, a heatmap can be

constructed: Learned projection matrix A serves as a 1 × 1 con-

volution; Among the d maps thus generated, the k ones associated

with the largest among the d entries of v are linearly combined. If

the sentence relates to a part of the visual scene, like “two glasses”

in this example, the constructed heatmap should highlight the cor-

responding location. Blue dot indicates the heat maximum.

space) and K(v) the set of the indices of its k largest en-

tries, the 2D heatmap H ∈ R
w×h associated with the em-

bedded text v in image I is defined as:

H =
∑

u∈K(v)

∣

∣v[u]
∣

∣×G′[:, :, u]. (9)

In the next section, such heatmaps will be shown in false

colors, overlaid on the input image after suitable resizing, as

illustrated in Figs. 1 and 4. Note that [35] also proposes to

build semantic heatmaps as weighted combinations of fea-

ture maps, but with weights obtained by back-propagating

the loss in their task-specific network (classification or cap-

tionning net). Such heatmaps help visualize which image

regions explain the decision of the network for this task.

4. Experiments

Starting from images annotated with text, we aim at pro-

ducing rich descriptors for both image and text that live in

the same embedding space. Our model is trained on the

MS-COCO dataset, and benchmarked on two tasks. To eval-

uate the overall quality of the model we use cross-modal re-

trieval, and to assess its localization ability we tackle visual

grounding of phrases.

4.1. Training

Datasets To train our model, we used the

MS-COCO dataset [26]3. This dataset contains 123,287

images (train+val), each of them annotated with 5 captions.

It is originally split into a training set of 82,783 images

and a validation set of 40,504 images. The authors of [17]

proposed another split (called rVal in the rest of the paper)

keeping from the original validation set 5,000 images for

3http://cocodataset.org
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visual caption retrieval image retrieval

model backend R@1 R@5 R@10 Med. r R@1 R@5 R@10 Med. r

Embedding network [39] VGG 50.4 79.3 89.4 - 39.8 75.3 86.6 -

2-Way Net [8] VGG 55.8 75.2 - - 39.7 63.3 - -

LayerNorm [2] VGG 48.5 80.6 89.8 5.1 38.9 74.3 86.3 7.6

VSE++ [10] R152 64.6 - 95.7 1 52.0 - 92.0 1

Ours R152 69.8 91.9 96.6 1 55.9 86.9 94.0 1

Table 1. Cross-modal retrieval results on MS-COCO. On both caption retrieval from images and image retrieval from captions, the

proposed architecture outperforms the state-of-the-art systems. It yields an R@1 relative gain of 38% (resp. 40%) with respect to best

published results [39] on cross-modal caption retrieval (resp. image retrieval), and 8% (resp 7.5%) with respect to best online results [10].

validation and 5,000 for testing and using the remaining

30,504 as additional training data. To make our results

comparable, we trained a model using each split. For eval-

uation, we also use the MS-COCO dataset, complemented

with the annotations from Visual Genome dataset [22]4

to get localization ground-truth when needed.

Image pipeline The image pipeline is pre-trained on its

own in two stages. We start from original ResNet-152 [13]

pre-trained on ImageNet classification task. Then, to ini-

tialize the convolutional adaptation layer gθ1
, we consider

temporarily that the post-pooling projection is of size 1000
such that we can train both on ImageNet as well. Once this

pre-training is complete, the actual projection layer pθ2
onto

the joint space is put in place with random initialization, and

combined with a 0.5-probability dropout layer. As done in

[10], random rectangular crops are taken from training im-

ages and resized to a fixed-size square (of size 256× 256).

Text pipeline To represent individual word tokens as vec-

tors, we used pre-trained word2vec with no further fine-

tuning. The SRU text encoder [25] is trained from scratch

jointly with the image pipeline. It has four stacked hidden

layers of dimension 2400. Following [25], 0.25-probability

dropout is applied on the linear transformation from input

to hidden state and between the layers.

