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Abstract

Deep generative models have demonstrated great per-

formance in image synthesis. However, results deteriorate

in case of spatial deformations, since they generate images

of objects directly, rather than modeling the intricate inter-

play of their inherent shape and appearance. We present

a conditional U-Net [30] for shape-guided image gener-

ation, conditioned on the output of a variational autoen-

coder for appearance. The approach is trained end-to-end

on images, without requiring samples of the same object

with varying pose or appearance. Experiments show that

the model enables conditional image generation and trans-

fer. Therefore, either shape or appearance can be retained

from a query image, while freely altering the other. More-

over, appearance can be sampled due to its stochastic la-

tent representation, while preserving shape. In quantitative

and qualitative experiments on COCO [20], DeepFashion

[21, 23], shoes [43], Market-1501 [47] and handbags [49]

the approach demonstrates significant improvements over

the state-of-the-art.

1. Introduction

Recently there has been great interest in generative mod-

els for image synthesis [7, 12, 18, 24, 49, 51, 32]. Gen-

erating images of objects requires a detailed understanding

of both, their appearance and spatial layout. Therefore, we

have to distinguish basic object characteristics. On the one

hand, there is the shape and geometrical layout of an object

relative to the viewpoint of the observer (a person sitting,

standing, or lying or a folded handbag). On the other hand,

there are inherent appearance properties such as those char-

acterized by color and texture (curly long brown hair vs.

buzz cut black hair or the pattern of corduroy). Evidently,

objects naturally change their shape, while retaining their

inherent appearance (bending a shoe does not change its

style). However, the picture of the object varies dramati-

∗Both authors contributed equally to this work.

Figure 1: Our model learns to infer appearance from the queries

on the left and can synthesize images with that appearance in dif-

ferent poses given in the top row. An animated version can be

found at https://compvis.github.io/vunet.

cally in the process, e.g., due to translation or even self-

occlusion. Conversely, the color or fabric of a dress can

change with no impact on its shape, but again clearly alter-

ing the image of the dress.

With deep learning, there has lately been great progress

in generative models, in particular generative adversarial

networks (GANs) [1, 8, 10, 27, 38], variational autoen-

coders [16], and their combination [2, 17]. Despite im-

pressive results, these models still suffer from weak per-

formance in case of image distributions with large spatial

variation: while on perfectly registered faces (e.g., aligned

CelebA dataset [22]) high-resolution images have been gen-

erated [19, 13], synthesizing the full human body from

datasets as diverse as COCO [20] is still an open challenge.

The main reason for this is that these generative models di-

rectly synthesize the image of an object, but fail to model

the intricate interplay of appearance and shape that is pro-
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ducing the image. Therefore, they can easily add facial hair

or glasses to a face as this amounts to recoloring of image

areas. Contrast this to a person moving their arm, which

would be represented as coloring the arm at the old position

with background color and turning the background at the

new position into an arm. What we are lacking is a gener-

ative model that can move and deform objects and not only

blend their color.

Therefore, we seek to model both, appearance and shape,

and their interplay when generating images. For general ap-

plicability, we want to be able to learn from mere still image

datasets with no need for a series of images of the same ob-

ject instance showing different articulations. We propose a

conditional U-Net [30] architecture for mapping from shape

to the target image and condition on a latent representation

of a variational autoencoder for appearance. To disentangle

shape and appearance, we allow to utilize easily available

information related to shape, such as edges or automatic es-

timates of body joint locations. Our approach then enables

conditional image generation and transfer: to synthesize

different geometrical layouts or change the appearance of

an object, either shape or appearance can be retained from

a query image, whereas the other component can be freely

altered or even imputed from other images. Moreover, the

model also allows to sample from the appearance distribu-

tion without altering the shape.

2. Related work

In the context of deep learning, three different ap-

proaches to image generation can be identified. Genera-

tive Adversarial Networks [10], Autoregressive (AR) mod-

els [39] and Variational Auto-Encoders (VAE) [16].

