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Abstract

This paper addresses a new problem of inferring shared

attention in third-person social scene videos. Shared atten-

tion is a phenomenon that two or more individuals simul-

taneously look at a common target in social scenes. Per-

ceiving and identifying shared attention in videos plays cru-

cial roles in social activities and social scene understand-

ing. We propose a spatial-temporal neural network to detect

shared attention intervals in videos and predict shared at-

tention locations in frames. In each video frame, human

gaze directions and potential target boxes are two key fea-

tures for spatially detecting shared attention in the social

scene. In temporal domain, a convolutional Long Short-

Term Memory network utilizes the temporal continuity and

transition constraints to optimize the predicted shared at-

tention heatmap. We collect a new dataset VideoCoAtt1

from public TV show videos, containing 380 complex video

sequences with more than 492,000 frames that include di-

verse social scenes for shared attention study. Experiments

on this dataset show that our model can effectively infer

shared attention in videos. We also empirically verify the

effectiveness of different components in our model.

1. Introduction

Shared attention is defined as the attention focus shared

by two or more individuals on one object or human [5].

Shared attention differs from joint attention in a subtle way

and in the literature the two terms are used interchangeably

[5]. Shared attention is everywhere in our daily life and we

can observe it every now and then in almost all social inter-

actions. Imagine in a party, usually humans can easily rec-

∗Lifeng Fan and Yixin Chen contributed equally.
†Ping Wei is the corresponding author.
1This dataset is available at: http://www.stat.ucla.edu/

˜lifengfan/shared_attention.

Figure 1. Shared attention is everywhere in our daily life.

Shared attention is a crucial first step towards social interaction,

the primary basis of social intelligence and a precursor of Theory

of Mind [7].

ognize a group of people with shared attention and what ex-

actly is their shared attention in the group at present. They

can join the group and form shared attention with them nat-

urally and instantly. However, patients with autism may feel

it difficult to interact with people around them since they

lack the ability to build shared attention with others [3].

Fig. 1 shows some examples of shared attention in social

scenes and how shared attention shifts temporally as well

as who are currently involved in the shared attention.

Research in developmental psychology clearly states that

the development of skills to understand, manipulate and co-

ordinate attentional behavior plays a pivotal role for imi-

tation, social cognition and the development of language

[8, 15, 35]. And among the complicated cognitive func-

tions of human minds, the ability to form, recognize and

understand shared attention is pretty crucial in human social

interactions [14, 15, 18]. All human communication, even

including linguistic communication, is only possible when

the people involved in such communications have built a
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common conceptual ground consisting of shared attention,

shared experience, common cultural knowledge, etc. [34].

Overall, shared attention is a crucial first step towards so-

cial interaction, as well as the primary basis of social intel-

ligence and a precursor of theory of mind [14, 15, 18], lan-

guage learning [15, 16, 17], the ability of imitation [13] and

so on. The study of shared attention is important because

it helps a computer vision system to better understand and

interpret human activities in images or videos. Robotics

equipped with the ability to detect and understand human

shared attention can also be more intelligent when interact-

ing with humans.

Despite the importance of this topic, works on shared

attention are quite limited in the computer vision commu-

nity. Some previous works address the problem by using

special input data, such as first-person videos taken by mul-

tiple head-mounted cameras [2, 22, 23, 31]. Some limited

shared attention to the field of Human Robot Interaction

[4, 11, 19, 20, 30, 32]. Few works studied shared atten-

tion in human social interaction based on third-person so-

cial scene videos.

In order to be clarified in our paper with the concept

of shared attention, we formulate our problem as follows:

shared attention is the gaze focus shared by two or more in-

dividuals on one object or human; given a video clip, the

task is to detect which frames contain shared attention and

where is the shared attention in those frames. To tackle this

problem, we collect a new dataset VideoCoAtt and build

a deep spatial-temporal neural network with four modules:

gaze estimation module, region proposal module, spatial

detection module and temporal optimization module. The

intuitions for building such a deep neural network architec-

ture are as follows: 1) Firstly, gaze direction, which can

be utilized to learn external environment state and internal

mental state, is a key feature for shared attention detection.

