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4Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM, Marne-la-Vallée, France

{hufu6371@sydney, dacheng.tao@}sydney.edu.au {mig73, kayhan@}pitt.edu chaohui.wang@u-pem.fr

Abstract

Monocular depth estimation, which plays a crucial role

in understanding 3D scene geometry, is an ill-posed prob-

lem. Recent methods have gained significant improvement

by exploring image-level information and hierarchical fea-

tures from deep convolutional neural networks (DCNNs).

These methods model depth estimation as a regression prob-

lem and train the regression networks by minimizing mean

squared error, which suffers from slow convergence and un-

satisfactory local solutions. Besides, existing depth estima-

tion networks employ repeated spatial pooling operations,

resulting in undesirable low-resolution feature maps. To ob-

tain high-resolution depth maps, skip-connections or multi-

layer deconvolution networks are required, which com-

plicates network training and consumes much more com-

putations. To eliminate or at least largely reduce these

problems, we introduce a spacing-increasing discretization

(SID) strategy to discretize depth and recast depth network

learning as an ordinal regression problem. By training

the network using an ordinary regression loss, our method

achieves much higher accuracy and faster convergence in

synch. Furthermore, we adopt a multi-scale network struc-

ture which avoids unnecessary spatial pooling and captures

multi-scale information in parallel. The proposed deep or-

dinal regression network (DORN) achieves state-of-the-art

results on three challenging benchmarks, i.e., KITTI [16],

Make3D [49], and NYU Depth v2 [41], and outperforms

existing methods by a large margin.

1. Introduction

Estimating depth from 2D images is a crucial step of

scene reconstruction and understanding tasks, such as 3D

object recognition, segmentation, and detection. In this pa-

per, we examine the problem of Monocular Depth Estima-

tion from a single image (abbr. as MDE hereafter).

Image Ground Truth

MSE DORN

Figure 1: Estimated Depth by DORN. MSE: Training our net-

work via MSE in log space, where ground truths are continuous

depth values. DORN: The proposed deep ordinal regression net-

work. Depth values in the black part are not provided by KITTI.

Compared to depth estimation from stereo images or

video sequences, in which significant progresses have been

made [19, 29, 26, 44], the progress of MDE is slow. MDE is

an ill-posed problem: a single 2D image may be produced

from an infinite number of distinct 3D scenes. To overcome

this inherent ambiguity, typical methods resort to exploiting

statistically meaningful monocular cues or features, such as

perspective and texture information, object sizes, object lo-

cations, and occlusions [49, 24, 32, 48, 26].

Recently, some works have significantly improved

the MDE performance with the use of DCNN-based models

[38, 55, 46, 9, 28, 31, 33, 3], demonstrating that deep fea-

tures are superior to handcrafted features. These methods

address the MDE problem by learning a DCNN to estimate

the continuous depth map. Since this problem is a standard

regression problem, mean squared error (MSE) in log-space

or its variants are usually adopted as the loss function. Al-

though optimizing a regression network can achieve a rea-

sonable solution, we find that the convergence is rather slow
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and the final solution is far from satisfactory.

In addition, existing depth estimation networks [9, 15,

31, 33, 38, 57] usually apply standard DCNNs designed ini-

tially for image classification in a full convolutional manner

as the feature extractors. In these networks, repeated spa-

tial pooling quickly reduce the spatial resolution of feature

maps (usually stride of 32), which is undesirable for depth

estimation. Though high-resolution depth maps can be ob-

tained by incorporating higher-resolution feature maps via

multi-layer deconvolutional networks [33, 15, 31], multi-

scale networks [38, 9] or skip-connection [57], such a pro-

cessing would not only require additional computational

and memory costs, but also complicate the network archi-

tecture and the training procedure.

In contrast to existing developments for MDE, we pro-

pose to discretize continuous depth into a number of inter-

vals and cast the depth network learning as an ordinal re-

gression problem, and present how to involve ordinal re-

gression into a dense prediction task via DCNNs. More

specifically, we propose to perform the discretization using

a spacing-increasing discretization (SID) strategy instead of

the uniform discretization (UD) strategy, motivated by the

fact that the uncertainty in depth prediction increases along

with the underlying ground-truth depth, which indicates that

it would be better to allow a relatively larger error when

predicting a larger depth value to avoid over-strengthened

influence of large depth values on the training process. Af-

ter obtaining the discrete depth values, we train the network

by an ordinal regression loss, which takes into account the

ordering of discrete depth values.

