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Abstract

Monocular depth estimation, which plays a crucial role

in understanding 3D scene geometry, is an ill-posed prob-

lem. Recent methods have gained significant improvement

by exploring image-level information and hierarchical fea-

tures from deep convolutional neural networks (DCNNs).

These methods model depth estimation as a regression prob-

lem and train the regression networks by minimizing mean

squared error, which suffers from slow convergence and un-

satisfactory local solutions. Besides, existing depth estima-

tion networks employ repeated spatial pooling operations,

resulting in undesirable low-resolution feature maps. To ob-

tain high-resolution depth maps, skip-connections or multi-

layer deconvolution networks are required, which com-

plicates network training and consumes much more com-

putations. To eliminate or at least largely reduce these

problems, we introduce a spacing-increasing discretization

(SID) strategy to discretize depth and recast depth network

learning as an ordinal regression problem. By training

the network using an ordinary regression loss, our method

achieves much higher accuracy and faster convergence in

synch. Furthermore, we adopt a multi-scale network struc-

ture which avoids unnecessary spatial pooling and captures

multi-scale information in parallel. The proposed deep or-

dinal regression network (DORN) achieves state-of-the-art

results on three challenging benchmarks, i.e., KITTI [16],

Make3D [49], and NYU Depth v2 [41], and outperforms

existing methods by a large margin.

1. Introduction

Estimating depth from 2D images is a crucial step of

scene reconstruction and understanding tasks, such as 3D

object recognition, segmentation, and detection. In this pa-

per, we examine the problem of Monocular Depth Estima-

tion from a single image (abbr. as MDE hereafter).
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Figure 1: Estimated Depth by DORN. MSE: Training our net-

work via MSE in log space, where ground truths are continuous

depth values. DORN: The proposed deep ordinal regression net-

work. Depth values in the black part are not provided by KITTI.

Compared to depth estimation from stereo images or

video sequences, in which significant progresses have been

made [19, 29, 26, 44], the progress of MDE is slow. MDE is

an ill-posed problem: a single 2D image may be produced

from an infinite number of distinct 3D scenes. To overcome

this inherent ambiguity, typical methods resort to exploiting

statistically meaningful monocular cues or features, such as

perspective and texture information, object sizes, object lo-

cations, and occlusions [49, 24, 32, 48, 26].

Recently, some works have significantly improved

the MDE performance with the use of DCNN-based models

[38, 55, 46, 9, 28, 31, 33, 3], demonstrating that deep fea-

tures are superior to handcrafted features. These methods

address the MDE problem by learning a DCNN to estimate

the continuous depth map. Since this problem is a standard

regression problem, mean squared error (MSE) in log-space

or its variants are usually adopted as the loss function. Al-

though optimizing a regression network can achieve a rea-

sonable solution, we find that the convergence is rather slow
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and the final solution is far from satisfactory.

In addition, existing depth estimation networks [9, 15,

31, 33, 38, 57] usually apply standard DCNNs designed ini-

tially for image classification in a full convolutional manner

as the feature extractors. In these networks, repeated spa-

tial pooling quickly reduce the spatial resolution of feature

maps (usually stride of 32), which is undesirable for depth

estimation. Though high-resolution depth maps can be ob-

tained by incorporating higher-resolution feature maps via

multi-layer deconvolutional networks [33, 15, 31], multi-

scale networks [38, 9] or skip-connection [57], such a pro-

cessing would not only require additional computational

and memory costs, but also complicate the network archi-

tecture and the training procedure.

In contrast to existing developments for MDE, we pro-

pose to discretize continuous depth into a number of inter-

vals and cast the depth network learning as an ordinal re-

gression problem, and present how to involve ordinal re-

gression into a dense prediction task via DCNNs. More

specifically, we propose to perform the discretization using

a spacing-increasing discretization (SID) strategy instead of

the uniform discretization (UD) strategy, motivated by the

fact that the uncertainty in depth prediction increases along

with the underlying ground-truth depth, which indicates that

it would be better to allow a relatively larger error when

predicting a larger depth value to avoid over-strengthened

influence of large depth values on the training process. Af-

ter obtaining the discrete depth values, we train the network

by an ordinal regression loss, which takes into account the

ordering of discrete depth values.

To ease network training and save computational cost,

we introduce a network architecture which avoids unnec-

essary subsampling and captures multi-scale information in

a simpler way instead of skip-connections. Inspired by re-

cent advances in scene parsing [60, 4, 62], we first remove

subsampling in the last few pooling layers and apply di-

lated convolutions to obtain large receptive fields. Then,

multi-scale information is extracted from the last pooling

layer by applying dilated convolution with multiple dilation

rates. Finally, we develop a full-image encoder which cap-

tures image-level information efficiently at a significantly

lower cost of memory than the fully-connected full-image

encoders [2, 10, 9, 35, 28]. The whole network is trained

in an end-to-end manner without stage-wise training or iter-

ative refinement. Experiments on three challenging bench-

marks, i.e., KITTI [16], Make3D [49, 48] and NYU Depth

v2 [41], demonstrate that the proposed method achieves

state-of-the-art results, and outperforms recent algorithms

by a significant margin.