Full model training Both pipelines are trained together

with pairs of images and captions, using Adam optimizer

[19]. Not every part of the model is updated from the be-

ginning. For the first 8 epochs only the SRU (parameters

φ) and the last linear layer of the image pipeline (θ2) are

updated. After that, the rest of the image pipeline (θ0:1) is

also fine-tuned. The training starts with a learning rate of

0.001 which is then divided by two at every epoch until the

seventh and kept fixed after that. Regarding mini-batches,

we found in contrast to [10] that their size has an important

impact on the performance of our system. After parameter

searching, we set this size to 160. Smaller batches result in

weaker performance while too large ones prevent the model

from converging.

4http://visualgenome.org/

4.2. Comparison to state­of­the­art

MS-COCO retrieval task Our model is quantitatively

evaluated on a cross-modal retrieval task. Given a query

image (resp. a caption), the aim is to retrieve the corre-

sponding captions (resp. image). Since MS-COCO contains

5 captions per image, recall at r (“R@r”) for caption re-

trieval is computed based on whether at least one of the cor-

rect captions is among the first r retrieved ones. The task is

performed 5 times on 1000-image subsets of the test set and

the results are averaged.

All the results are reported on Tab. 1. We compare our

model with recent leading methods. As far as we know,

the best published results on this task are obtained by the

Embedding Network [39]. For caption retrieval, we sur-

pass it by (19.4%,12.6%,7.2%) on (R@1,R@5,R@10) in

absolute, and by (16.1%,11.6%,7.4%) for image retrieval.

Three other methods are also available online, 2-Way Net

[8], LayerNorm [2] and VSE++ [10]. The first two are

on the par with Embedding Network while VSE++ reports

much stronger performance. We consistently outperform

the latter, especially in terms of R@1. The most signifi-

cant improvement comes from the use of hard negatives in

the loss, without them recall scores are significantly lower

(R@1 - caption retrieval: -20,3%, image retrieval: -16.3%).

Note that in [10], the test images are scaled such that the

smaller dimension is 256 and centrally cropped to 224 ×
224. Our best results are obtained with a different strategy:

Images are resized to 400×400 irrespective of their size and

aspect ratio, which our fully convolutional visual pipeline

allows. When using the scale-and-crop protocol instead, the

recalls of our system are reduced by approximately 1.4% in

average on the two tasks, remaining above VSE++ but less

so. For completeness we tried our strategy with VSE++, but

it proved counterproductive in this case.

Visual grounding of phrases We evaluate quantitatively

our localization module with the pointing game defined

by [42]. This task relies on images that are present

both in MS-COCO val 2014 dataset and in Visual

Genome dataset. The data contains 17,471 images with

86,5582 text region annotations (a bounding box associated

3989
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caption retrieval image retrieval

model R@1 R@5 R@10 Med. r R@1 R@5 R@10 Med. r

Emb. network [39] 40.7 69.7 79.2 - 29.2 59.6 71.7 -

2-Way Net [8] 49.8 67.5 - - 36.0 55.6 - -

VSE++ [10] 52.9 - 87.2 1 39.6 - 79.5 2

DAN [30] 55.0 81.8 89.0 1 39.4 69.2 79.1 2

Ours (MS-COCO only) 46.5 72.0 82.2 2 34.9 62.4 73.5 3

Table 2. Direct transfer to Flickr-30K, with comparison to SoA. Although cross-validated and trained on MS-COCO only, our system

delivers good cross-modal retrieval performance on Flickr-30K, compared to recent approaches trained on Flickr-30K: It is under

the two best performing approaches, but above the two others on most performance measures.

Model Accuracy

“center” baseline 19.5

Linguistic structure [42] 24.4

Ours (train 2017) 33.5

Ours (rVal) 33.8

Table 3. Pointing game results. Our architecture outperforms the

state-of-the-art system [42] by more than 9% in accuracy, when

trained with either train or rVal split from MS-COCO.

with a caption). The task consists in “pointing” the region

annotation in the associated image. If the returned loca-

tion lies inside the ground-truth bounding box, it is consid-

ered as a correct detection, a negative one otherwise. Since

our system produces a localization map, the location of its

maximum is used as output for the evaluation. For this

evaluation, the number of feature maps from G′ that are

used to produce the localization map was set through cross-

validation to k = 180 (out of 2400). We keep this parameter

fixed for all presented visualizations.