Our method provides control over both, appearance and

shape. In contrast, many previous methods can control the

generative process only with respect to appearance. [15, 26,

38] utilize class labels, [42] attributes and [44, 52] textual

descriptions to control the appearance.

Control over shape has been mainly obtained in the

Image-to-Image translation framework. [12] uses a discrim-

inator to obtain realistic outputs but their method is limited

to the synthesis of a single, uncontrollable appearance. To

obtain a larger variety of appearances, [18] first generates a

segmentation mask of fashion articles and then synthesizes

an image. This leads to larger variations in appearances but

does not allow to change the pose of a given appearance.

[7] uses segmentation masks to produce images in the

context of street scenes as well. They do not rely on adver-

sarial training but directly learn a multimodal distribution

for each segmentation label. The amount of appearances

that can be produced is given by the number of combina-

tions of modes, resulting in very coarse modeling of appear-

ance. In contrast, our method makes no assumption that the

data can be well represented by a limited number of modes,

does not require segmentation masks, and it includes an in-

ference mechanism for appearance.

[28] utilizes the GAN framework and [29] the autore-

gressive framework to provide control over shape and ap-

pearance. However the appearance is specified by very

coarse text descriptions. Furthermore, both methods have

problems producing the desired shape consistently.

In contrast to our generative approach, [4, 3] have pur-

sued unsupervised learning of human posture similarity for

retrieval in still images and [25, 5] in videos. Rendering

images of persons in different poses has been considered

by [46] for a fixed, discrete set of target poses, and by [24]

for general poses. In the latter, the authors use a two-stage

model. The first stage implements pixelwise regression to

a target image from a conditional image and the pose of

the target image. Thus the method is fully supervised and

requires labeled examples of the same appearance in dif-

ferent poses. As the result of the first stage is in most cases

too blurry, they use a second stage which employs adversar-

ial training to produce more realistic images. Our method

is never directly trained on the transfer task and therefore

does not require such specific datasets. Instead, we care-

fully model the separation between shape and appearance

and as a result, obtain an explicit representation of the ap-

pearance which can be combined with new poses.

3. Approach

Let x be an image of an object from a dataset X . We

want to understand how images are influenced by two es-

sential characteristics of the objects that they depict: their

shape y and appearance z. Although the precise seman-

tics of y can vary, we assume it characterizes geometrical

information, particularly location, shape, and pose. z then

represents the intrinsic appearance characteristics.

If y and z capture all variations of interest, the variance

of a probabilistic model for images conditioned on those

two variables is only due to noise. Hence, the maximum a

posteriori estimate argmaxx p(x|y, z) serves as an image

generator controlled by y and z. How can we model this

generator?

3.1. Variational Autoencoder based on latent shape
and appearance

If y and z are both latent variables, a popular way of

learning the generator p(x|y, z) is to use a VAE. To learn

p(x|y, z) we need to maximize the log-likelihood of ob-

served data x and marginalize out the latent variables y and

z. To avoid the intractable integral, one introduces an ap-

proximate posterior q(y, z|x) to obtain the evidence lower
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bound (ELBO) from Jensen’s inequality,

log p(x) = log

∫
p(x, y, z) dz dy

= log

∫
p(x, y, z)

q(y, z|x)
q(y, z|x)

≥ Eq log
p(x|y, z)p(y, z)

q(y, z|x)
. (1)

As one can see, Eq. 1 contains the prior p(y, z), which is

assumed to be a standard normal distribution in the VAE

framework. With this joint prior we cannot guarantee that

both variables, y and z would be separated in the latent

space. Thus, our overall goal of separately altering shape

and appearance cannot be met. A standard normal prior

can model z but it is not suited to describe the spatial in-

formation contained in y, which is localized and easily gets

lost in the bottleneck. Therefore, we need additional infor-

mation to disentangle y and z when learning the generator

p(x|y, z).