The remainder of this paper is organized as follows. Af-

ter a brief review of related literatures in Sec. 2, we present

in Sec. 3 the proposed method in detail. In Sec. 4, be-

sides the qualitative and quantitative performance on those

benchmarks, we also evaluate multiple basic instantiations

of the proposed method to analyze the effects of those core

factors. Finally, we conclude the whole paper in Sec. 5.

2. Related Work

Depth Estimation is essential for understanding the 3D

structure of scenes from 2D images. Early works fo-

cused on depth estimation from stereo images by devel-

oping geometry-based algorithms [50, 12, 11] that rely on

point correspondences between images and triangulation to

estimate the depth. In a seminal work [48], Saxena et al.

learned the depth from monocular cues in 2D images via su-

pervised learning. Since then, a variety of approaches have

been proposed to exploit the monocular cues using hand-

crafted representations [49, 24, 32, 36, 7, 30, 1, 53, 45, 14,

20, 59]. Since handcrafted features alone can only cap-

ture local information, probabilistic graphic models such

as Markov Random Fields (MRFs) are often built based

on these features to incorporate long-range and global cues

[49, 63, 39]. Another successful way to make use of global

cues is the DepthTransfer method [26] which uses GIST

global scene features [43] to search for candidate images

that are “similar” to the input image from a database con-

taining RGBD images.

Given the success of DCNNs in image understanding,

many depth estimation networks have been proposed in re-

cent years [18, 61, 35, 40, 52, 56, 46, 38, 27]. Thanks

to multi-level contextual and structural information from

powerful very deep networks (e.g., VGG [54] and ResNet

[22]), depth estimation has been boosted to a new accuracy

level [9, 15, 31, 33, 57]. The main hurdle is that the re-

peated pooling operations in these deep feature extractors

quickly decrease the spatial resolution of feature maps (usu-

ally stride 32). Eigen et al. [10, 9] applied multi-scale net-

works which stage-wisely refine estimated depth map from

low spatial resolution to high spatial resolution via indepen-

dent networks. Xie et al. [57] adopted the skip-connection

strategy to fuse low-spatial resolution depth map in deeper

layers with high-spatial resolution depth map in lower lay-

ers. More recent works [15, 31, 33] apply multi-layer

deconvolutional networks to recover coarse-to-fine depth.

Rather than solely relying on deep networks, some methods

incorporate conditional random fields to further improve

the quality of estimated depth maps [55, 38]. To improve

efficiency, Roy and Todorovic [46] proposed the Neural

Regression Forest method which allows for parallelizable

training of “shallow” CNNs.

Recently, unsupervised or semi-supervised learning is

introduced to learn depth estimation networks [15, 31].

These methods design reconstruction losses to estimate

the disparity map by recovering a right view with a left

view. Also, some weakly-supervised methods considering

pair-wise ranking information were proposed to roughly
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Figure 2: Illustration of the network architecture. The network consists of a dense feature extractor, multi-scale feature learner (ASPP),

cross channel information learner (the pure 1 × 1 convolutional branch), a full-image encoder and an ordinal regression optimizer. The

Conv components here are all with kernel size of 1 × 1. The ASPP module consists of 3 dilated convolutional layers with kernel size

of 3 × 3 and dilated rate of 6, 12 and 18 respectively. The supervised information of our network is discrete depth values output by the

discretization using the SID strategy. The whole network is optimized by our ordinal regression training loss in an end-to-end fashion.

estimate and compare depth [64, 6].

Ordinal Regression [23, 21] aims to learn a rule to predict

labels from an ordinal scale. Most literatures modify well-

studied classification algorithms to address ordinal regres-

sion algorithms. For example, Shashua and Levin [51] han-

dled multiple thresholds by developing a new SVM. Cam-

mer and Singer [8] generalized the online perceptron al-

gorithms with multiple thresholds to do ordinal regression.

Another way is to formulate ordinal regression as a set of

binary classification subproblems. For instance, Frank and

Hall [13] applied some decision trees as binary classifiers

for ordinal regression. In computer vision, ordinal regres-

sion has been combined with DCNNs to address the age

estimation problem [42].

3. Method

This section first introduces the architecture of our deep

ordinal regression network; then presents the SID strategy

to divide continuous depth values into discrete values; and

finally details how the network parameters can be learned

in the ordinal regression framework.

3.1. Network Architecture

As shown in Fig. 2, the divised network consists of two

parts, i.e., a dense feature extractor and a scene understand-

ing modular, and outputs multi-channel dense ordinal labels

given an image.

