
Planar Shape Detection at Structural Scales

Hao Fang Florent Lafarge

Inria – Université Côte d’Azur

firstname.lastname@inria.fr

Mathieu Desbrun

Caltech

mathieu@cms.caltech.edu

Abstract

Interpreting 3D data such as point clouds or surface

meshes depends heavily on the scale of observation. Yet,

existing algorithms for shape detection rely on trial-and-

error parameter tunings to output configurations represen-

tative of a structural scale. We present a framework to au-

tomatically extract a set of representations that capture the

shape and structure of man-made objects at different key

abstraction levels. A shape-collapsing process first gener-

ates a fine-to-coarse sequence of shape representations by

exploiting local planarity. This sequence is then analyzed to

identify significant geometric variations between successive

representations through a supervised energy minimization.

Our framework is flexible enough to learn how to detect

both existing structural formalisms such as the CityGML

Levels Of Details, and expert-specified levels of abstraction.

Experiments on different input data and classes of man-

made objects, as well as comparisons with existing shape

detection methods, illustrate the strengths of our approach

in terms of efficiency and flexibility.

1. Introduction

Shape detection from raw 3D data is a long-standing

problem whose goal consists in turning a large amount of

geometric data into a higher level representation based on

simple geometric shapes. Instead of reasoning at the scale

of 3D atomic elements such as points, triangular facets or

voxels, it is often more appealing to directly handle larger

geometric shapes in order to both reduce the algorithmic

complexity and analyze objects with a higher representation

level. Most common geometric shapes include lines, planes

and quadrics. In this work, we focus on planar shapes due

to their relevance to man-made environments [17].

Shape detection is typically used as a prior step in a large

variety of vision-related tasks ranging from surface recon-

struction [2, 5, 29, 37, 20] to object recognition [4, 22] and

data registration [7, 38]. Existing algorithms typically re-

quire two user-specified parameters: (i) a fitting tolerance

ǫ that specifies the maximal distance of a datum to its as-

sociated geometric shape, and (ii) a minimal shape size σ

that specifies how large a group of samples must be to be

considered as a geometric primitive—typically, a number

of inliers when dealing with point clouds, or a minimum

area for meshes. Finding parameter values that produce de-

sirable results often involves fastidious manual labor: sur-

prisingly, the incidence of these two parameters on shape

detection has not been formally studied in the literature.

In this work, we propose an efficient exploration of this

(ǫ, σ) space of geometric abstractions to find the structural

scales of an input geometry, i.e., the few simplified repre-

sentations that are truly meaningful to capture the structure

of man-made objects. From a progressive planarity-driven

coarsening of the input data, we demonstrate that we can

reliably detect structural scales whose characteristics are

learned from training sets of different types of objects such

as buildings, house furniture, or cars.

2. Related work

We first review prior work in three related aspects of our

goal: shape detection, scale-space exploration, and classifi-

cation of 3D data.

Shape detection. The automated detection of geomet-

ric shapes from 3D measurement data is an instance of

the general problem of fitting mathematical models to data.

Among many successful approaches, region growing based

approaches [26] are very efficient when input data is rela-

tively clean. They proceed by growing a local shape hy-

pothesis in a spatial neighborhood of a seed point while fit-

ting is observed. In presence of outliers, RANSAC-based

algorithms such as [27] typically performs best by itera-

tively constructing many shape hypotheses from a few sam-

ples, verifying them against the input data, and selecting

the shapes with the highest numbers of inliers. Accumula-

tion space methods [6, 12, 1] operate through voting in the

parameter space of the shapes. Gaussian sphere mapping

is a common choice for 3D data but requires a good esti-

mation of normals. More recently, various research efforts

have tried to both detect and regularize shapes according to

geometric relationships such as parallelism or orthogonal-

ity [30, 23]. This can also be solved as a labeling prob-

12965

lem by turning shape detection into shape selection among

a finite set of candidates [10, 25, 19]. Although these meth-

ods are popular in 3D vision, obtaining a representation that

adequately describes the input shape often requires time-

intensive parameter tuning.