The strongest and most direct indication of human gaze di-

rection is the closeup image patch of human head. We need

to detect human heads in videos and predict gaze directions

for each detected head. 2) Secondly, gaze direction is of

course important, but still not the whole story. Shared at-

tention is more than gaze intersection. According to our

definition, there must be an object or human body part as

the carrier of shared attention, which means the shared at-

tention detection task is object-driven. Thus, bounding box

proposals of object or human body parts, such as laptop, hu-

man face, etc., is another key feature for our task. We didn’t

use saliency models (like [21, 37]) because shared attention

is more influenced by social group interaction instead of vi-

sual importance, and people engaged in shared attention are

not free-viewing and may not look at the most salient ob-

ject in the environment. We use a generic object proposal

generation method to generate all potential bounding boxes

independent of their categories. 3) Shared attention may

last for a while before termination. Temporal information

is a good constraint to make the detection results more ac-

curate and robust. The input to our model is just a video

clip without any other additional annotation, and the output

is a shared attention heatmap for each video frame and the

final shared attention prediction results can also be inferred

based on the shared attention heatmap.

This paper makes three major contributions:

1) It addresses a new problem - inferring shared atten-

tion in third-person social scene videos. To the best of

our knowledge, this is the first work to deal with such

problem in computer vision community.

2) It proposes a spatial-temporal network to address the

problem of inferring shared attention in videos. The

proposed model explicitly leverages human gaze di-

rection, target region candidates, and temporal inter-

frame constraints for identifying shared attention.

3) It presents a large-scale dataset covering diverse social

scenes with full annotations, VideoCoAtt, and bench-

mark results on the dataset for shared attention study.

2. Related Work

The problem of inferring shared attention from third-

person videos is closely related to the following works:

Gaze Prediction: Recasens et al. proposed a deep learn-

ing based model for gaze prediction in images [25] and con-

tributed a dataset called GazeFollow. Given head location,

their method extracts head pose and gaze orientation, fol-

lows the gaze of the person and identifies the object being

looked at in the image. Then they further extended their

work to gaze prediction in videos [26] and contributed an-

other new dataset VideoGaze. Given a video clip and the

annotations of head and eye location, their model combines

gaze pathway, saliency pathway and transformation path-

way to predict where a person is looking even when the

object being looked at is in a different frame. These works

only focus on predicting single-person gaze, while do not

consider the task of inferring attention shared by multiple

persons in social activities.

Shared attention in Social Interaction: There are some

inspiring studies of shared attention in human social interac-

tion. Park et al. presented a method to construct a 3D social

saliency field and locate multiple gaze concurrences that oc-

cur in a social scene from videos taken by head-mounted

cameras [22]. After that, they proposed a method to predict

social saliency from images or videos captured by multiple

first-person view cameras [23]. These works directly study

social saliency, which by their definition represents the like-

lihood of shared attention in a social group. Besides, they

also use shared attention as a constraint to predict social

behavior in first-person videos, such as individuals’ future

movements and future gaze directions in a social group. The

predicted behaviors reflect an individual physical space that
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Figure 2. Example frames from VideoCoAtt Dataset, where the shared attentions are annotated by red rectangles and red points. Different

groups of people involved in different shared attentions are annotated by rectangles in different colors. Best viewed in color.

affords to take the next actions while conforming to social

behaviors by engaging to shared attention [31]. Generally,

these work well explored and illustrated shared attention de-

tection and application in social activities. However, they

only focus on first-person videos without generalizing to or-

dinary third-person videos.

Shared attention in HRI: The field of Human-Robot

Interaction (HRI) strives to enable easy, intuitive interac-

tions between people and robots, which requires natural

communication [1]. Many of the difficulties encountered

in human-robot interaction and the communication between

autonomous robots could be traced back to unsolved issues

related to shared attention [10]. There are many works that

try to realize gaze-following and shared attention between

robot and human in HRI with or without external evaluation

[4, 11, 19, 20, 30, 32]. The key points of these work are

inferring human gaze direction and then forming shared at-

tention between robot and human by making the robot head

turn to that direction. Our work is beneficial to improve the

implementation of shared attention in HRI because robots

can further detect, understand and learn to join in the on-

going shared attention in the environment.

