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Abstract

Watching expert demonstrations is an important way for

humans and robots to reason about affordances of unseen

objects. In this paper, we consider the problem of rea-

soning object affordances through the feature embedding

of demonstration videos. We design the Demo2Vec model

which learns to extract embedded vectors of demonstration

videos and predicts the interaction region and the action

label on a target image of the same object. We introduce

the Online Product Review dataset for Affordance (OPRA)

by collecting and labeling diverse YouTube product review

videos. Our Demo2Vec model outperforms various recur-

rent neural network baselines on the collected dataset.

1. Introduction

Humans often appeal to expert demonstrations when

learning to interact with unseen objects. Through watch-

ing the demonstration by another person, one can under-

stand the object affordances, i.e. functionalities of differ-

ent parts and possible actions that can be taken. Upon

seeing the same object in a different environment, humans

can map the learned affordances onto the object and imi-

tate the actions they observed from the previous demonstra-

tion. To teach a robot about how humans manipulate and

interact with objects, previous methods learn this knowl-

edge from simulated agent-object interactions [33, 23, 29],

demonstrations observed by the robot camera in the robot

workspace [22, 17] or demonstrations observed from a

third-person viewpoint [13, 14]. Different forms of object

affordances are learned from these demonstrations and used

for tasks such as imitation learning and action prediction.

However, there exists a much richer data resource of hu-

man demonstrations on object affordances which can be uti-

∗indicates equal contribution, sorted in alphabetical order.
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Figure 1. Our Demo2Vec model summarizes the demonstration

video via the embedded vector. The embedded vector is used to

predict object affordances (i.e. the interaction region and the action

label) for the target image. The demonstration videos are from

online product reviews on YouTube. More examples can be found

at: https://sites.google.com/view/demo2vec/

lized from the Internet. Specifically, there is a great number

of product review videos uploaded onto YouTube and other

video-sharing websites by product manufacturers and users.

These videos cover diverse sets of object categories which

people interact with in everyday life, including kitchenware,

garage tools, consumer electronics, appliances, toys and so

on. In each video, there is usually a human demonstra-

tor (e.g. user or salesperson) showing the functionality in

details through a sequence of actions on the product ob-

ject. These videos provide large-scale, high-quality data for

teaching robots about the functionality of the products and

how people interact with them.

Given human demonstrations from these product review

videos, our goal is to learn to summarize the feature em-

bedding of demonstration videos, and thus to predict the

interaction region and the corresponding action label on a

target image of the same object. Consider the griddle in

Fig. 1. By watching the demonstrator turning on the grid-

dle in the product review demonstration video, we aim to

predict the action label as rotate and the heatmap centered

around the knob in the middle on the target image. This

problem is challenging for mainly two reasons: First, the
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appearance of the object can have large variations between

the demonstration video and the target image, which makes

it difficult to transfer the learned knowledge between the

two. Second, the interaction between the human and the

object is usually very scarce across time and most video

frames do not provide useful information for understanding

the affordances. To tackle these challenges, we design the

Demo2Vec model. The model is composed of a demon-

stration encoder and an affordance predictor. The demon-

stration encoder takes the demonstration video as input and

encode it into a low-dimensional embedded vector. And the

affordance predictor utilizes the embedded vector to predict

the interaction region and the action label for the target im-

age. The embedded vector summarizes the information of

the human action and the object appearance from the ob-

served demonstration video.

For training Demo2Vec, we introduce the Online Prod-

uct Review dataset for Affordance (OPRA). Our dataset

consists of 20,612 sets of video clips, corresponding

product images, and annotations of both the interaction

heatmaps and the action labels labeled by human anno-

tators. These video clips are sourced from full-length

videos of YouTube product review channels and encompass

human-demonstrator interactions with a variety of common

everyday objects like kitchenware, household appliances,

and consumer electronics. Each target image can corre-

spond to different interaction heatmaps when paired up with

different demonstration videos, which covers most of the

available functionalities. Action labels of possible actions

are grouped into seven classes.

Our main contributions are:

• We propose the Demo2Vec model which extracts fea-

ture embeddings from demonstration videos, and pre-

dicts affordances of the same object by transferring the

extracted knowledge onto a target image.