Scale-space exploration. Scale-space theory is an in-

teresting framework for representing nD signals at multiple

scales, in particular for the analysis of images [15] and 3D

data [24, 14, 18]. Such methods rely on the detection of ge-

ometric variations in a spatial neighborhood whose size is

controlled by a continuous scale parameter. These methods,

which have been designed to apply to free-form objects with

continuously differentiable surfaces, are however ill suited

to man-made objects that typically involve piecewise para-

metric surfaces. For such objects, existing works use filter-

ing procedures to select shapes at different structural levels,

usually called levels of details (LOD [16]). Shape selection

typically relies on simple user-defined area and orientation

rules [17, 32]. In particular, there is no scale parameter to

characterize, detect or learn structural variations.

3D object recognition. Detecting structural scales is

closely related to 3D object recognition. Traditional meth-

ods exploit geometric descriptors to locally characterize

data distribution, e.g., through corner and edge detectors

[21], scatter matrix [31] or spin images [11]. These 3D de-

scriptors are usually embedded into a learning procedure to

recognize, for instance, urban objects from LIDAR scans

[8]. With the emergence of deep learning, recent meth-

ods exploit multi-layered voxel-based representations [35]

to strongly simplify the shape of objects. Deep learning

techniques are efficient for recognition tasks, but are so far

less attractive for addressing reconstruction issues. More-

over, these recognition methods operate on raw geometric

data of free-form objects, and cannot be easily extended to

shape representations of man-made objects.

3. Motivation and overview

The motivation behind our work is to explore the (ǫ, σ)
space of shape approximation for a given input 3D scene,

where ǫ quantifies the geometric tolerance to data and σ
defines the minimum number of inliers: its geometric rel-

evance to the issue of shape and scale detection has been

repeatedly confirmed (see, e.g., [26]). Yet, it may appear

at first sight that finding meaningful abstractions of input

shapes by exploring this (ǫ, σ) space is simply intractable:

even a greedy search through discrete sampling is unlikely

to find the few key structural scales that we seek. We ob-

serve, however, that for a vast range of 3D objects (includ-

ing man-made shapes), the meaningful structural scales are

likely to be well captured along the (bottom-left to top-

right) diagonal of the parameter space (ǫ, σ) as illustrated

in Figure 1. This property has an important practical con-

ǫ

σ10 100 1000

(minimum number of inliers)

0.05%

0.5%

5%

(%
o
f

th
e

b
o
u
n
d
in

g
b
o
x

d
ia

g
o
n
al

)

Figure 1. Influence of shape detection parameters. A point sam-

pled object partially piecewise-planar (bottom left) is turned into a

set of planar elements by region growing [26] given a fitting toler-

ance ǫ and a minimal shape size σ. Increasing σ for a fixed ǫ pro-

gressively removes the smallest planar elements. Simplifications

that are most representative of a key structural scale are located

along the bottom-left to top-right diagonal: above (resp., below),

planar regions (resp., free form parts) disappear too fast.

sequence: we can turn this two-parameter exploration task

into a simple 1D exploration along this diagonal—a far

more tractable task.

We are left with two issues to address: (i) how to sam-

ple efficiently the shape configurations along the parameter

space diagonal which are likely to cross the different struc-

tural scales, and (ii) how to detect structural scales robustly.

To address (i), we propose a shape-collapsing procedure

described in Section 4 that merges progressively pairs of

planar shapes from an initial configuration with both low ǫ
and σ, i.e., a configuration at the bottom left of the param-

eter space of Figure 1. Since merging two planar shapes

cannot decrease the maximal distance to an inlier or the

minimum shape size, repeated shape merging will gener-

ate a sequence of shape representations near the diagonal

of the parameter space, as illustrated in Figure 2. Such

a procedure is very efficient, and returns a fine discretiza-

tion of abstractions roughly along the diagonal of our two-

parameter space: starting from n planar shapes, we produce

a sequence of n shape configurations called a trajectory in

the parameter space.

As structural scales correspond to arbitrary levels of ab-

straction, solving (ii) by tracking and quantifying the geo-

metric changes along this diagonal is not a reliable approach

to detect them. Instead, we adopt an efficient strategy de-

tailed in Section 5 that consists in learning the geometric

characteristics of structural scales from a training set. The

latter is typically created by a manual assignment of struc-

tural scales to the configurations of trajectories obtained by

our shape collapsing procedure on a few test datasets. This

training strategy offers the advantage to be fast compared to

2966

Input mesh
(24K facets)