3.1.1 Dense Feature Extractor

Previous depth estimation networks [9, 15, 31, 33, 38, 57]

usually apply standard DCNNs originally designed for im-

age recognition as the feature extractor. However, the re-

peated combination of max-pooling and striding signifi-

cantly reduces the spatial resolution of the feature maps.

Also, to incorporate multi-scale information and reconstruct

high-resolution depth maps, some partial remedies, includ-

ing stage-wise refinement [10, 9], skip connection [57]

and multi-layer deconvolution network [15, 31, 33] can be

adopted, which nevertheless not only requires additional

computational and memory cost, but also complicates the

network architecture and the training procedure. Following

some recent scene parsing network [60, 4, 62], we advocate

removing the last few downsampling operators of DCNNs

and inserting holes to filters in the subsequent conv lay-

ers, called dilated convolution, to enlarge the field-of-view

of filters without decreasing spatial resolution or increasing

number of parameters.

3.1.2 Scene Understanding Modular
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Figure 3: Full-Image Encoders. Top: the full-image encoder

implemented by pure fc layers [10, 9, 2] (δ < 1.25: 0.910); Bot-

tom: Our proposed encoder (δ < 1.25: 0.915).

The scene understanding modular consists of three par-

allel components, i.e., an atrous spatial pyramid pooling

(ASPP) module [5], a cross-channel leaner, and a full-image

encoder. ASPP is employed to extract features from mul-
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tiple large receptive fields via dilated convolutional oper-

ations. The dilation rates are 6, 12 and 18, respectively.

The pure 1 × 1 convolutional branch can learn complex

cross-channel interactions. The full-image encoder captures

global contextual information and can greatly clarify local

confusions in depth estimation [55, 10, 9, 2].

Though previous methods have incorporated full-image

encoders, our full-image encoder contains fewer parame-

ters. As shown in Fig. 3, to obtain global feature F with

dimension C × h× w from F with dimension C × h× w,

a common fc-fashion method accomplishes this by using

fully-connected layers, where each element in F connects

to all the image features, implying a global understanding

of the entire image. However, this method contains a pro-

hibitively large number of parameters, which is difficult to

train and is memory consuming. In contrast, we first make

use of an average pooling layer with a small kernel size and

stride to reduce the spatial dimensions, followed by a fc
layer to obtain a feature vector with dimension C. Then,

we treat the feature vector as C channels of feature maps

with spatial dimensions of 1× 1, and add a conv layer with

the kernel size of 1× 1 as a cross-channel parametric pool-

ing structure. Finally, we copy the feature vector to F along

spatial dimensions so that each location of F share the same

understanding of the entire image.

The obtained features from the aforementioned compo-

nents are concatenated to achieve a comprehensive under-

standing of the input image. Also, we add two additional

convolutional layers with the kernel size of 1×1, where the

former one reduces the feature dimension and learns com-

plex cross-channel interactions, and the later one transforms

the features into multi-channel dense ordinal labels.

3.2. Spacing­Increasing Discretization
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Figure 4: Discrete Intervals. Illustration of UD (middle) and

SID (bottom) to discretize depth interval [α, β] into five sub-

intervals. See Eq. 1 for details.

To quantize a depth interval [α, β] into a set of repre-

sentative discrete values, a common way is the uniform

discretization (UD). However, as the depth value becomes

larger, the information for depth estimation is less rich,

meaning that the estimation error of larger depth values is

generally larger. Hence, using the UD strategy would in-

duce an over-strengthened loss for the large depth values.

To this end, we propose to perform the discretization using

the SID strategy (as shown in Fig. 4), which uniformed dis-

cretizes a given depth interval in log space to down-weight

the training losses in regions with large depth values, so that

our depth estimation network is capable to more accurately

predict relatively small and medium depth and to rationally

estimate large depth values. Assuming that a depth interval

[α, β] needs to be discretized into K sub-intervals, UD and

SID can be formulated as:

UD: ti = α+ (β − α) ∗ i/K,

SID: ti = elog(α)+
log(β/α)∗i

K ,
(1)

where ti ∈ {t0, t1, ..., tK} are discretization thresholds. In

our paper, we add a shift ξ to both α and β to obtain α∗ and

β∗ so that α∗ = α+ ξ = 1.0, and apply SID on [α∗, β∗].

3.3. Learning and Inference

After obtaining the discrete depth values, it is straightfor-

ward to turn the standard regression problem into a multi-

class classification problem, and adopts softmax regression

loss to learn the parameters in our depth estimation net-

work. However, typical multi-class classification losses ig-

nore the ordered information between the discrete labels,

while depth values have a strong ordinal correlation since

they form a well-ordered set. Thus, we cast the depth es-

timation problem as an ordinal regression problem and de-

velop an ordinal loss to learn our network parameters.