3. VideoCoAtt Dataset

In this section we describe our proposed VideoCoAtt

dataset, which is specifically designed for studying shared

attention in social scenes. Some example frames with an-

notations are presented in Fig. 2.

Dataset Collection. The following principles drive the

collection of our dataset:

• Natural social interaction. Shared attention usually occur

in daily life naturally. If we deliberately shoot videos for the

purpose of shared attention study, then the social interac-

tions performed by the volunteers may seem unnatural and

not convincing. Instead, TV show is a good choice because

social interactions in TV shows appear to be relatively more

natural. As summarized in Table 1, there are some TV show

datasets available in the computer vision community, e.g.,

HMDB [12], TVHI [24], etc. However, they are designed

for different purposes, like action recognition, human inter-

action understanding, etc., and none of them offer annota-

tions of shared attention. Differently, the proposed Video-

CoAtt dataset is carefully collected for studying shared at-

tention in human social activities. The videos are sourced

from 20 different TV shows on Youtube.

• Large scale and high quality. Both scale and quality are

essential to build a long-lifespan benchmark. We carefully

collect 380 RGB video sequences from 20 different TV

shows or movies. Each video sequence lasts for various

time, from around 20s to more than 1 minute with a frame

rate of 25 fps. In total, there are 492,100 frames at the spa-

tial resolution of 320× 480.

• Diversity and generality. The videos in the VideoCoAtt

dataset cover different countries and cultures, such as Amer-

ican, Chinese, Indian, European, etc. The appearances of

actors/actresses, the costume and props vary a lot. There

are also diverse scenario settings in VideoCoAtt, includ-

ing living room, kitchen, restaurant, Cafe, office, outdoor,

etc. See Table 2 for detailed statistics and Fig. 2 for ex-

ample frames. Moreover, the number of shared attentions

per frame and the number of involved people per shared at-

tention can vary in different frames and videos, as can be

seen from the sample frames in Fig. 2 and the statistics in

Table 3. This generality in VideoCoAtt dataset is beneficial

for the trained model to deal with multiple cases as in real

life. Fig. 3 shows the shared attention location distribution

averaged over the whole dataset. It appears that shared at-

tention in our dataset tends to lie near the top part of the

image frame, as is consistent with previously analyzed eye

tracking datasets [39, 33, 9].
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Dataset Year Format Size Annotation Goal Shared Attention Data Source

HMDB [12] 2011 Video
7,000 clips,

51 action categories
Human action Action recognition -

Digitized movies,

YouTube

TVHI [24] 2012 Video
300 video clips, 30

to 600 frames per clip

Upper body bbx, discrete head

orientations, interaction label

Human interaction

learning in TV shows
- 23 different TV shows

MPII-MD [28] 2015 Video
94 videos,

68,337 clips
Video description Automatic video description -

British Amazon,

Hollywood2

GazeFollow [25] 2015 Image
122,143 images,

130,339 people
Eye loc. and gaze loc. Gaze following in images -

Actions 40, MS COCO,

SUN, PASCAL, etc.

VideoGaze [26] 2017 Video
140 movies,

6 frames per movie
Eye loc., head bbx, gaze loc. Gaze following in videos - MovieQA

Sitcom Affordance [38] 2017 Image
11,449 indoor scenes,

28,882 human poses
Human pose Affordance prediction - 7 sitcoms

VideoCoAtt (Ours) 2018 Video
380 videos,

492,100 frames

Shared attention bbx,

involved head bbx.

Shared attention detection

in videos
X 20 different TV shows

Table 1. Comparison of several related datasets. Our dataset is large, diverse and specially designed for shared attention study.

Culture Distribution Scenario Setting Distribution

American 44.1 % Living Room 29.4 % Dining Room 4.7 %

Chinese 40.7 % Kitchen 14.3 % Office 4.7 %

Indian 9.1 % Restaurant 7.0 % Bathroom 2.3 %

European 4.1 % Bedroom 6.8 % Outdoor 16.4 %

(Others) 2.0 % Cafe 5.8 % (Others) 8.6 %

Table 2. Distributions of culture and scenario settings in Video-

CoAtt dataset.

Figure 3. Illustration

of shared attention lo-

cation averaged over

VideoCoAtt dataset.