ǫ

σ

1

1

2

2

3

3

4

4

0

0

1%

10%

0.1%
0.01 0.1 1 10 100

11,060 shapes

ǫ = 0.12%
σ = 0.002

535 shapes

ǫ = 0.33%
σ = 0.023

12 shapes

ǫ = 2.28%
σ = 28.6

9 shapes

ǫ = 4.28%
σ = 31.8

5 shapes

ǫ = 4.6%
σ = 108.3

Figure 2. Overview. Starting from 3D data (here a dense mesh generated by MultiView Stereo, top left), our algorithm produces a set

of high-level representations with planar primitives (representations 1–4) describing the object at different representative structural scales

(bottom). By progressively merging planar regions of an initial state (representation 0), one creates a sequence of representations whose

further analysis allows for the extraction of a few structurally relevant representations (top right). Such shape representations can be used,

for instance, as input for piecewise-planar reconstruction [5] (see grey compact meshes). Note that each shape is displayed as a colored

polygon computed as the α-shape of its inliers projected onto the shape; we use this visualization of inliers in all following figures.

a greedy exploration of the 2D parameter space, and con-

sistent with the way planar shapes are sampled during the

testing.

4. Shape collapsing

Our shape-collapsing process iteratively merges two pla-

nar shapes from a current shape abstraction. This approach

relies on two key ingredients: a merging operator specifying

how to create a new planar shape from two existing ones,

and a priority policy that orders the shape pairs to merge.

di

dj

dk

Figure 3. Merging operator. Two adjacent shapes i and j are

merged into the shape k that minimizes the Euclidean distance to

their joint sets of inliers. If di denotes the distance between shape

i and its furthest inlier, note that dk ≥ max(di, dj).

Initialization. We start by extracting an initial configu-

ration of planar shapes from input data, be it a 3D point

cloud or a surface mesh. A region growing algorithm [26] is

used with low parameter values, typically ǫ = 0.05% of the

bounding box diagonal, and σ = 10 inliers. As preprocess-

ing, we compute an adjacency graph between the detected

shapes based on spatial proximity: for surface meshes, two

planar shapes are considered as adjacent if at least a pair of

their respective inlier facets shares a common edge in the

input mesh; for a point cloud instead, two shapes are ad-

jacent if at least a pair of their respective inlier points are

mutual neighbors in the k-nearest neighbor graph of the in-

put points (we use k=20 in all our experiments).

Merging operator. This operator is applied on the edges

of the adjacency graph. It merges two adjacent planar el-

ements into the planar shape that minimizes the Euclidean

distance to their joint sets of inliers, as illustrated in Figure

3. The optimal planar shape is trivially found via Principal

Component Analysis.

Priority policy. In order to choose the next pair of planar

shapes to merge, a weight is assigned to each edge of the ad-

jacency graph. Merging is then performed on the edge with

the lowest weight. Different metrics can be considered for

specifying the weights, e.g., deviation of the normal vec-

tors of the two planes, or area of the smallest of the two

shapes. After an experimental evaluation of several met-

rics, we chose the Euclidean distance between input points

to planar shapes as it offers the best compromise between

accuracy and performance. In particular, this choice limits

drifts during shape collapsing because it relies on a direct

measurement to input data. Formally, we define the weight

wij between planar shapes i and j as

wij =

√

√

√

√

1

σi + σj

∑

pk∈Iij

d(pk, P)2 (1)

2967

iter #1 iter #2 iter #3 iter #4 iter #5 iter #6 iter #7 iter #8 iter #9

Figure 4. Shape collapsing. Iteratively merging adjacent planar elements creates a sequence of shape representations, some of which being

structurally representative, e.g., representations obtained after iterations #4 and #7 (top). At each iteration, the black edge in the adjacency

graph (bottom) indicates the edge with the lowest weight, i.e. the next edge to be collapsed.

where σi is the size of shape i, Iij is the joint set of in-

liers from shapes i and j, and P is the optimal planar shape

computed by the merging operator. At each iteration, we

choose the pair of shapes with the lowest weight as the can-

didates to be merged. After merging two shapes, the adja-

cency graph as well as the weights are updated. Note that

this update is local as only edges with the planar shapes

adjacent to the two merged shapes are impacted. Figure 4

illustrates this procedure.