To ease network training and save computational cost,

we introduce a network architecture which avoids unnec-

essary subsampling and captures multi-scale information in

a simpler way instead of skip-connections. Inspired by re-

cent advances in scene parsing [60, 4, 62], we first remove

subsampling in the last few pooling layers and apply di-

lated convolutions to obtain large receptive fields. Then,

multi-scale information is extracted from the last pooling

layer by applying dilated convolution with multiple dilation

rates. Finally, we develop a full-image encoder which cap-

tures image-level information efficiently at a significantly

lower cost of memory than the fully-connected full-image

encoders [2, 10, 9, 35, 28]. The whole network is trained

in an end-to-end manner without stage-wise training or iter-

ative refinement. Experiments on three challenging bench-

marks, i.e., KITTI [16], Make3D [49, 48] and NYU Depth

v2 [41], demonstrate that the proposed method achieves

state-of-the-art results, and outperforms recent algorithms

by a significant margin.

The remainder of this paper is organized as follows. Af-

ter a brief review of related literatures in Sec. 2, we present

in Sec. 3 the proposed method in detail. In Sec. 4, be-

sides the qualitative and quantitative performance on those

benchmarks, we also evaluate multiple basic instantiations

of the proposed method to analyze the effects of those core

factors. Finally, we conclude the whole paper in Sec. 5.

2. Related Work

Depth Estimation is essential for understanding the 3D

structure of scenes from 2D images. Early works fo-

cused on depth estimation from stereo images by devel-

oping geometry-based algorithms [50, 12, 11] that rely on

point correspondences between images and triangulation to

estimate the depth. In a seminal work [48], Saxena et al.

learned the depth from monocular cues in 2D images via su-

pervised learning. Since then, a variety of approaches have

been proposed to exploit the monocular cues using hand-

crafted representations [49, 24, 32, 36, 7, 30, 1, 53, 45, 14,

20, 59]. Since handcrafted features alone can only cap-

ture local information, probabilistic graphic models such

as Markov Random Fields (MRFs) are often built based

on these features to incorporate long-range and global cues

[49, 63, 39]. Another successful way to make use of global

cues is the DepthTransfer method [26] which uses GIST

global scene features [43] to search for candidate images

that are “similar” to the input image from a database con-

taining RGBD images.

Given the success of DCNNs in image understanding,

many depth estimation networks have been proposed in re-

cent years [18, 61, 35, 40, 52, 56, 46, 38, 27]. Thanks

to multi-level contextual and structural information from

powerful very deep networks (e.g., VGG [54] and ResNet

[22]), depth estimation has been boosted to a new accuracy

level [9, 15, 31, 33, 57]. The main hurdle is that the re-

peated pooling operations in these deep feature extractors

quickly decrease the spatial resolution of feature maps (usu-

ally stride 32). Eigen et al. [10, 9] applied multi-scale net-

works which stage-wisely refine estimated depth map from

low spatial resolution to high spatial resolution via indepen-

dent networks. Xie et al. [57] adopted the skip-connection

strategy to fuse low-spatial resolution depth map in deeper

layers with high-spatial resolution depth map in lower lay-

ers. More recent works [15, 31, 33] apply multi-layer

deconvolutional networks to recover coarse-to-fine depth.

Rather than solely relying on deep networks, some methods

incorporate conditional random fields to further improve

the quality of estimated depth maps [55, 38]. To improve

efficiency, Roy and Todorovic [46] proposed the Neural

Regression Forest method which allows for parallelizable

training of “shallow” CNNs.

Recently, unsupervised or semi-supervised learning is

introduced to learn depth estimation networks [15, 31].

These methods design reconstruction losses to estimate

the disparity map by recovering a right view with a left

view. Also, some weakly-supervised methods considering

pair-wise ranking information were proposed to roughly
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Figure 2: Illustration of the network architecture. The network consists of a dense feature extractor, multi-scale feature learner (ASPP),

cross channel information learner (the pure 1 × 1 convolutional branch), a full-image encoder and an ordinal regression optimizer. The

Conv components here are all with kernel size of 1 × 1. The ASPP module consists of 3 dilated convolutional layers with kernel size

of 3 × 3 and dilated rate of 6, 12 and 18 respectively. The supervised information of our network is discrete depth values output by the

discretization using the SID strategy. The whole network is optimized by our ordinal regression training loss in an end-to-end fashion.

estimate and compare depth [64, 6].