VideoCoAtt
#shared attentions per frame

0 1 ≥2

#frames 349,468 139,348 3,284

VideoCoAtt
#people involved per S.A.

2 3 4 5 ≥6

#S.A. 86,988 34,105 16,396 4,955 3,661

Table 3. Statistics regarding to the num-

ber of shared attentions per frame and the

number of people involved per shared at-

tention in VideoCoAtt dataset.

Dataset Annotation. We manually annotate all the

video frames using the online tool Vatic [36]. For each

frame, we mark whether there is shared attention in the

scene. If there is on-going shared attention in the scene, we

mark all the shared attentions with bounding boxes. Only

those shared attentions within the view of the scene will be

annotated; those out of view or occluded will not be counted

as shared attention. Furthermore, for each shared attention,

we annotated all the heads that are currently engaged in the

certain shared attention using bounding boxes and attributes

related to the shared attention numbering.

Dataset Splitting. We split our VideoCoAtt dataset into

three parts for training, validation and testing respectively.

There are 181 videos (250,030 frames) in the training set, 90

videos (128,260 frames) in the validation set and 109 videos

(113,810 frames) in the testing set. To avoid overfitting

caused by similarities in human appearances and scenario

settings, we split our videos by different sources. Videos

for training, validation and testing come from different TV

shows, which we believe is necessary and will require a

strong generalization ability of our shared attention model.

4. Our Model

Shared attention usually locates at the objects or human

body parts gazed by two or more people simultaneously.

Obviously, human gaze and target objects in the context

environment are essential for inferring shared attention in

social scene videos. Thus our shared attention detection

model comprises of four modules: 1) the gaze estimation

module (§ 4.1) that extracts individual gaze directions to

generate a gaze heatmap for the whole scene; 2) the region

proposal module (§ 4.1) that extracts region proposals from

the context environment; 3) the spatial detection module

(§ 4.2) that combines the gaze heatmap and the region pro-

posal map to detect shared attention in spatial space; and 4)

the temporal optimization module (§ 4.2) that utilizes inter-

frame correlation to optimize the predicted shared attention

heatmap in temporal space. An illustration of our whole

model architecture is presented in Fig. 4.

4.1. Gaze and Region Proposal Modules

Gaze Estimation Module. Suppose for an in-

put frame It in a video sequence {It}t=1,...,T , our

head detector outputs a set of head locations qt,i =
(xmin

t,i , ymin
t,i , xmax

t,i , ymax
t,i ), i = 1, 2, . . . , n, where n could

be zero when no head is detected in frame It (see the red

rectangles in Fig. 5 (a) and (c)). The corresponding closeup

image patch for head location qt,i is cropped out from It
and denoted as wh

t,i, i = 1, 2, . . . , n. We then use a batch

of neural network layers Ψ(·) to regress a gaze direction

dt,i ∈ [−1, 1]2 (yellow arrows in Fig. 5 (a) and (c)) for the

input image patch wh
t,i:

dt,i , (dxt,i, d
y
t,i) = Ψ(wh

t,i). (1)

We use a Gaussian distribution to model the variation of a

gaze ray with respect to the predicted primary gaze direction

dt,i, and the probability distribution is

P (θt,i|dt,i) ∝
1

σ
exp{−

θ2t,i

2σ2
}, (2)
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Figure 4. Illustration of our model architecture. The gaze estimation module and the region proposal module extract two key features

of individuals and the scene context from raw input videos. The subsequent spatial detection module integrates the outputs from the two

base modules to perform shared attention detection on a single frame. The temporal optimization module utilizes temporal constraints to

optimize the predicted shared attention heatmap.

(a) (b) (c) (d) (e)

Figure 5. Illustration of gaze heatmap H
g
t generation procedure. With detected head position qt,i (red rectangles in (a)(c)) and corre-

sponding predicted gaze direction dt,i (yellow arrows in (a)(c)), we first generate individual gaze heatmap H
g

t,i in (b) and (d), and then get

the final gaze heatmap H
g
t in (e) via sum-pooling all the gaze heatmaps in (d).

where θt,i is the angle between a gaze ray and the predicted

primary gaze direction dt,i. With detected head position qt,i
and corresponding predicted gaze direction dt,i, we com-

pute θt,i for each grid in the image and then use Eq. 2 to get

the probability for this grid to be gazed at by head qt,i. After

a gaze heatmap H
g
t,i (see Fig. 5 (b) and (d)) for each head

position qt,i is prepared, we generate the final gaze heatmap

H
g
t (Fig. 5 (e)) of size M ×N via Sum-Pooling {Hg

t,i}i:

H
g
t =

∑n

i=1

H
g
t,i =

∑n

i=1

φ(Ψ(wh
t,i), qt,i), (3)

where φ(·) indicates the gaze heatmap generator based on

Eq. 2. More illustrations about the gaze heatmap generation

procedure are shown in Fig. 5.