5. Detection of structural scales

Given a roughly-diagonal trajectory in parameter space,

our goal is now to detect structural scales by analyzing

the geometric evolution of the shape representations along

the trajectory. For an object with simple structure, the

problem can be solved in a unsupervised manner by de-

tecting strong geometric variations between two successive

piecewise-planar representations. However, in mosts cases,

structural scales are levels of abstraction that cannot be reli-

ably detected without learning from training samples. We

thus formulate the detection of structural scales as a su-

pervised labeling problem by assigning a structural scale to

each shape configuration of the trajectory.

Feature vector. We define a feature vector in order to

characterize a configuration of planar shapes from a geo-

metric point of view. Four different geometric descriptors

are used:

• Centroid distance that computes the Euclidean dis-

tance between the barycenters of two adjacent shapes;

• Normal alignment measuring |ni·nj | between the nor-

mals ni and nj of two adjacent shapes;

• Area variation that computes 1 − |σi − σj |/|σi + σj |
from the sizes σi and σj of two adjacent shapes;

• z-axis deviation that compares the relative orientation

of two adjacent shapes with the z-axis nz through the

expression | |ni · nz| − |nj · nz| |.

For each descriptor, we create an histogram describing

the distribution over all the pairs of adjacent shapes. We

then normalize each histogram and concatenate them into a

18-bin feature vector, as illustrated in Figure 5. We denote

by fi the feature vector of shape representation i. Such a

simple feature vector summarizes the main geometric char-

acteristics of a shape representation as mutual position, ori-

entation, size and alignment of pairs of adjacent shapes.

Figure 5. Feature vector. Feature vectors (see histograms) can

discriminate between shape representations that capture differ-

ent structural levels of man-made object, here cars. Four bins

are used for both normal alignment (orange) and z-axis deviation

(navy), and five bins for centroid distance (blue) and area variation

(green).

Energy minimization. Recall that from an initial config-

uration composed of n planar shapes, repeated collapsing

generates a trajectory with n shape representations. Given a

finite set of structural scales L = {1, 2, ...,K}, we consider

a random variable li ∈ L that associates a structural scale

to the ith shape configuration of the trajectory. The qual-

ity of a label assignment l = (li)i∈[1,n] over a trajectory is

measured through an energy U of the form

U(l) =

n
∑

i=1

ψi(li) + γ

n−1
∑

i=1

ϕi,i+1(li, li+1) (2)

where ψi(li) is a unary data term, ϕi,i+1(li, li+1) is a pair-

wise potential that accounts for temporal consistency be-

tween two successive shape representations, and γ > 0 is

a weight balancing the two terms. In all our experiments,

γ has been fixed to 0.5. Note that this formulation is ba-

sically a Hidden Markov model, so the configuration that

2968

minimizes energy U is found by dynamic programming us-

ing the Viterbi algorithm [33].

Choice of ψi. The unary data term of shape representation

i is formulated using a classifier trained by Random Forests

[3]. It is expressed by:

ψi(li) = −
1

|T |

∑

t∈T

log(Pt(li|fi)), (3)

where T denotes a set of decision trees, |T | the number of

trees, and Pt the prediction probability of the label li for the

decision tree t.

Choice of ϕi,i+1. The pairwise potential promotes tem-

poral consistency along the trajectory: it penalizes scale

changes between successive representations when geomet-

rically too similar. This potential is defined through

ϕi,i+1(li, li+1) = wi,i+1 · T (li, li+1) (4)

wherewi,i+1 = exp(−dEM(fi, fi+1)/2) is a weight measur-

ing the similarity between feature vectors fi and fi+1. The

distance dEM is defined as the L2 norm of the Earth Mover

distances for each descriptor histogram using a L1 ground

distance. This weight favors high geometric variation be-

tween two successive representations with different labels.

The term T (li, li+1) measures jump coherence from scale

li to scale li+1, and is defined as

T (li, li+1) =











0 if li+1 = li

1 if li+1 = li + 1

+∞ otherwise

(5)

The role of T (li, li+1) is to weakly penalize a jump between

two successive scales while preventing other jumps in scale.

The resulting labeled sequence assigns a same label to a

whole range of representations. The first shape representa-

tion with a given label is selected as representative of the

object structure at this scale. With this choice, every planar

shape is a relevant component of the object structure.

6. Experiments

We tested our method on three datasets with (i) different

man-made objects (buildings, cars, sofa and indoor scenes),

and (ii) different input data including synthetic/real-world

surface meshes and point clouds. We only considered three

scales in all our experiments: one scale with fine details,

one with general structure and no fine details, and one

with an overly-simplified general shape; but any (typically

small) number of scales can be used.