Ordinal Regression [23, 21] aims to learn a rule to predict

labels from an ordinal scale. Most literatures modify well-

studied classification algorithms to address ordinal regres-

sion algorithms. For example, Shashua and Levin [51] han-

dled multiple thresholds by developing a new SVM. Cam-

mer and Singer [8] generalized the online perceptron al-

gorithms with multiple thresholds to do ordinal regression.

Another way is to formulate ordinal regression as a set of

binary classification subproblems. For instance, Frank and

Hall [13] applied some decision trees as binary classifiers

for ordinal regression. In computer vision, ordinal regres-

sion has been combined with DCNNs to address the age

estimation problem [42].

3. Method

This section first introduces the architecture of our deep

ordinal regression network; then presents the SID strategy

to divide continuous depth values into discrete values; and

finally details how the network parameters can be learned

in the ordinal regression framework.

3.1. Network Architecture

As shown in Fig. 2, the divised network consists of two

parts, i.e., a dense feature extractor and a scene understand-

ing modular, and outputs multi-channel dense ordinal labels

given an image.

3.1.1 Dense Feature Extractor

Previous depth estimation networks [9, 15, 31, 33, 38, 57]

usually apply standard DCNNs originally designed for im-

age recognition as the feature extractor. However, the re-

peated combination of max-pooling and striding signifi-

cantly reduces the spatial resolution of the feature maps.

Also, to incorporate multi-scale information and reconstruct

high-resolution depth maps, some partial remedies, includ-

ing stage-wise refinement [10, 9], skip connection [57]

and multi-layer deconvolution network [15, 31, 33] can be

adopted, which nevertheless not only requires additional

computational and memory cost, but also complicates the

network architecture and the training procedure. Following

some recent scene parsing network [60, 4, 62], we advocate

removing the last few downsampling operators of DCNNs

and inserting holes to filters in the subsequent conv lay-

ers, called dilated convolution, to enlarge the field-of-view

of filters without decreasing spatial resolution or increasing

number of parameters.

3.1.2 Scene Understanding Modular
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Figure 3: Full-Image Encoders. Top: the full-image encoder

implemented by pure fc layers [10, 9, 2] (δ < 1.25: 0.910); Bot-

tom: Our proposed encoder (δ < 1.25: 0.915).

The scene understanding modular consists of three par-

allel components, i.e., an atrous spatial pyramid pooling

(ASPP) module [5], a cross-channel leaner, and a full-image

encoder. ASPP is employed to extract features from mul-
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tiple large receptive fields via dilated convolutional oper-

ations. The dilation rates are 6, 12 and 18, respectively.

The pure 1 × 1 convolutional branch can learn complex

cross-channel interactions. The full-image encoder captures

global contextual information and can greatly clarify local

confusions in depth estimation [55, 10, 9, 2].

Though previous methods have incorporated full-image

encoders, our full-image encoder contains fewer parame-

ters. As shown in Fig. 3, to obtain global feature F with

dimension C × h× w from F with dimension C × h× w,

a common fc-fashion method accomplishes this by using

fully-connected layers, where each element in F connects

to all the image features, implying a global understanding

of the entire image. However, this method contains a pro-

hibitively large number of parameters, which is difficult to

train and is memory consuming. In contrast, we first make

use of an average pooling layer with a small kernel size and

stride to reduce the spatial dimensions, followed by a fc
layer to obtain a feature vector with dimension C. Then,

we treat the feature vector as C channels of feature maps

with spatial dimensions of 1× 1, and add a conv layer with

the kernel size of 1× 1 as a cross-channel parametric pool-

ing structure. Finally, we copy the feature vector to F along

spatial dimensions so that each location of F share the same

understanding of the entire image.

The obtained features from the aforementioned compo-

nents are concatenated to achieve a comprehensive under-

standing of the input image. Also, we add two additional

convolutional layers with the kernel size of 1×1, where the

former one reduces the feature dimension and learns com-

plex cross-channel interactions, and the later one transforms

the features into multi-channel dense ordinal labels.

3.2. SpacingIncreasing Discretization

F G

HB HIHJHKHLHC

HB HC HL HK HJ HI

Figure 4: Discrete Intervals. Illustration of UD (middle) and

SID (bottom) to discretize depth interval [α, β] into five sub-

intervals. See Eq. 1 for details.

To quantize a depth interval [α, β] into a set of repre-

sentative discrete values, a common way is the uniform

discretization (UD). However, as the depth value becomes

larger, the information for depth estimation is less rich,

meaning that the estimation error of larger depth values is

generally larger. Hence, using the UD strategy would in-

duce an over-strengthened loss for the large depth values.