Region Proposal Module. To exploit context informa-

tion, we use a region proposal module Z(·) to generate a

binary region proposal map Hr
t of size M × N for input

image It:

Hr
t = Z(It). (4)

This module is implemented by Structured Edge Detec-

tor (SED) [40] to get region bounding boxes {bt,i, i =
1, 2, . . . ,m} for each frame It and then setting all the pixel

values within the bbx proposals to 1 and all other pixel val-

ues outside to 0.

4.2. Spatio­temporal Shared Attention Network

The output feature maps of the gaze estimation module

and the region proposal module are then fed to the subse-

quent spatial detection module and temporal optimization

module for shared attention detection.

Spatial Detection Module. Shared attention detection

is firstly conducted in a frame-by-frame style. We apply a

spatial detection module F (·) that consists of several convo-

lutional layers to combine the gaze heatmap H
g
t and region

proposal map Hr
t for intra-frame shared attention detection:

H̃t = F (Hg
t , H

r
t ), (5)

where H̃t indicates the intermediate shared attention

heatmap output from the spatial detection module.

Temporal Optimization Module. To further exploit the

temporal inter-frame constraints in videos, we add a tem-

poral optimization module LSTM(·) that consists of sev-

eral convolutional Long Short-Term Memory (convLSTM)

network [29] layers to optimize the output shared attention

heatmap H̃t:

{Ĥt}t = LSTM({H̃t}t), (6)

where Ĥt denotes the eventual shared attention heatmap.
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Figure 6. Illustration of inference process. Given (a) proposal

bounding boxes and (b) shared attention heatmap, we first com-

pute the score for each bounding box by accumulating all the con-

fidence values inside the bounding box. (c) Then we select the

bounding boxes with score higher than a certain threshold. (d)

NMS is applied for generating final shared attention prediction.

4.3. Learning and Inference

For the loss function, we apply the Mean Squared Error

(MSE) between the predicted shared attention heatmap Ĥt

and the ground truth shared attention binary map Ht:

L(Ĥt, Ht) =
1

M ·N
‖ Ĥt −Ht ‖

2, (7)

where both Ĥt and Ht are of size M ×N .

The inference is possible given the predicted shared at-

tention heatmap Ĥt, based on which we can compute the

cumulative score for each region proposal bounding box

bt,i. We only keep those proposal bounding boxes with

a score higher than a threshold. Then we conduct a Non-

Maximum Suppression (NMS) [6] and treat the remaining

bounding boxes as our final shared attention prediction for

frame It. See Fig. 6 for more detailed illustration.

Since there may be no shared attention or more than one

shared attention in a scene, our model is designed to support

multimodal predictions instead of regressing a single shared

attention location.

4.4. Implementation Details

We implement our model using Keras with Tensorflow

as backend. For the gaze estimation module, we first fine-

tuned YOLO V2 darknet [27] on our own training set. The

re-trained YOLO V2 is applied as a head detector to gen-

erate human head image patches {ωh
t,i} for the following

gaze direction estimation. We apply the VGG16 network to

regress gaze direction, and replace the last fully connected

(fc) layer (1000) with a new fc layer of size 2. Then the tanh

activation is used for generating a unit gaze direction vector

and the gaze direction regression network is fine-tuned on

our training set with mean-squared-error loss. To generate

the gaze heatmap, we assume that the gaze cone projected

from each head is subject to a gaussian distribution with

standard deviation σ = 0.5. For the region proposal mod-

ule, we use the Structured Edge Detection Toolbox [40] to

generate the bounding box proposals for each frame.