• CAD dataset. The Princeton Shape database [28]

is used to generate noise-free input point clouds

that uniformly sample CAD models. Models are

mainly composed of free-form shapes, including cars

and sofas. The three structural scales are levels of

abstraction that were specified by an expert.

• MultiView Stereo dataset. We created a dataset of

buildings represented by dense surface meshes gener-

ated from MultiView Stereo (MVS [34]). These dense

meshes contain fine details such as chimneys, but have

a high amount of defects in the form of noise, holes

and erroneous topology. We trained the algorithm to

recognize the Levels Of Details 1, 2 and 3 defined by

the cityGML formalism [9] as structural scales.

• RGB-D dataset. We also evaluated our algorithm on

point clouds generated by RGB-D cameras from the

Sun3D database [36] and datasets from [13]. These

3D point sets correspond to indoor scenes, each repre-

senting a room with walls, floor and furniture. Inputs

are defect laden with variable noise, heterogeneous

spatial density and severe occlusions. The three

structural scales are levels of abstraction that were

specified by an expert.

For each class of man-made objects, we randomly se-

lected one third of the models for training, and the two re-

maining third for testing. To create planar configurations

at representative structural scales for the training set, we

created sequences of configurations by our automatic shape

collapsing process and then assigned a scale label to each

configuration by visual inspection. To speed-up the anno-

tation, we visually detect the pairs of successive configura-

tions where the scale changes, and then automatically an-

notate the configurations in between. Such a training pro-

cedure is (i) fast, i.e., from 30 minutes (Multiview dataset)

to 2 hours (RGB-D dataset) to create the full training set,

and (ii) consistent with our two-step strategy since training

samples are also generated from shape collapsing.

Qualitative and quantitative evaluation. Figure 6

presents some qualitative results on small portions of the

three datasets. We observe that the computed representa-

tive shapes for each structural scale on testing examples are

structurally similar to those in the training samples. Our

framework is flexible enough to learn shape detection from

both existing formalisms such as the CityGML LODs for

representing buildings, and expert-specified levels of ab-

straction of man-made objects. Table 1 demonstrates that

our resulting scale labeling is fairly accurate. One may

note that accuracy on the MultiView Stereo dataset is much

higher than for the other datasets; two main reasons explain

this difference: buildings are less free-form than cars or fur-

nitures, and levels of abstraction for building are less sub-

jective. Once trained on a specific class of object, the clas-

sifiers do not generalize particularly well when tested on

2969

Input 3D data structural scale 1 structural scale 2 structural scale 3
tr

ai
n
in

g
te

st
in

g

C
ar

s
fr

o
m

C
A

D
m

o
d

el
s

[2
8

]

tr
ai

n
in

g
te

st
in

g

S
o

fa
s

fr
o

m
C

A
D

m
o

d
el

s
[2

8
]

tr
ai

n
in

g
te

st
in

g

B
u

il
d

in
g

s
fr

o
m

M
V

S
m

es
h

es
[3

4
]

tr
ai

n
in

g
te

st
in

g

In
d

o
o

rs
fr

o
m

K
in

ec
t

p
o

in
t

se
ts

[3
6
]

Figure 6. Results on different man-made objects. The shape representations archetypical of each structural scale generated by our algorithm

on testing examples have similar structures to the training samples. In particular, our algorithm is able to learn the CityGML formalism

and produce meaningful shape representations of buildings at different LODs. For indoor scenes, both furniture and permanent elements

such as floor and walls exhibit the same level of detail at a given scale. Even for less structured objects such as cars or sofas, the level of

abstraction conveyed by planar elements remains consistent between training and testing. Note in particular how cars at scale 1 have their

bonnet described by many elements, which turn into a single element at scale 2, before merging with the windshield at scale 3.

other object categories: accuracy typically decrease propor-

tionally to the similarity between objects, e.g. applying the

”Car” classifier on the ”Sofa” dataset decreases accuracy

from 86% to 63%.

Robustness to data defects, object size and initialization.