3.2. Conditional Variational Autoencoder with ap­
pearance

In the previous section we have shown that a standard

VAE with two latent variables is not suitable for learning

disentangled representations of y and z. Instead we assume

that we have an estimator function e for the variable y, i.e.,

ŷ = e(x). For example, e could provide information on

shape by extracting edges or automatically estimating body

joint locations [6, 41]. Following up on Eq. 1, the task is

now to infer the latent variable z from the image and the

estimate ŷ = e(x) by maximizing their conditional log-

likelihood.

log p(x|ŷ) = log

∫
z

p(x, z|ŷ) dz ≥ Eq log
p(x, z|ŷ)

q(z|x, ŷ)

= Eq log
p(x|ŷ, z)p(z|ŷ)

q(z|x, ŷ)
(2)

Compared to Eq. 1, the ELBO in Eq. 2 depends now on

the (conditional) prior p(z|ŷ). This distribution can now

be estimated from the training data and captures potential

interrelations between shape and appearance. For instance

a person jumping is less likely to wear a dinner jacket than

a T-shirt.

Following [31] we model p(x|ŷ, z) as a parametric

Laplace and q(z|x, ŷ) as a parametric Gaussian distribu-

tion. The parameters of these distributions are estimated

by two neural networks Gθ and Fφ respectively. Using the

reparametrization trick [16], these networks can be trained

end-to-end using standard gradient descent. The loss func-

tion for training follows directly from Eq. 2 and has the

Figure 2: Our conditional U-Net combined with a variational au-

toencoder. x: query image, ŷ: shape estimate, z: appearance.

form:

L(x, θ, φ) = −KL(qφ(z|x, ŷ)||pθ(z|ŷ))

+ Eqφ(z|x,ŷ)[log pθ(x|ŷ, z)], (3)

where KL denotes Kullback-Leibler divergence. The next

section derives the network architecture we use for model-

ing Gθ and Fφ.

3.3. Generator

Let us first establish a network Gθ which estimates the

parameters of the distribution p(x|ŷ, z). We assume further,

as it is common practice [16], that the distribution p(x|ŷ, z)
has constant standard deviation and the function Gθ(ŷ, z)
is a deterministic function in ŷ. As a consequence, the net-

work Gθ(ŷ, z) can be considered as an image generator net-

work and we can replace the second term in Eq. 3 with the

reconstruction loss L(x, θ) = ‖x−Gθ(ŷ, z)‖1:

L(x, θ, φ) = −KL(qφ(z|x, ŷ)||pθ(z|ŷ))

+ ‖x−Gθ(ŷ, z)‖1. (4)

It is well known that pixelwise statistics of images, such

as the L1-norm here, do not model perceptual quality of

images well [17]. Instead we adopt the perceptual loss from

[7] and formulate the final loss function as:

L(x, θ, φ) = −KL(qφ(z|x, ŷ)||pθ(z|ŷ))

+
∑
k

λk‖Φk(x)− Φk(Gθ(ŷ, z))‖1, (5)

where Φ is a network for measuring perceptual similarity

(in our case VGG19 [37]) and λk, k are hyper-parameters

that control the contribution of the different layers of Φ to

the total loss.

If we forget for a moment about z, the task of the net-

work Gθ(ŷ) is to generate an image x̄ given the estimate

ŷ of the shape information of an image x. Here it is cru-

cial that we want to preserve spatial information given by
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GT pix2pix[12] our (reconst.) our (random samples)

Figure 3: Generating images with only the edge image as input (GT image (left) is held back). We compare our approach to pix2pix on

the datasets of shoes [43] and handbags [49]. On the right: sampling from our latent appearance distribution.

ŷ in the output image x̄. Therefore, we represent ŷ in the

form of an image of the same size as x. Depending on the

estimate e : e(x) = ŷ this is easy to achieve. For exam-

ple, estimated joints of a human body can be used to draw a

stickman for this person. Given such image representation

of ŷ we require that each keypoint of ŷ is used to estimate

x̄. A U-Net architecture [30] would be the most appropriate

choice in this case, as its skip-connections help to propagate

the information directly from input to output. In our case,

however, the generator Gθ(ŷ, z) should learn about images

by also conditioning on z.