• We introduce the Online Product Review dataset for

Affordance (OPRA). This is one of the first datasets

providing a testbed for affordance reasoning based on

demonstration videos in the wild.

• We evaluate the Demo2Vec on the newly introduced

OPRA dataset. Our model outperforms a list of recur-

rent neural network baselines as shown in Sec. 5.1.

2. Related Work

Learning Affordances Previous works rely on RGB im-

ages and videos augmented with additional information,

such as depth or estimated human poses, to learn affor-

dances. Koppula et al. propose an algorithm to learn se-

mantic labels, spatial regions, and temporal trajectories of

interactions from labeled RGB-D videos [12, 13] using a

skeleton tracker to extract estimated human poses. Zhu et

al. perform 3D scene reconstruction from RGB-D videos

which requires explicitly tracking the tool in use, the ob-

ject, and the hand movements [32, 33].

Many RGB-D image-based approaches perform pixel-

wise classification of a scene segmenting it into regions with

different affordance classes. Roy et al. predict affordance

maps with human-scale labels like walkable and sittable

[21]. Srikantha et al. perform fully-supervised pixel-wise

classification along with weaker forms of supervision such

as key points and image-level annotations [25]. Nguyen et

al. also predict object affordances as heatmaps and apply

their method to a real humanoid robot for simple grasping

tasks [18]. Other RGB image-based approaches obtain ad-

ditional 3D information from estimated human poses. Yao

et al. measure the relative poses of musical instruments and

human players to cluster different types of interactions ap-

plied to the instruments [30]. Similarly, Kjellstrom et al.

track hand poses and reconstruct them onto the object to

determine object-action pairs [11].

In contrast to these methods, our approach learns the af-

fordances purely from RGB-only video demonstrations and

does not require any additional information that the afore-

mentioned methods rely on. Furthermore, our videos are

more diverse in many aspects such as viewpoints, interac-

tions being taken, and potentially occlusion of the demon-

strator (or some parts of the target object), as these videos

are directly scraped from the Internet.

Learning from Demonstrations (LfD) Imitation learn-

ing is a method to teach a learning agent to mimic policies

from presumed expert demonstrations. Ross et al. propose

DAGGER [20], an iterative algorithm which learns station-

ary deterministic policies from the expert policy. Duan et al.

devise a one-shot imitation learning framework [3] to teach

a robot to stack blocks using novel demonstrations during

testing time. Stadie et al. design a neural network that learns

from third-person demonstrations in simulations [26]. Ho

et al. propose an algorithm based off generative adversar-

ial networks [5] to learn the reward functions and devise

new policy optimization update rules from expert trajecto-

ries [6].

In these scenarios, the demonstrations and the predic-

tions are from the same domain. However, in our work, we

aim to learn from on-line product review videos, and trans-

fer the learned knowledge onto a target image.

3. Method

Our goal is to predict affordances (i.e. action labels and

interaction regions) of an unseen object through an embed-

ded vector of the demonstration video. The embedded vec-

tor summarizes the object appearance and the human-object

interaction in the demonstration video. Specifically, we de-

fine the input and output of the model as follows:
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Figure 2. (a) Model overview. Our Demo2Vec model is composed of a demonstration encoder and an affordance predictor. (b) Demon-

stration encoder. The demonstration encoder summarizes the input demonstration video into a demonstration embedding. The affordance

predictor then uses the demonstration embedding to predict the interaction heatmap and the action label.

• Demonstration: The demonstration is a video V =

x1, ...,xT which has T video frames. Each demonstra-

tion contains a single human-object interaction, while

the same interaction can be applied on multiple regions

(e.g. two handles of a pressure cooker). The camera

viewpoint can change in each demonstration video.

• Target Image: The target image I contains the same

object demonstrated in the video. The object appear-

ances shown in the image and the video can be very

different due to changes of the object status (e.g. open

vs. close), camera viewpoints, backgrounds and other

factors.

• Interaction Heatmap: Given a demonstration video

V, we use a heatmap H to represent the interaction

region on I. H is defined as a probability distribution

over I and has the same size with I.

• Action Label: Given a demonstration video, we pre-

dict the action label c. We group the action labels into

7 classes as described in Sec. 4.