As scale detection is performed using normalized features,

our algorithm is only weakly affected by noise: adding 1%
random noise in the car dataset only decreases the general

accuracy by 1.8%. Initialization can be an issue if we start

2970

error (% of BB diagonal)

0 ≥ 1

Ransac Rapter ours (scale 1) ours (scale 2) ours (scale 3)

Figure 7. Comparisons on Empire. The result from Rapter [19] (courtesy of the authors) finds a visually-significant configuration of planar

shapes to describe the building, whereas the one from Ransac [27] was obtained by manual parameter tuning to obtain a result as close as

possible as our scale 1. While Ransac and Rapter exhibit similar error distributions with respect to input points (see color histograms from

yellow to black), our algorithm produces three output representations that strongly differ in terms of geometric accuracy and number of

planar elements, while guaranteeing a similar coverage. Our representation at scale 1 is more meaningful than those obtained by these two

methods. In particular, Ransac and Rapter omit fine planar components on the top of the tower.

with too large ǫ and σ values that are located after the first

scale. In practice, there is no accuracy difference on the

MVS meshes if we start with ǫ = 0.05% and ǫ = 0%, i.e.,

with each triangular facet as a shape. Since histograms of

descriptors are normalized, our classifier is robust to object

size variability as well: while the buildings in Figure 6 have

quite different sizes (from small cottages to entire blocks),

their shape representations are consistent at each scale.

Object #training #testing training testing

class samples samples accuracy accuracy

CAD car 5K 12K 98.53% 82.88%

CAD sofa 3K 4K 97.60% 85.88%

MVS building 9K 12K 99.61% 99.30%

RGB-D indoor 20K 26K 96.90% 80.60%

Table 1. Accuracy of scale labeling on training and testing sets for

different object classes.

Timings. Learning the classifier on the different datasets

requires from 5 seconds for the MultiView Stereo dataset

(9K training samples) to 2.5 minutes for the RGB-D dataset

(20K training samples) for a random forests training with

100 trees and 25 levels. Table 2 details timings for testing

on one representative sample of each object class. Shape

collapsing is the most time-consuming step, whereas the

timing for scale detection is negligible and independent of

the input complexity.

Comparisons with shape detection methods. We com-

pared our algorithm to an advanced Ransac-based method

[27], and the Rapter labeling mechanism [19]. A fair

comparison must consider three main evaluation criteria:

geometric fidelity, coverage and output complexity. We

chose as measures the root mean square distance of detected

shapes to inliers, the ratio of points assigned to shapes, and

the number of shapes respectively. Contrary to our algo-

rithm, these other methods required tuning some parame-

Object Input Initialization Shape Scale

class complexity collapse detection

CAD car 143K pts 4.05s 10.7s 0.24s

CAD sofa 142K pts 4.79s 21.6s 0.16s

MVS mesh 3.3K facets 0.31s 0.54s 0.22s

RGB-D indoor 1.15M pts 114s 12min 0.72s

Table 2. Running times for testing on one representative sample

of each object class (see the first testing model for each class in

Figure 6). Experiments have been done on a single-core Intel Core

i7 processor clocked at 2GHz.

ters as the fitting tolerance. Table 3 presents the evaluation

scores from two input point clouds representing complex

buildings, whereas Figure 7 shows visual results with er-

ror distributions. Our output shape representations at three

different scales better capture the structure of the buildings

while remaining competitive with existing methods in terms

of geometric fidelity, coverage and output complexity.

RMS coverage #planes

Ransac [27] 0.034 0.808 128

Rapter [19] 0.042 0.817 163

Ours (scale 1) 0.017 0.816 239

Ours (scale 2) 0.29 0.816 40

Ours (scale 3) 1.03 0.816 9

Table 3. Comparisons on Empire in terms of Root Mean Square

distance (RMS) of detected shapes to inliers (unit expressed as %
of the bounding box diagonal), coverage (ratio of inliers) and num-

ber of shapes. Note that the shape collapsing process guarantees

an identical coverage for outputs at different scales.

Application to surface reconstruction. By connecting

our algorithm to a polyhedral surface reconstruction method

[5], we can generate compact piecewise-planar 3D mod-

els of bulidings at different LODs from dense defect-laden

meshes. As shown on Figure 8, we outperform the state-of-

2971

Input mesh LOD1 [32] LOD2 [32]LOD1 (Ours) LOD2 (Ours)

error: 0.69

facets: 138

error: 0.65

facets: 54

error: 0.5

facets: 232

error: 0.41

facets: 143

Figure 8. Application to reconstruction of LOD models of buildings. Our algorithm combined with a piecewise planar reconstruction

algorithm [5] produces compact LOD1 and LOD2 models from dense defect-laden meshes that outperform those delivered by a building-

specific LOD generation method [32] in terms of both geometric accuracy—as shown using color histograms from yellow (0 meter error)

to black (≥ 2 meter error)—and output complexity.

the-art method of [32] in terms of geometric accuracy and

output complexity while conforming to the LOD CityGML

formalism. Although [32] is specialized in producing LOD

models of buildings, our learning strategy allows us to gen-

erate meaningful configurations of planes without explicitly

specifying the rules of this LOD formalism.