The appearance z is sampled from the Gaussian distri-

bution q(z|x, ŷ) whose parameters are estimated by the en-

coder network Fφ. Its optimization requires balancing two

terms. It has to encode enough information about x into z

such that p(x|ŷ, z) can describe the data well as measured

by the reconstructions loss in (4). At the same time we pe-

nalize a deviation from the prior p(z|ŷ) by minimizing the

Kullback-Leibler divergence between q(z|x, ŷ) and p(z|ŷ).
The design of the generator Gθ as a U-Net already guaran-

tees the preservation of spatial information in the output im-

age. Therefore, any additional information about the shape

encoded in z, which is not already contained in the prior,

incurs a cost without providing new information on the like-

lihood p(x|ŷ, z). Thus, an optimal encoder Fφ must be in-

variant to shape. In this case it suffices to include z at the

bottleneck of the generator Gθ.

More formally, let our U-Net-like generator Gθ(ŷ) con-

sist of two parts: an encoder Eθ and a decoder Dθ (see

Fig.2). We concatenate the inferred appearance represen-

tation z with the bottle-neck representation of Gθ: γ =
[Eθ(ŷ), z] and let the decoder Dθ(γ) generate an image

from it. Concatenating the shape and appearance features

keeps the gradients for training the respective encoders Fφ

and Eθ well separated, while the decoder Dθ can learn to

combine those representations for an optimal synthesis. To-

gether Eθ and Dθ build a U-Net like network, which guar-

antees optimal transfer of spatial information from input to

output images. On the other hand, Fφ when put together

with Dθ frames a VAE that allows appearance inference.

The prior p(z|ŷ) is estimated by Eθ just before it concate-

nates z into its representation. We train all three networks

jointly by maximizing the loss in Eq. 5.

4. Experiments

We now proof the advantages of the proposed method by

showing the results of image generation in various datasets

with different shape estimators ŷ. In addition to visual com-

parisons with other methods, all results are supported by nu-

merical experiments. Code and additional experiments can

be found at https://compvis.github.io/vunet.

Datasets To compare with other methods, we evaluate

on: shoes [43], handbags [49], Market-1501 [47], Deep-

Fashion [21, 23] and COCO [20]. As baselines for our

subsequent comparisons we use the state-of-the-art pix2pix

model [12] and PG2 [24]. To the best of our knowledge PG2

is the only one approach which is able to transfer one per-

son to the pose of another. We show that we improve upon

this method and do not require specific datasets for train-

ing. With regard to pix2pix, it is the most general image-

to-image translation model which can work with different

shape estimates. Where applicable we directly compare to

the quantitative and qualitative results provided by the au-

thors of the mentioned papers. As [12] does not perform

experiments on Market-1501, DeepFashion and COCO we

train their model on these datasets using their published
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method Market1501 DeepFashion

IS SSIM IS SSIM

mean std mean std mean std mean std

real data 3.678 0.274 1.000 0.000 3.415 0.399 1.000 0.000
PG2 G1-poseMaskedLoss 3.326 − 0.340 − 2.668 − 0.779 −
PG2 G1+D 3.490 − 0.283 − 3.091 − 0.761 −
PG2 G1+G2+D 3.460 − 0.253 − 3.090 − 0.762 −
pix2pix 2.289 0.0489 0.166 0.060 2.640 0.2171 0.646 0.067
our 3.214 0.119 0.353 0.097 3.087 0.2394 0.786 0.068

Table 1: Inception scores (IS) and structured similarities (SSIM) of reconstructed test images on DeepFashion and Market1501 datasets.

Our method outperforms both pix2pix [12] and PG2 [24] in terms of SSIM. As to IS the proposed method performs better than pix2pix

and obtains comparable results to PG2.