The Demo2Vec model is shown in Fig. 2. The model

is composed of a demonstration encoder and an affordance

predictor. The demonstration encoder extracts the demon-

stration embedding v as a low-dimensional feature vector

from the video V. Given v, the affordance predictor pre-

dicts the action label c and projects the interaction region

onto the target image I to generate the heatmap H.

3.1. Demonstration Encoder

The major challenge of learning the demonstration em-

bedding is to extract useful visual cues about the human-

object interaction. Usually the human-object interaction

only happens in an instant, while in most video frames

the demonstrator stays still and explain the functionality in

words. In addition, there could be many distractions in the

scene such as other objects on the table and the cluttered

background.

To tackle these challenges, we propose a demonstration

encoder model using convolutional LSTM networks (Con-

vLSTM) [7, 4, 27] and soft attention model [28]. For each

video frame, two input modalities are used: the RGB image

modality xt at each time step t, and the motion modality

∆xt = xt − xt−1 between t and t − 1. We refer ∆xt as

the motion modality since it captures the foreground mo-

tion while ignoring the static background. Both modalities

are fed into ConvLSTM to extract the spatial and temporal

information across time. On top of the ConvLSTM out-

puts, we utilize the temporal soft attention mechanism to

aggregate the outputs from the ConvLSTM. The attention

scores αt is computed from the concatenation of image fea-

tures and motion features. Finally, we obtain the demonstra-

tion embedding v by applying αt onto the image features

through element-wise multiplication, ie. v =
∑

T

t=1
αt⊙xt,

where T denotes the total time steps of the video, and ⊙

indicates element-wise product, and also note that the sum-

mation here implies element-wise summation of vectors.

3.2. Affordance Predictor

The affordance predictor is composed of the action clas-

sifier and the heatmap decoder. The action predictor uses

an LSTM to predict the action label. The heatmap decoder

is implemented as a modified version of fully convolutional

neural network [15]. It first encodes the target image I us-
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ing fully convolutional layers. The computed convolutional

features are then concatenated with the tiled demonstration

embedding v. Finally, the heatmap is computed by feeding

the concatenated features into transpose convolutional lay-

ers [31]. A softmax layer is applied to normalize the sum of

the heatmap to one.

The demonstration embedding v is learned and evalu-

ated through the affordance predictor. For action classi-

fication, we apply the cross entropy loss on the predicted

action label c. For the heatmap prediction, we use the KL-

divergence between the predicted heatmap and the ground

truth heatmap as the loss, where the ground truth heatmap

is rendered by applying a Gaussian blur to annotated points.

3.3. Implementation Details

Network Architecture: All images and all video frames

are resized to 256×256 as inputs. The video is subsampled

to 5 FPS. We use a VGG16 [24] as the feature extractor

where the pretrained weights are restored from Faster R-

CNN trained on MS-COCO dataset [19]. The pool5 layer

is used as the extracted visual representation and fed into

the ConvLSTMs and the heat map decoder. Each ConvL-

STM uses a kernel size of 3 and stride of 1, producing a

recurrent feature of 512 channels. For the heatmap decoder,

we apply two consecutive convolutional layers, both with a

kernel size of 1 and stride of 1, to the concatenated image

and video feature. For the transposed convolution layers in

the fully convolutional neural network, we use a kernel size

of 64 and a stride of 32.

Training: Our model trains on a single Nvidia Titan

X GPU for approximately 48 hours using an Adam opti-

mizer [10]. The learning rate is initially set to 2 × 10−5,

with a decay ratio of 0.1 every 100, 000 iterations. We train

our model on 16,976 examples and test it on 3,798 exam-

ples with the test-train split described in Sec. 4 where we

ensure the products in both sets are distinct.

4. Dataset

The main goal of our paper is to develop a model that

can learn affordance reasoning using human demonstrations

from videos in the wild. In order to train our model and pro-

vide a testbed for other approaches, we need a dataset con-

taining a large number of demonstrations of multiple human

interactions with various objects.

For this purpose, we propose the Online Product Review

dataset for Affordance (OPRA) collected for learning affor-

dance reasoning. The dataset contains 11,505 demonstra-

tion clips and 2,512 object images scraped from 6 popular

YouTube product review channels as well as corresponding

affordance information. The products demonstrated in these

videos include kitchenware objects, household appliances,

consumer electronics, tools, and other objects. To gener-

ate these clips, 1,091 full-length videos were each split into

Pull

Hold

Pick Up

Put Down

Push

Rotate

Touch

Figure 3. Example demonstration videos from our dataset. Each

data point consists of a video, an image, 10 annotated points

(shown as red dots) representing the interaction region, and an

action label (shown in purple boxes). Here we show three rep-

resentative frames for each video.