Limitations. Although our framework is designed to be

flexible, the choice of the metric (Equation 1) that spec-

ifies the priority weights during shape collapsing is inde-

pendent of the object’s category. As suggested by Table 1,

our choice is relevant in the case of buildings for exploring

LODs, but not always optimal for more free-form objects

such as furniture. Ideally, this metric should be learned from

a training set of trajectories. This variant would however

be very costly in practice as shape collapsing and scale de-

tection are no longer performed serially. Additionally, our

algorithm does not discover and preserve geometric regu-

larities such as parallelism, orthogonality or symmetry of

shapes contrary to recent shape detection methods as [19].

This does not affect geometry fidelity and coverage, but

may lead to suboptimal shape abstractions that fail to re-

spect these specific features.

7. Conclusion

Our work provides a parameter-free algorithm for

detecting piecewise-planar shapes from 3D data. Contrary

to existing methods that require tedious parameter tuning,

our algorithm extracts multiple representations of an input

shape at key structural scales whose characteristics are

learned from a training set. Our framework is flexible

enough to learn both existing structural formalism such as

the CityGML Levels Of Details for representing buildings,

and expert-specified levels of abstraction on man-made

objects. Experiments demonstrate the added value of our

approach with respect to existing shape detection methods,

as well as its potential to help with surface reconstruction

and approximation.

As future work we wish to create priority metrics for

shape collapsing that allow a more refined exploration and

tracking of the structural scales in the parameter space. In

particular, we would like to learn such metrics from a train-

ing set of trajectories. We also wish to extend our approach

to quadric and volumetric primitives. This would however

require a more involved shape collapsing strategy.

Acknowledgments

This work has been funded by CSTB. Mathieu Desbrun

gratefully acknowledges the Inria International Chair pro-

gram and the entire Titane team.

References

[1] D. Borrmann, J. Elseberg, K. Lingemann, and A. Nchter. The

3D Hough Transform for plane detection in point clouds: A

review and a new accumulator design. 3D Research, 2(2),

2011. 1

[2] A. Boulch, M. de La Gorce, and R. Marlet. Piecewise-planar

3d reconstruction with edge and corner regularization. Com-

puter Graphics Forum, 33(5), 2014. 1

2972

http://www.cstb.fr/

[3] L. Breiman. Random forests. Machine learning, 45(1):5–32,

2001. 5

[4] P. Carr, Y. Sheikh, and I. Matthews. Monocular object detec-

tion using 3d geometric primitives. In ECCV, 2012. 1

[5] A.-L. Chauve, P. Labatut, and J.-P. Pons. Robust piecewise-

planar 3D reconstruction and completion from large-scale

unstructured point data. In CVPR, 2010. 1, 3, 7, 8

[6] J. Chen and B. Chen. Architectural modeling from sparsely

scanned range data. IJCV, 78(2-3), 2008. 1

[7] E. Fernandez-Moral, W. Mayol-Cuevas, V. Arevalo, and J. G.

Jimenez. Fast place recognition with plane-based maps. In

ICRA, 2013. 1

[8] A. Golovinskiy, V. G. Kim, and T. Funkhouser. Shape-based

recognition of 3D point clouds in urban environments. In

ICCV, 2009. 2

[9] G. Groger and L. Plumer. Citygml interoperable seman-

tic 3d city models. Journal of Photogrammetry and Remote

Sensing, 71, 2012. 5

[10] H. Isack and Y. Boykov. Energy-based geometric multi-

model fitting. IJCV, 97(2), 2012. 2

[11] A. Johnson and M. Hebert. Using spin images for efficient

object recognition in cluttered 3d scenes. PAMI, 21(5):433–

449, 1999. 2

[12] J. Knopp, M. Prasad, G. Willems, R. Timofte, and

L. Van Gool. Hough transform and 3D surf for robust three

dimensional classification. In ECCV, 2010. 1

[13] K. Lai, L. Bo, and D. Fox. Unsupervised feature learning for

3d scene labeling. In ICRA, 2014. 5

[14] J. Lalonde, R. Unnikrishnan, N. Vandapel, and M. Hebert.