GT pix2pix[12] our (reconst.) our (random samples)

Figure 4: Generating images based only the stickman as input (GT image is held back). We compare our approach with pix2pix [12] on

Deepfashion and Market-1501 datasets. On the right: sampling from our latent appearance distribution.

code [50].

Shape estimate In the following experiments we work

with two kinds of shape estimates: edge images and, in case

of humans, automatically regressed body joint positions.

We utilize edges extracted with the HED algorithm [41] by

the authors of [12]. Following [24] we apply current state-

of-the-art real time multi-person pose estimator [6] for body

joint regression.

Network architecture The generator Gθ is implemented

as a U-Net architecture with 2n residual blocks [11]: n

blocks in the encoder part Eθ and n symmetric blocks in

the decoder part Dθ. Additional skip-connections link each

block in Eθ to the corresponding block in Dθ and guarantee

direct information flow from input to output. Empirically,

we set the parameter n = 7 which worked well for all con-

sidered datasets. Each residual block follows the architec-

ture proposed in [11] without batch normalization. We use

strided convolution with stride 2 after each residual block

to downsample the input until a bottleneck layer. In the de-

coder Dθ we utilize subpixel convolution [36] to perform

the up-sampling between two consecutive residual blocks.

All convolutional layers consists of 3 × 3 filters. The en-

coder Fφ follows the same architecture as the encoder Eθ.

We train our model separately for each dataset using the

Adam [14] optimizer with parameters β1 = 0.5 and β2 =

0.9 for 100K iterations. The initial learning rate is set to

0.001 and linearly decreases to 0 during training. We utilize

weight normalization and data dependent initialization of

weights as described in [35]. Each λk is set to the reciprocal

of the total number of elements in layer k.

In-plane normalization In some difficult cases, e.g. for

datasets with high shape variability, it is difficult to perform

appearance transfer from one object to another with no part

correspondences between them. This problem is especially

problematic when generating human beings. To cope with

it we propose to use additional in-plane normalization uti-

lizing the information provided by the shape estimate ŷ. In

our case ŷ is given by the positions of body joints which

we use to crop out areas around body limbs. This results

in 8 image crops that we stack together and give as input

to the generator Fφ instead of x. If some limbs are missing

(e.g. due to occlusions) we use a black image instead of the

corresponding crop.

Let us now investigate the proposed model for condi-

tional image generation based on three tasks: 1) reconstruc-

tion of an image x given its shape estimate ŷ and origi-

nal appearance z; 2) conditional image generation based on

a given shape estimate ŷ; 3) conditional image generation

from arbitrary combinations of ŷ and z.
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Input pix2pix Our Input pix2pix Our

Figure 5: Colorization of sketches: we compare generalization

ability of pix2pix [12] and our model trained on real images.

The task is to generate plausible appearances for human-drawn

sketches of shoes and handbags [9].

4.1. Image reconstruction

Given a query image x and its shape estimate ŷ we can

use the network Fφ to infer appearance of the image x.

Namely, we denote the mean of the distribution q(z|x, ŷ)
predicted by Fφ from the single image x as its original ap-

pearance z. Using these z and ŷ we can ask our generator

Gθ to reconstruct x from its two components.

We show examples of images reconstructed by our meth-

ods in Figs. 3 and 4. Additionally, we follow the experi-

ment in [24] and calculate for the reconstructions of the test

images in Market-1501 and DeepFashion dataset Structural

Similarities (SSIM) [40] and Inception Scores (IS) [34] (see

Table 1). Compared to pix2pix [12] and PG2 [24] our

method outperforms both in terms of SSIM score. Note

that SSIM compares the reconstructions directly against the

original images. As our method differs from both by gen-

erating images conditioned on shape and appearance this

underlines the benefit of this conditional representation for

image generation. In contrast to SSIM, inception score is

measured on the set of reconstructed images independently

from the original images. In terms of IS we achieve compa-

rable results to [24] and improve on [12].

4.2. Appearance sampling

An important advantage of our model compared to [12]

and [24] is its ability to generate multiple new images

conditioned only on the estimate of an object’s shape ŷ.