To this end, we propose to perform the discretization using

the SID strategy (as shown in Fig. 4), which uniformed dis-

cretizes a given depth interval in log space to down-weight

the training losses in regions with large depth values, so that

our depth estimation network is capable to more accurately

predict relatively small and medium depth and to rationally

estimate large depth values. Assuming that a depth interval

[α, β] needs to be discretized into K sub-intervals, UD and

SID can be formulated as:

UD: ti = α+ (β − α) ∗ i/K,

SID: ti = elog(α)+
log(β/α)∗i

K ,
(1)

where ti ∈ {t0, t1, ..., tK} are discretization thresholds. In

our paper, we add a shift ξ to both α and β to obtain α∗ and

β∗ so that α∗ = α+ ξ = 1.0, and apply SID on [α∗, β∗].

3.3. Learning and Inference

After obtaining the discrete depth values, it is straightfor-

ward to turn the standard regression problem into a multi-

class classification problem, and adopts softmax regression

loss to learn the parameters in our depth estimation net-

work. However, typical multi-class classification losses ig-

nore the ordered information between the discrete labels,

while depth values have a strong ordinal correlation since

they form a well-ordered set. Thus, we cast the depth es-

timation problem as an ordinal regression problem and de-

velop an ordinal loss to learn our network parameters.

Let χ = ϕ(I,Φ) denote the feature maps of size W ×
H×C given an image I , where Φ is the parameters involved

in the dense feature extractor and the scene understanding

modular. Y = ψ(χ,Θ) of size W × H × 2K denotes

the ordinal outputs for each spatial locations, where Θ =
(θ0, θ1, ..., θ2K−1) contains weight vectors. And l(w,h) ∈
{0, 1, ...,K − 1} is the discrete label produced by SID at

spatial location (w, h). Our ordinal loss L(χ,Θ) is defined

as the average of pixelwise ordinal loss Ψ(h,w, χ,Θ) over

the entire image domain:

L(χ,Θ) = −
1

N

W−1∑

w=0

H−1∑

h=0

Ψ(w, h, χ,Θ),

Ψ(h,w, χ,Θ) =

l(w,h)−1∑

k=0

log(Pk
(w,h))

+

K−1∑

k=l(w,h)

(1− log(Pk
(w,h))),

Pk
(w,h) = P (l̂(w,h) > k|χ,Θ),

(2)

where N = W × H , and l̂(w,h) is the estimated discrete

value decoding from y(w,h). We choose softmax function to
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Image Ground Truth Eigen [10] LRC [17] DORN

Figure 5: Depth Prediction on KITTI. Image, ground truth, Eigen [10], LRC [17], and our DORN. Ground truth has been interpolated

for visualization. Pixels with distance > 80m in LRC are masked out.

compute Pk
(w,h) from y(w,h,2k) and y(w,h,2k+1) as follows:

Pk
(w,h) =

ey(w,h,2k+1)

ey(w,h,2k) + ey(w,h,2k+1)
, (3)

where y(w,h,i) = θTi x(w,h), and x(w,h) ∈ χ. Minimizing

L(χ,Θ) ensures that predictions farther from the true label

incur a greater penalty than those closer to the true label.

The minimization of L(χ,Θ) can be done via an iterative

optimization algorithm. Taking derivate with respect to θi,
the gradient takes the following form:

∂L(χ,Θ)

∂θi
= −

1

N

W−1∑

w=0

H−1∑

h=0

∂Ψ(w, h, χ,Θ)

∂θi
,

∂Ψ(w, h, χ,Θ)

∂θ2k+1
= −

∂Ψ(w, h, χ,Θ)

∂θ2k
,

∂Ψ(w, h, χ,Θ)

∂θ2k
= x(w,h)η(l(w,h) > k)(Pk

(w,h) − 1)

+ x(w,h)η(l(w,h) ≤ k)Pk
(w,h),

(4)

where k ∈ {0, 1, ...,K−1}, and η(·) is an indicator function

such that η(true) = 1 and η(false) = 0. We the can optimize

our network via backpropagation.

In the inference phase, after obtaining ordinal labels for

each position of image I , the predicted depth value d̂(w,h)

is decoded as:

d̂(w,h) =
t
l̂(w,h)

+ t
l̂(w,h)+1

2
− ξ,

l̂(w,h) =

K−1∑

k=0

η(Pk
(w,h) >= 0.5).