The outputs of the gaze estimation module and the re-

gion proposal module are of size 28 × 28. We concatenate

the gaze heatmap H
g
t and the region proposal map Hr

t as the

input to the spatial detection module, which contains the

first three convolutional layers with kernel size 3 × 3 and

output channel size 16, 16, 8 respectively, and the last one

convolutional layer with kernel size 1 × 1, output channel

size 1 and sigmoid activation. The output of spatial detec-

tion module is a 28 × 28 shared attention heatmap H̃tfor

each frame. The subsequent temporal optimization module

consists of five convLSTM layers. The filter sizes are 40,

40, 40, 40 and 1 respectively. The kernel size is 3 × 3 for

the first four convLSTM layers and 1 × 1 for the last con-

vLSTM layer. The final convLSTM layer uses sigmoid as

activation function.

5. Experiments

5.1. Experimental Setup

We train and evaluate our model on disjoint training,

validation and testing sets from VideoCoAtt in our exper-

iments, as described in §3. The ground truth annotations of

shared attention bounding boxes and relevant human faces’

bounding boxes are only used in training. For testing, the

input to our model only includes the raw videos without any

additional annotation.

Evaluation Metrics. We use several metrics to com-

pare our model predicted shared attentions with the ground

truth shared attention annotations across the testing videos.

For the shared attention interval detection task, the percent-

age of frames with right shared attention existence predic-

tion over all the video frames is applied as a metric Pre-

diction Accuracy. For the shared attention location predic-

tion task, we use the region proposal bounding boxes and

shared attention heatmap to generate a ROC Curve, reflect-

ing the precision and recall when predicting shared atten-

tion bounding boxes under different score thresholds. AUC

refers to the area under the ROC curve (higher is better).

Then given a certain score threshold, the L2 Distance (mea-

sured in pixel) is the Euclidean distance between the pre-

dicted shared attention bbx and the annotated ground truth.

Baseline Methods. We compare our approach against

several baselines ranging from simple (Random, Fixed

Bias) to more complex (Gaze Follow, Gaze+Saliency,

Gaze+Saliency+LSTM) as described below. Random: A

weak baseline that draws a Gaussian heatmap with random

mean and variance. Fixed Bias: As visible in Fig. 3, there
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Model Prediction Acc. L2 Dist.

Raw Img. 52.3 % 188

Only Gaze 64.0 % 108

Only RP 58.0 % 110

Gaze+RP 68.5 % 74

Gaze+RP+Img. 54.0 % 72

Fixed Bias 52.4 % 122

Random 50.8 % 286

Gaze Follow [25] 58.7 % 102

Gaze+Saliency[21] 59.4 % 83

Gaze+Saliency[21]+LSTM 66.2 % 71

Ours (Gaze+RP+LSTM) 71.4 % 62

Table 4. Quantitative evaluation results with Prediction Accu-

racy and L2 Distance. As seen, our full model achieves the best

performance over the test set of the VideoCoAtt dataset.

exists shared attention location bias in the TV shows. We

use a fixed-biased heatmap subject to a 2D Gaussian Dis-

tribution with mean and variance learned from our dataset

as a baseline to model such bias. Gaze Follow: We apply

the gaze following model in [25] to detect all the people’s

gaze fixations and gaze concurrences in a frame as a base-

line. Gaze+Saliency and Gaze+Saliency +LSTM: We re-

place our region proposal module with a top-performance

saliency model [21], and consider two baselines with and

without the temporal optimization module respectively.

Ablation Study. To better understand the importance of

each module in our proposed model architecture, we also

studied the model performance after removing some mod-

ules. Raw Img.: We first only use raw image as input to

train an end-to-end model, which means we only keep the

spatial detection module. Only Gaze: Then we try to aug-

ment the model by adding gaze estimation module to spa-

tial detection module. Only RP: We also tested the archi-

tecture with only region proposal module and spatial detec-

tion module. Gaze+RP: We add both gaze estimation and

region proposal modules before spatial detection module.

Gaze+RP+Img.: This is a variation of our model that uses

gaze, region proposal and raw image feature as input to spa-

tial detection module without using temporal optimization

module.