2 to 15 clips. Each segmented clip contains only a single

interaction between the demonstrator and the object. For

each product review video, 1 to 5 product images are col-

lected from the Internet based on the product information

on the YouTube video description written by the uploader.

This produces totally 20,774 pairs of demonstration video

clips and associated target images. We split the dataset into

16,976 pairs for training and 3,798 pairs for testing. This

is done manually to avoid identical objects from different

view points or too similar objects, such as different branded

coffee machines, from appearing in both the training and

testing sets. Samples are shown in Fig. 3.
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The affordance information contains the interaction re-

gion and the action label, which are annotated through

Amazon Mechanical Turk. Given each video clip contain-

ing a single human-object interaction, the annotator is asked

to first watch the demonstration video clip and then annotate

the action label along with the corresponding location of the

interaction on the target image. Here, we follow the annota-

tion routine from previous works on visual saliency [1, 2, 9].

In order to specify the interaction region, we ask the anno-

tator to mark ten pixels on the target image to indicate the

corresponding location where the interaction happened in

the video. Then, the heat map is computed as a mixture of

Gaussian centered at these chosen points. Notably, the heat

map might cover more than one part of the object, such as

the two handles of a pot.

The action classes consists of 7 different labels, and

their types and associated distribution among the entire

dataset (including both training and testing) is as follows:

hold: 3992 (19.22%), touch: 9373 (45.12%), rotate: 1435

(6.91%), push: 2645 (12.73%), pull: 1138 (5.48%), pick

up: 1342 (6.46%), put down: 849 (4.09%). In average

each video comes with 2.55 target images of the same ob-

ject from a different viewpoints.

An example demonstration video in our dataset is shown

in Fig. 4. The video is segmented into several clips. Each

box is a different video clip containing an action being ap-

plied to an object by the demonstrator. Note that not all

video clips are of the same length. Each video clip is asso-

ciated with a ground truth interaction heat map, generated

from the ten annotated points, as well as a demonstrator-

object interaction at that region, referred to as the action

type. Notably, as our video clips consists of segments of a

continuous video, extracting the interaction region and ac-

tion can be thought of as extracting a high-level action man-

ual for repeating the demonstration.

Compared to existing datasets for affordance reason-

ing [12, 16], our dataset is substantially different in sev-

eral aspects. First, instead of having a single consistent

viewpoint, each on-line product review video can be cap-

tured from multiple different camera angles, even within the

same video. Second, the diversity of objects, environments

and styles of videos recorded by different uploaders is quite

large. Third, the numbers of videos and images collected in

this dataset is significantly larger than all datasets from pre-

vious object affordance works. These characteristics distin-

guish our dataset from others and provide large-scale data

for solving object affordance reasoning in the real world.

5. Experiments

In this section, we examine the performance of our

model on learning an effective demonstration embedding.

The demonstration encoder should encode the raw video to

a latent representation termed as the demonstration embed-

ding. The affordance predictor then take this demonstration

embedding as inputs to accurately render the interaction

heatmap on the target image as well as predict the action

label being applied to that region. We first show qualitative

results including success and failure cases in Sec. 5.2, and

then report quantitative results in Sec. 5.1 where we com-

pare our proposed model and the baselines. In Sec. 5.3 we

analyze our models and conduct studies to demonstrate the

capabilities of our model and interpret what it learns.

We compare several variants of our model that mainly

differ in the architecture of the demonstration encoder as

follows:

CNN+LSTM+Deconv: A standard linear LSTM network

used as the demonstration encoder, the image feature (pool5

of the ConvNet) and the 1 × 1 × 4096 demonstration em-

bedding are concatenated by tiling the embedding to ”fill”

all the spatial locations of the image feature.

CNN+ConvLSTM+Deconv: A ConvLSTM [27] is used

as the demonstration encoder to better capture temporally

correlated spatial information, the demonstration embed-

ding and the image feature are concatenated directly in their

respective spatial dimensions.