This is achieved by randomly sampling z from the learned

prior p(z|ŷ) instead of inferring it directly from an image

x. Thus, appearance can be explored while keeping shape

fixed.

Edges-to-images We compare our method to pix2pix by

generating images from edge images of shoes or handbags.

The results can been seen in Fig. 3. As noted by the au-

thors in [12], the outputs of pix2pix show only marginal

diversity at test time, thus looking almost identical. To save

Figure 6: Appearance transfer on Market-1501. Appearance is

provided by image on bottom left. ŷ (middle) is automatically

extracted from image at the top and transferred to bottom.

space, we therefore present only one of them. In contrast,

our model generates high-quality images with large diver-

sity. We also observe that our model generalizes better to

sketchy drawings made by humans [9] (see Fig. 5). Due

to a higher abstraction level, sketches are quite different to

the edges extracted from the real images in the previous ex-

periment. In this challenging task our model shows higher

coherence to the input edge image as well as less artifacts

such as at the carrying strap of the backpack.

Stickman-to-person Here we evaluate our model on the

task of learning plausible appearances for rendering human

beings. Given a ŷ we thus sample z and infer x. We

compare our results with the ones achieved by pix2pix on

Market-1501 and DeepFashion datasets (see Fig. 4). Due

to marginal diversity in the output of pix2pix we again only

show one sample per row. We observe that our model has

learned a significantly more natural latent representation of

the distribution of appearance. Also it preserves the spatial

layout of the human figure better. We prove this observa-

tion by re-estimating joint positions from the test images

generated by each methods on all three datasets. For this

we apply the same the algorithm we used to estimate the

positions of body joints initially, namely [6] with parame-

ter kept fixed. We report mean L2-error in the positions of

detected joints in Table 2. Our approach shows a signifi-

cantly lower re-localization error, thus demonstrating that

body pose has been favorably retained.

4.3. Independent transfer of shape and appearance

We show performance of our method for conditional im-

age transfer, Fig. 7. Our disentangled representation of

shape and appearance can transfer a single appearance over

different shapes and vice versa. The model has learned a

disentangled representation of both characteristics, so that

one can be freely altered without affecting the other. This

ability is further demonstrated in Fig. 6 that shows a synthe-

sis across a full 360◦ turn.
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method our pix2pix PG2

COCO 23.23 59.26 −
DeepFashion 7.34 15.53 19.04
Market1501 54.60 59.59 59.95

Table 2: Automatic body joint detection is applied to images of

humans synthesized by our method, pix2pix, and PG2. The L2

error of joint location is presented, indicating how good shape is

preserved. The error is measured in pixels based on a resolution

of 256× 256.

Figure 7: Stability of appearance transfer on DeepFashion. Each

row is synthesized using appearance information from the leftmost

image and each column is synthesized from the pose in the first

row. Notice that inferred appearance remains constant across a

wide variety of viewpoints.

dataset Our PG2

‖std‖ max pairwise ‖std‖ max pairwise

dist dist

market1501 55.95 125.99 67.39 155.16
deepfashion 59.24 135.83 69.57 149.66
deepfashion 56.24 121.47 59.73 127.53

Table 3: Given an image its appearance is transferred from an

image to different target poses. For these synthesized images, the

unwanted deviation in appearance is measured using a pairwise

perceptual VGG16 loss.