(5)

4. Experiments

To demonstrate the effectiveness of our depth estimator,

we present a number of experiments examining different

Method SILog sqErrorRel absErrorRel iRMSE

Official Baseline 18.19 7.32 14.24 18.50

DORN 11.80 2.19 8.93 13.22

Table 1: Scores on the online KITTI evaluation server. We

train our DORN using the officially provided training and valida-

tion sets.

aspects of our approach. After introducing the implemen-

tation details, we evaluate our methods on three challeng-

ing outdoor datasets, i.e. KITTI [16], Make3D [48, 49] and

NYU Depth v2 [41]. The evaluation metrics are following

previous works [10, 38]. Some ablation studies based on

KITTI are discussed to give a more detailed analysis of our

method.

Implementation Details We implement our depth estima-

tion network based on the public deep learning platform

Caffe [25]. The learning strategy applies a polynomial de-

cay with a base learning rate of 0.0001 and the power of 0.9.

Momentum and weight decay are set to 0.9 and 0.0005 re-

spectively. The iteration number is set to 300K for KITTI,

50K for Make3D, and 3M for NYU Depth v2, and batch

size is set to 3. We find that further increasing the itera-

tion number can only slightly improve the performance. We

adopt both VGG-16 [54] and ResNet-101 [22] as our fea-

ture extractors, and initialize their parameters via the pre-

trained classification model on ILSVRC [47]. Since fea-

tures in first few layers only contain general low-level infor-

mation, we fixed the parameters of conv1 and conv2 blocks

in ResNet after initialization. Also, the batch normaliza-

tion parameters in ResNet are directly initialized and fixed

during training progress. Data augmentation strategies are

following [10]. In the test phase, we split each image to

some overlapping windows according the cropping method

in the training phase, and obtain the predicted depth values
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Method cap
higher is better lower is better

δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Squa Rel RMSE RMSElog

Make3D [49] 0 - 80 m 0.601 0.820 0.926 0.280 3.012 8.734 0.361

Eigen et al. [10] 0 - 80 m 0.692 0.899 0.967 0.190 1.515 7.156 0.270

Liu et al. [38] 0 - 80 m 0.647 0.882 0.961 0.217 1.841 6.986 0.289

LRC (CS + K) [17] 0 - 80 m 0.861 0.949 0.976 0.114 0.898 4.935 0.206

Kuznietsov et al. [31] 0 - 80 m 0.862 0.960 0.986 0.113 0.741 4.621 0.189

DORN (VGG) 0 - 80 m 0.915 0.980 0.993 0.081 0.376 3.056 0.132

DORN (ResNet) 0 - 80 m 0.932 0.984 0.994 0.072 0.307 2.727 0.120

Garg et al. [15] 0 - 50 m 0.740 0.904 0.962 0.169 1.080 5.104 0.273

LRC (CS + K) [17] 0 - 50 m 0.873 0.954 0.979 0.108 0.657 3.729 0.194

Kuznietsov et al. [31] 0 - 50 m 0.875 0.964 0.988 0.108 0.595 3.518 0.179

DORN (VGG) 0 - 50 m 0.920 0.982 0.994 0.079 0.324 2.517 0.128

DORN (ResNet) 0 - 50 m 0.936 0.985 0.995 0.071 0.268 2.271 0.116

Table 2: Performance on KITTI. All the methods are evaluated on the test split by Eigen et al. [10]. LRC (CS + K): LRC pre-train their

model on Cityscapes and fine tune on KITTI.

Method
C1 error C2 error

rel log
10

rms rel log
10

rms

Make3D [49] - - - 0.370 0.187 -

Liu et al. [37] - - - 0.379 0.148 -

DepthTransfer [26] 0.355 0.127 9.20 0.361 0.148 15.10

Liu et al. [39] 0.335 0.137 9.49 0.338 0.134 12.60

Li et al. [34] 0.278 0.092 7.12 0.279 0.102 10.27

Liu et al. [38] 0.287 0.109 7.36 0.287 0.122 14.09

Roy et al. [46] - - - 0.260 0.119 12.40

Laina et al. [33] 0.176 0.072 4.46 - - -

LRC-Deep3D [57] 1.000 2.527 19.11 - - -

LRC [17] 0.443 0.156 11.513 - - -

Kuznietsov et al. [31] 0.421 0.190 8.24 - - -

MS-CRF [58] 0.184 0.065 4.38 0.198 - 8.56

DORN (VGG) 0.236 0.082 7.02 0.238 0.087 10.01

DORN (ResNet) 0.157 0.062 3.97 0.162 0.067 7.32

Table 3: Performance on Make3D. LRC-Deep3D [57] is adopt-

ing LRC [17] on Deep3D model [57].

in overlapped regions by averaging the predictions.