5.2. Results and Analysis

Quantitative results. Table 4 shows the comparison of

our model with baseline methods and several ablation mod-

els by two evaluation metrics Prediction Accuracy and L2

Distance. Our model achieves the best performance in both

the shared attention interval detection task (Prediction Acc.:

71.4%) and the shared attention location prediction task (L2

Dist.: 62).

Among all the baseline models, the second best model

is Gaze+Saliency+LSTM with a Prediction Acc. of 66.2%
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Figure 7. Quantitative evaluation results with ROC Curve, com-

puted over the test set of the VideoCoAtt dataset.

and a L2 Dist. of 71. The replacement of region proposal

module with a saliency model impairs our model perfor-

mance because the shared attention of people in a social

interaction may not be the most visually salient object in

the scene, but more influenced by the on-going interaction.

The performance of the Gaze Follow baseline in detecting

shared attention is mediocre, which is mainly because that

shared attention of a social group is goal-driven and object-

related, not just the concurrence of human gazes.

Among all the ablation models, Gaze+RP shows a over-

all best performance (Prediction Acc.: 68.5% and L2 Dist.:

74), but is still inferior to our full model with all the four

modules. And overall Only Gaze performs better than Only

RP, indicating the gaze estimation module plays a more im-

portant role than the region proposal module in shared at-

tention detection, which is consistent with our intuitions.

The simplest model without any module design Raw Img.

performs worst. The ablation study shows that each of the

four modules proposed by our model (§ 4) is important and

necessary for shared attention detection in videos.

Fig. 7 shows the ROC Curve and AUC comparison re-

sults among our full model, baseline models and ablation

models. Our model has the best precision and recall perfor-

mance and the largest AUC value than all the other mod-

els. Gaze+RP and Gaze also perform significantly better

than the remaining models. The result further confirms the

significance and effectiveness of our model architecture de-

sign. The gaze direction feature and the region proposal fea-

ture as well as the temporal constraints indispensably help

our model to gain great performance improvements in the

task of inferring shared attention in social scene videos.

Qualitative results. Fig. 8 exhibits an internal visualiza-

tion of shared attention detection results by our full model

on some example frames. The Gaze Heatmap roughly fea-

tures the attention of each individual in the social scene and

is not enough to accurately feature shared attention. The

Region Proposal Map gives some potential shared attention
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Figure 8. Shared attention detection results on example frames. With the input video frames, we show the outputs of the gaze estimation

module and the region proposal module in the second and third columns. The Single-frame Detection column shows the shared attention

heatmap H̃t trained on a single frame. The Temporal Optimization column shows the eventually optimized shared attention heatmap Ĥt.

Our final prediction results (red rectangles) and the ground truth annotations (green rectangles) are presented in the last column.

proposals and provides the important spatial constraints.

Single-frame Detection combines the Gaze Heatmap and

the Region Proposal Map to generate a preliminary shared

attention heatmap, which still has too much noises. After

the Temporal Optimization by convLSTM, the shared atten-

tion heatmap is much clearer and can provide more accurate

shared attention distribution information. The final column

in Fig. 8 compares our eventual shared attention prediction

results (depicted in red rectangles) with the ground truth

shared attention annotations (depicted in green rectangles).

As shown, there are good predictions that can exactly locate

the shared attention in the social scenes, like the prediction

in the first example. However, there are also some false

alarms existing. For example, The scene in the last row ac-

tually has only one shared attention, but our model gives

two predictions located near the two human faces. This is

an interesting failure example since whether the third per-

son on the right side is looking at the person on the left

side or the person in the middle is somehow ambiguous for

our model to distinguish. That’s why the shared attention

heatmap gets two peaks for this example. But similar situa-

tion in the fifth scene is successfully solved by our model.

6. Conclusion

This paper addresses a new problem of inferring shared

attention in third-person social scene videos. Although

shared attention is common in daily life and important for

social interactions, relevant studies are quite limited in the

computer vision community. We propose a dataset Video-

CoAtt and a model to detect shared attention in videos. Our

model combines individual gaze features and context region

proposal features from the raw video inputs. Based on the

two bottom features, our model learns to spatially detect and

temporally optimize shared attention in videos. Although

we get some reasonable results in the experiments, we are

still far from completely solving this problem. We hope our

dataset and model will serve as important resources to facil-

itate future studies related to this topic.
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