The quantitative results are reported in Tab. 3 and some

visual examples are shown in Fig. 5. We add to the compar-

ison a baseline that always outputs the center of the image

as localization, leading to a surprisingly high accuracy of

19.5%. Our model, with an accuracy of 33.8%, offers ab-

solute (resp. relative) gains of 9.4% (resp. 38%) over [42]

and of 14% (resp. 73%) over the trivial baseline.

MS-COCO localization and segmentation Following

the evaluation scheme for [42], we obtain similar seman-

tic segmentation performance (namely mAP scores of 0.34,

0.24 and 0.15 for IoU@0.3, IoU@0.4 and IoU@0.5 resp.),

while our localization module does not benefit from a train-

ing to structure the heatmaps. We also performed point-

wise object localization on MS-COCO using the bounding

box annotation, obtaining 57.4 mAP, an improvement of 4%

compared to [6].

4.3. Further analysis

Transfer to Flickr30K We propose to investigate how our

model trained on MS-COCO may be transferred as such to

Figure 5. Pointing game examples. Images from the Visual

Genome dataset overlaid with the heatmap localizing the input

text according to our system. The white box is the ground-truth

localization of the text and the blue dot marks the location pre-

dicted by our model for this text. The first four predictions are

correct, unlike the last two ones. In the last ones, the heatmap is

nonetheless active inside the ground-truth box.

other datasets, namely Flickr-30K here. We report the

results in Tab. 2. Not surprisingly, our performance is below

the best systems [30, 10] trained on Flickr-30K. Yet,

while not being trained at all on Flickr-30K, it outper-

forms on almost all measures two other recent approaches

trained on Flickr-30K [8, 39]. Note that fine-tuning our

system on Flickr-30K makes it outperform all, includ-

ing [30, 10], by a large margin (not reported in Table for the

sake of fairness).5

Towards zero-shot localization The good performance

we obtain in the pointing game highlights the ability of our

system to localize visual concepts based on their embedding

in the learned joint space. We illustrate further this strength

of the system with additional examples, like the one already

5We chose to keep the architecture used on MS-COCO as it is

and to experiment with transfer and fine-tuning. An actual evaluation

on Flickr-30K would require cross-validation of the various hyper-

parameters. This dataset being substantially smaller than MS-COCO, such

a task is challenging given the size of our architecture with its 2400 new

feature maps and its large final embedding dimension of 2400.
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Figure 6. Localization examples. The first column contains the original image, the next columns show as overlays the heatmaps provided

by the localization module of our system for different captions (superimposed). In each image the circled blue dot marks the maximum

value of the heatmap.

presented in Fig. 1. We show in Fig. 6 the heatmaps and

associated localizations for home-brewed text “queries” on

images from MS-COCO test set. Going one step further, we

conducted similar experiments with images from the web

and concepts that were checked not to appear in any of the

training captions, see Fig. 7.

Changing pooling One of the key elements of the pro-

posed architecture is the final pooling layer, adapted from

WELDON [7]. To see how much this choice contributes to

the performance of the model, we tried instead the Global

Average Pooling (GAP) [45] approach. With this single

modification, the model is trained following the exact same

procedure as the original one. This results in less good re-

sults: For caption retrieval (resp. image retrieval), it incurs

a loss of 5.3% for R@1 (resp. 4.7%) for instance, and a loss

of 1.1% in accuracy in the pointing game.

5. Conclusion

We have presented a novel semantic-visual embedding

pipeline that leverages recent architectures to produce rich,

comparable descriptors for both images and texts. The use

of a selective spatial pooling at the very end of the fully

convolutional visual pipeline allows us to equip our system

with a powerful mechanism to locate in images the regions

corresponding to any text. Extensive experiments show that

our model achieves high performance on cross-modal re-

trieval tasks as well as on phrases localization. We also

showed first qualitative results of zero-shot learning, a di-

rection towards which our system could be pushed in the

future with, among others, a deeper exploitation of language

structure and of its visual grounding.

Figure 7. Toward zero-shot localization. The first three rows

show the ability to differentiate items according to their colors,

even if, as in third example, the colors are unnatural and the con-

cept has not been seen at training. This example, and the two

last ones could qualify as “zero-shot localization” as damson,

caracal, and waxwing are not present in MS-COCO train set.
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