Scale selection for classification of point-sampled 3d sur-

faces. In 3DIM, 2005. 2

[15] T. Lindeberg. Scale-space theory in computer vision, volume

256. Springer Science & Business Media, 2013. 2

[16] D. P. Luebke. Level of detail for 3D graphics. Morgan Kauf-

mann, 2003. 2

[17] R. Mehra, Q. Zhou, J. Long, A. Sheffer, A. Gooch, and N. J.

Mitra. Abstraction of man-made shapes. ACM trans. Graph.,

28(5), 2009. 1, 2

[18] N. Mellado, G. Guennebaud, P. Barla, P. Reuter, and

C. Schlick. Growing least squares for the analysis of man-

ifolds in scale-space. Computer Graphics Forum, 31(5),

2012. 2

[19] A. Monszpart, N. Mellado, G. J. Brostow, and N. J. Mitra.

Rapter: Rebuilding man-made scenes with regular arrange-

ments of planes. ACM Trans. Graph., 34(4), 2015. 2, 7,

8

[20] L. Nan and P. Wonka. Polyfit: Polygonal surface reconstruc-

tion from point clouds. In ICCV, 2017. 1

[21] J. Novatnack and K. Nishino. Scale-dependent 3D geometric

features. In ICCV, 2007. 2

[22] S. Oesau, F. Lafarge, and P. Alliez. Object classification via

planar abstraction. In Proc. of the ISPRS congress, 2016. 1

[23] S. Oesau, F. Lafarge, and P. Alliez. Planar Shape Detection

and Regularization in Tandem. Computer Graphics Forum,

35(1), 2016. 1

[24] M. Pauly, R. Keiser, and M. Gross. Multi-scale feature ex-

traction on point-sampled surfaces. In Computer graphics

forum, volume 22, 2003. 2

[25] T.-T. Pham, T.-J. Chin, J. Yu, and D. Suter. The random

cluster model for robust geometric fitting. In CVPR, 2012. 2

[26] T. Rabbani, F. van Den Heuvel, and G. Vosselman. Segmen-

tation of point clouds using smoothness constraint. ISPRS,

36(5), 2006. 1, 2, 3

[27] R. Schnabel, R. Wahl, and R. Klein. Efficient ransac for

point-cloud shape detection. In Computer graphics forum,

volume 26, 2007. 1, 7

[28] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The

princeton shape benchmark. In Shape Modeling Interna-

tional, 2004. 5, 6

[29] S. N. Sinha, D. Steedly, and R. Szeliski. Piecewise planar

stereo for image-based rendering. In ICCV, 2009. 1

[30] J. Straub, G. Rosman, O. Freifeld, J. Leonard, and J. Fisher.

A mixture of manhattan frames: Beyond the manhattan

world. In CVPR, 2014. 1

[31] L. Teran and P. Mordohai. 3D interest point detection via

discriminative learning. In ECCV, 2014. 2

[32] Y. Verdie, F. Lafarge, and P. Alliez. LOD Generation for

Urban Scenes. ACM Trans. Graph., 34(3), 2015. 2, 8

[33] A. Viterbi. Error bounds for convolutional codes and an

asymptotically optimum decoding algorithm. IEEE Trans.

on Information Theory., 13(2), 1967. 5

[34] H. Vu, R. Keriven, P. Labatut, and J. Pons. High accuracy

and visibility-consistent dense multi-view stereo. In PAMI,

volume 34, 2012. 5, 6

[35] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3D ShapeNets: A deep representation for volumetric

shape modeling. In CVPR, 2015. 2

[36] J. Xiao, A. Owens, and A. Torralba. Sun3D: A database

of big spaces reconstructed using sfm and object labels. In

ICCV, 2013. 5, 6

[37] Q.-Y. Zhou and U. Neumann. 2.5D building modeling by

discovering global regularities. In CVPR, 2012. 1

[38] Z. Zhou, H. Jin, and Y. Ma. Robust plane-based structure

from motion. In CVPR, 2012. 1

2973