The only other work we can compare with in this exper-

iment is PG2 from [24]. In contrast to our method PG2 was

trained fully supervised on DeepFashion and Market-1501

datasets with pairs of images that share appearance (person

id) but contain different shapes (in this case pose) of the

same person. Despite the fact that we never train our model

explicitly on pairs of images, we demonstrate both quali-

tatively and quantitatively that our method improves upon

[24]. A direct visual comparison is shown in Fig. 8. We fur-

ther design a new metric to evaluate and compare against

PG2 on the appearance and shape transfer. Since code for

[24] is not available our comparison is limited to generated

images provided by [24]. The idea behind our metric is to

compare how good an appearance z of a reference image x

is preserved when synthesizing it with a new shape estimate

ŷ. For that we first fine-tune an ImageNet [33] pretrained

VGG16 [37] on Market-1501 on the challenging task of

person re-identification. In test phase this network achieves

mean average precision (mAP) of 35.62% and rank-1 accu-

racy of 63.00% on a task of single query retrieval. These

results are comparable to those reported in [48]. Due to the

nature of Market-1501, which contains images of the same

persons from multiple viewpoints, the features learned by

the network should be pose invariant and mostly sensitive

to appearance. Therefore, we use a difference between two

features extracted by this network as a measure for appear-

ance similarity.

For all results on DeepFashion and Market-1501 datasets

reported in [24] we use our method to generate exactly the

same images. Further we build groups of images sharing

the same appearance and retain those groups that contain

more than one element. As a result we obtain three groups

of images (see Table. 3) which we analyze independently.

We denote these groups with Ii, i = {1, 2, 3}.

For each image j in the group Ii we find its 10 near-

est neighbors ni
j1
, ni

j2
, . . . ni

j10
in the training set using the

embedding of the fine-tuned VGG16. We search for the

nearest neighbors in the training dataset, as the person IDs

and poses were taken from the test dataset. We calculate the

mean over each nearest-neighbor set and use this mean mj

as the unique representation of the generated image j. For

images j in the group Ii we calculate maximal pairwise dis-

tance between the mj as well as the length of the standard

deviation vector. The results over all three image groups

I1, I2, I3 are summarized in Table 3. One can see that our

method shows higher compactness of the feature represen-

tations mj of the images in each group. From these results

we conclude that our generated images are more consistent

in their appearance than the results of PG2.

Generalization to different poses Because we are

not limited by the availability of labeled images show-

ing the same appearance in different poses, we can uti-

lize additional large scale datasets. Results on COCO

are shown in Fig. 1. Besides still images, we are

able to synthesize videos. Examples can be found at

https://compvis.github.io/vunet, demonstrating the transfer

of appearances from COCO to poses obtained from a video

dataset [45].
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Market DeepFashion

Conditional Target Stage Our Conditional Target Stage Our

image image II[24] image image II[24]

Figure 8: Comparing image transfer against PG2. Left: Results on Market. Right: Results on DeepFashion. Appearance is inferred from

the conditional image, the pose is inferred from the target image. Note that our method does not require labels about person identity.

4.4. Ablation study

At last we analyze the effect of individual components of

our method on the quality of generated images (see Fig. 9).

Absence of appearance Without appearance informa-

tion z our generator Gθ is a U-Net performing a direct map-

ping from shape estimate ŷ to the image x. In this case, the

output of the generator is the mean of p(x|y). Because we

model it as a unimodal Laplace distribution, it is an estimate

of the mean image over all possible images (of the dataset)

with the given shape. As a result the output generations do

not show any appearance at all (Fig. 9, second row).

Importance of KL-loss We show further what happens

if we replace the VAE in our model with a simple autoen-

coder. In practice that means that we ignore the KL-term

in the loss function in Eq. 5. In this case, the network has

no incentive to learn a shape invariant representation of the

appearance and just learns to copy and paste the appear-

ance inputs to the positions provided by the shape estimate

ŷ (Fig. 9, third row).

Our full model The last row in Fig. 9 shows that our full

model can successfully perform appearance transfer.

5. Conclusion

We have presented a variational U-Net for conditional

image generation by modeling the interplay of shape and

appearance. While a variational autoencoder allows to sam-

KL Appearance

Input

no no

no

yes

Figure 9: Ablation study on the task of appearance transfer. See

Sec. 4.4.

ple appearance, the U-Net preserves object shape. Experi-

ments on several datasets and diverse objects have demon-

strated that the model significantly improves the state-of-

the-art in conditional image generation and transfer.

This work has been supported in part by the Heidelberg Academy of

Science and a hardware donation from NVIDIA.
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