CNN+ConvLSTM+STN+Deconv: As described in [8], the

spatial transformation of a latent feature can be viewed as

a spatial attention to that feature. Our ConvLSTM demon-

stration encoder is then taking as input the extracted frame

feature after spatial transformation.

CNN+ConvLSTM+TSA+Deconv: In Sec. 3.1, we try to

apply temporal soft attention on top of the demonstration

encoder to aggregate the output features. The rest of the

model is identical to CNN+ConvLSTM+STN+Deconvl.

CNN+ConvLSTM+Motion+TSA+Deconv: The temporal

soft attention scores are computed using both the RGB im-

age modality and motion modality. The rest of the model

is identical to CNN+ConvLSTM+STN+Deconv. We refer

this model as our core model.

For models without the temporal attention mechanism,

we simply apply an average pooling to aggregate the output

features.

5.1. Quantitative Results

Interaction Heatmap Prediction Table 1 summarizes

the quantitative results. We evaluate performances of our

core model and the baselines with two different metrics on

our test set: KL-Divergence(KLD) and Negative Log Like-

lihood (NLL). KL-Divergence evaluates the mismatch of

the two spatial distributions of the heatmap layouts. As

shown in Table 1, our core model outperforms all the base-

lines significantly in both evaluation metrics.

Action Classification Table 2 shows the Top-1 predic-

tion accuracies of our core model and several baselines.

The action classification task here is fine-grained and the

motion trajectory is one of the most important factors to
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Hold(location) Pick_Up(location) Push(location) Pick_Up(location)

Hold Pick Up Push Pick Up

Figure 4. Example of a segmented demonstration video. The full video is about the task of making a smoothie, which is composed of

sequential primitive actions: hold, pick up, push, pick up. The demonstration is segmented into 4 short clips, each shown in a different

colored box. The sequential nature of some demonstration videos allows for learning sequential action planning.

successfully infer the action in the video. Our core model

utilizes the motion modality and it outperforms every other

baselines. Many failure cases are caused by similar action

classes such as rotating and holding from the video.

Model KLD NLL

LSTM 3.45 113.65

ConvLSTM 3.31 112.17

STN+ConvLSTM 3.26 116.52

TSA+ConvLSTM 3.34 117.22

Motion+TSA+ConvLSTM 2.34 102.50
Table 1. Performances of the interaction heatmap prediction.

Demonstration Encoder Top-1 (%)

LSTM 20.41

ConvLSTM 30.20

TSA+ConvLSTM 38.47

Motion+TSA+ConvLSTM 40.79
Table 2. Performances of the action label prediction.

5.2. Qualitative Results

Example qualitative results are shown in Fig. 7, includ-

ing seven rows of successful cases and three rows of failure

cases. The figure shows three sample frames of a decom-

posed video clip, the ground truth interaction heatmap ren-

dered from the annotated points (by applying a Gaussian

blur on a binary image), the predicted interaction heatmap

from our model, and the ground truth and the predicted ac-

tion label. The heatmaps are overlaid on the target image

for visualization.

Our model is able to estimate the interaction region of in-

terest and map this region to the target image for a variety of

commonly seen interactable parts such as handles, buttons,

knobs, and lids. Notably, these examples include videos

with diverse l viewpoints, scales, and levels of occlusions.

One common failure case is caused by similar action

classes. For example, our affordance predictor often con-

fuses holding for rotating, since the motion dynamics in

rotation are hardly captured and the overall hand gestures

are similar to holding or grasping. In addition, it would be

hard to predict correct heatmaps when the target image con-

tains too many similar objects. In the first failure example,

the model predicts an interaction heatmap that attends to a

confounding disc-like object in the target image instead of

the desired one. In the second example, the model prop-

erly predicts a lid being the interaction region, based off the

video, but does not attend the proper lid in the image which

includes multiple visually similar containers. For the last

example, the model correctly predicts that the demonstrator

interacts with a knob, but incorrectly projects the heatmap

onto the wrong knob.

5.3. Analysis

Multi-Interaction Regions: An effective model for in-

ferring the interaction region and associated action label

should be responsive to different video demonstration in-

puts. The model should not only fixate on specific object

parts as it may seem to be the saliency regardless of the

demonstration video. In other words, given the same im-

age but a set of different videos containing different inter-

actions (potentially in both interaction regions and action

labels), the predictions of the model should change accord-

ingly. In Fig. 5, we show such an example that our model

is trained to output different interaction heatmaps based on

the interaction taken place within each demonstration video.