Let χ = ϕ(I,Φ) denote the feature maps of size W ×
H×C given an image I , where Φ is the parameters involved

in the dense feature extractor and the scene understanding

modular. Y = ψ(χ,Θ) of size W × H × 2K denotes

the ordinal outputs for each spatial locations, where Θ =
(θ0, θ1, ..., θ2K−1) contains weight vectors. And l(w,h) ∈
{0, 1, ...,K − 1} is the discrete label produced by SID at

spatial location (w, h). Our ordinal loss L(χ,Θ) is defined

as the average of pixelwise ordinal loss Ψ(h,w, χ,Θ) over

the entire image domain:

L(χ,Θ) = −
1

N

W−1∑

w=0

H−1∑

h=0

Ψ(w, h, χ,Θ),

Ψ(h,w, χ,Θ) =

l(w,h)−1∑

k=0

log(Pk
(w,h))

+

K−1∑

k=l(w,h)

(1− log(Pk
(w,h))),

Pk
(w,h) = P (l̂(w,h) > k|χ,Θ),

(2)

where N = W × H , and l̂(w,h) is the estimated discrete

value decoding from y(w,h). We choose softmax function to
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Figure 5: Depth Prediction on KITTI. Image, ground truth, Eigen [10], LRC [17], and our DORN. Ground truth has been interpolated

for visualization. Pixels with distance > 80m in LRC are masked out.

compute Pk
(w,h) from y(w,h,2k) and y(w,h,2k+1) as follows:

Pk
(w,h) =

ey(w,h,2k+1)

ey(w,h,2k) + ey(w,h,2k+1)
, (3)

where y(w,h,i) = θTi x(w,h), and x(w,h) ∈ χ. Minimizing

L(χ,Θ) ensures that predictions farther from the true label

incur a greater penalty than those closer to the true label.

The minimization of L(χ,Θ) can be done via an iterative

optimization algorithm. Taking derivate with respect to θi,
the gradient takes the following form:

∂L(χ,Θ)

∂θi
= −

1

N

W−1∑

w=0

H−1∑

h=0

∂Ψ(w, h, χ,Θ)

∂θi
,

∂Ψ(w, h, χ,Θ)

∂θ2k+1
= −

∂Ψ(w, h, χ,Θ)

∂θ2k
,

∂Ψ(w, h, χ,Θ)

∂θ2k
= x(w,h)η(l(w,h) > k)(Pk

(w,h) − 1)

+ x(w,h)η(l(w,h) ≤ k)Pk
(w,h),

(4)

where k ∈ {0, 1, ...,K−1}, and η(·) is an indicator function

such that η(true) = 1 and η(false) = 0. We the can optimize

our network via backpropagation.

In the inference phase, after obtaining ordinal labels for

each position of image I , the predicted depth value d̂(w,h)

is decoded as:

d̂(w,h) =
t
l̂(w,h)

+ t
l̂(w,h)+1

2
− ξ,

l̂(w,h) =

K−1∑

k=0

η(Pk
(w,h) >= 0.5).

(5)

4. Experiments

To demonstrate the effectiveness of our depth estimator,

we present a number of experiments examining different

Method SILog sqErrorRel absErrorRel iRMSE

Official Baseline 18.19 7.32 14.24 18.50

DORN 11.80 2.19 8.93 13.22

Table 1: Scores on the online KITTI evaluation server. We

train our DORN using the officially provided training and valida-

tion sets.

aspects of our approach. After introducing the implemen-

tation details, we evaluate our methods on three challeng-

ing outdoor datasets, i.e. KITTI [16], Make3D [48, 49] and

NYU Depth v2 [41]. The evaluation metrics are following

previous works [10, 38]. Some ablation studies based on

KITTI are discussed to give a more detailed analysis of our

method.

Implementation Details We implement our depth estima-

tion network based on the public deep learning platform

Caffe [25]. The learning strategy applies a polynomial de-

cay with a base learning rate of 0.0001 and the power of 0.9.

Momentum and weight decay are set to 0.9 and 0.0005 re-

spectively. The iteration number is set to 300K for KITTI,

50K for Make3D, and 3M for NYU Depth v2, and batch

size is set to 3. We find that further increasing the itera-

tion number can only slightly improve the performance. We

adopt both VGG-16 [54] and ResNet-101 [22] as our fea-

ture extractors, and initialize their parameters via the pre-

trained classification model on ILSVRC [47]. Since fea-

tures in first few layers only contain general low-level infor-

mation, we fixed the parameters of conv1 and conv2 blocks

in ResNet after initialization. Also, the batch normaliza-

tion parameters in ResNet are directly initialized and fixed

during training progress. Data augmentation strategies are

following [10]. In the test phase, we split each image to

some overlapping windows according the cropping method

in the training phase, and obtain the predicted depth values
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