This suggest that our demonstration encoder correctly en-

code different interactions between the hand motion and the

proper interaction region of the object.

Viewpoint Robustness: In our dataset, the same video

clip may be associated with multiple images of the same

product. These target images are normally taken from dif-

ferent viewpoints or may contain other differences includ-

ing extra objects or color changes. Even with this vary-

ing target image input, our model still must learn to infer

the proper, corresponding interaction regions based off the

demonstration videos. In Fig. 6, we show that our model

is indeed robust to such variance in the target image. The

2144



G
r
a
s
p

T
o
u
c
h

T
o
u
c
h

demonstration videos

target image

model prediction

demo2vec
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TouchTouch Touch

demonstration video

m
o

d
e

l p
re

d
ic

ti
o

n
ta

rg
e

t 
im

a
g

e
s

d
e

m
o

2
v
e

c

Figure 6. We show that our model is robust to variations in the

target image. Given the same demonstration video of touching a

button on a blender, the correct interaction region on three different

images of the same blender highlight the same part of the blender.

affordance predictor takes the same demonstration embed-

ding and learn to fixate on the same semantic interaction

region for different viewpoints of the target object.

Visualization of the learned temporal soft attention:

We further inspect what our model is fixating on through-

out the entire video clip. We visualize the learned temporal

soft attention scores as shown in Fig. 8. It is noticeable our

model starts to attend more when demonstrator is interact-

ing with the object at its proper interaction regions, which

implies the motion dynamics is successfully captured and

interpreted correctly by the affordance predictor.

6. Conclusion

In this paper, we tackle the problem of reasoning affor-

dances based on demonstration videos in the wild. We intro-

duce the Demo2Vec model which extracts feature embed-

dings from demonstration videos, and predicts affordances

of the same object by transferring the extracted knowledge

onto a target image. The Demo2Vec model is composed

of a demonstration encode and a afforance predictor. To

train and evaluate the model, we collect YouTube prod-

uct review videos and introduce the Online Product Review

dataset for Affordance (OPRA). The OPRA dataset is one

of the first datasets providing a testbed for affordance rea-

soning based on demonstrations from YouTube product re-

view videos. Our model achieves better performances on

the OPRA dataset comparing with various neural network

baselines, in terms of interaction heatmap prediction and

action label prediction.
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Figure 7. Qualitative results on the OPRA dataset. Our model is able to predict the interaction heatmap and action label for a variety

of video and object scenarios. Here we show common failure cases which are caused by self-occlusions in the target image (first row),

confounding parts on the object (last two rows).

Figure 8. Visualization of the learned temporal soft attention. The predicted temporal soft attention coefficients are shown below each

video frame, plotted according to the color bar on the right. Yellow and blue colors indicate high and low attention coefficients respectively.

2146



References

[1] Z. Bylinskii, T. Judd, A. Borji, L. Itti, F. Durand, A. Oliva,

and A. Torralba. Mit saliency benchmark. 5

[2] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand.

What do different evaluation metrics tell us about saliency

models? arXiv preprint arXiv:1604.03605, 2016. 5

[3] Y. Duan, M. Andrychowicz, B. Stadie, J. Ho, J. Schneider,

I. Sutskever, P. Abbeel, and W. Zaremba. One-shot imitation

learning. arXiv preprint arXiv:1703.07326, 2017. 2

[4] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to

forget: Continual prediction with lstm. 1999. 3

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information

processing systems, pages 2672–2680, 2014. 2

[6] J. Ho and S. Ermon. Generative adversarial imitation learn-

ing. In Advances in Neural Information Processing Systems,

pages 4565–4573, 2016. 2

[7] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997. 3

[8] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial

transformer networks. In Advances in Neural Information

Processing Systems, pages 2017–2025, 2015. 5

[9] T. Judd, F. Durand, and A. Torralba. A benchmark of com-

putational models of saliency to predict human fixations. In

MIT Technical Report, 2012. 5

[10] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980, 2014. 4

[11] H. Kjellström, J. Romero, and D. Kragić. Visual object-
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