4.1. Benchmark Perfomance

KITTI The KITTI dataset [16] contains outdoor scenes

with images of resolution about 375 × 1241 captured by

cameras and depth sensors in a driving car. All the 61 scenes

from the “city”, “residential”, “road” and “Campus” cate-

gories are used as our training/test sets. We test on 697 im-

ages from 29 scenes split by Eigen et al. [10], and train on

about 23488 images from the remaining 32 scenes. We train

our model on a random crop of size 385 × 513. For some

other details, we set the maximal ordinal label for KITTI

as 80, and evaluate our results on a pre-defined center crop-

ping following [10] with the depth ranging from 0m to 80m
and 0m to 50m. Note that, a single model is trained on the

Method δ1 δ2 δ3 rel log
10

rms

Make3D [49] 0.447 0.745 0.897 0.349 - 1.214

DepthTransfer [26] - - - 0.35 0.131 1.2

Liu et al. [39] - - - 0.335 0.127 1.06

Ladicky et al. [32] 0.542 0.829 0.941 - - -

Li et al. [34] 0.621 0.886 0.968 0.232 0.094 0.821

Wang et al. [55] 0.605 0.890 0.970 0.220 - 0.824

Roy et al. [46] - - - 0.187 - 0.744

Liu et al. [38] 0.650 0.906 0.976 0.213 0.087 0.759

Eigen et al. [9] 0.769 0.950 0.988 0.158 - 0.641

Chakrabarti et al. [2] 0.806 0.958 0.987 0.149 - 0.620

Laina et al. [33] 0.629 0.889 0.971 0.194 0.083 0.790

Li et al. [35] 0.789 0.955 0.988 0.152 0.064 0.611

Laina et al. [33]† 0.811 0.953 0.988 0.127 0.055 0.573

Li et al. [35]† 0.788 0.958 0.991 0.143 0.063 0.635

MS-CRF [58]† 0.811 0.954 0.987 0.121 0.052 0.586

DORN† 0.828 0.965 0.992 0.115 0.051 0.509

Table 4: Performance on NYU Depth v2. δi: δ < 1.25i. †:

ResNet based model.

full depth range, and is tested on data with different depth

ranges.

Make3D The Make3D dataset [48, 49] contains 534 out-

door images, 400 for training, and 134 for testing, with the

resolution of 2272 × 1704, and provides the ground truth

depth map with a small resolution of 55 × 305. We re-

duce the resolution of all images to 568×426, and train our

model on a random crop of size 513×385. Following previ-

ous works, we report C1 (depth range from 0m to 80m) and

C2 (depth range from 0m to 70m) error on this dataset us-

ing three commonly used evaluation metrics [26, 38]. For

the VGG model, we train our DORN on a depth range of

0m to 80m from scratch (ImageNet model), and evaluate

results using the same model for C1 and C2 . However,
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Variant Iteration
higher is better lower is better

δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Squa Rel RMSE RMSElog

MSE 1M 0.864 0.969 0.991 0.109 0.527 3.660 0.164

MSE-SID 0.6M 0.865 0.970 0.992 0.108 0.520 3.636 0.163

MCC-UD 0.3M 0.892 0.970 0.988 0.093 0.474 3.438 0.155

MCC-SID 0.3M 0.906 0.976 0.991 0.084 0.417 3.201 0.142

DORN-UD 0.3M 0.900 0.973 0.991 0.091 0.452 3.339 0.148

DORN-SID 0.3M 0.915 0.980 0.993 0.081 0.376 3.056 0.132

berHu† 0.6M 0.909 0.978 0.992 0.086 0.385 3.365 0.136

DORN† 0.3M 0.932 0.984 0.994 0.072 0.307 2.727 0.120

Table 5: Depth Discretization and Ordinal Regression. MSE: mean squared error in log space. MCC: multi-class classification.

DORN: proposed ordinal regression. Note that training by MSE for 1M iterations only slightly improve the performance compared with

0.5M (about 0.001 on δ < 1.25). berHu: the reverse Huber loss. †: ResNet based model.

for ResNet, we learn two separate models for C1 and C2
respectively.

NYU Depth v2 The NYU Depth v2 [41] dataset contains

464 indoor video scenes taken with a Microsoft Kinect

camera. We train our DORN using all images (about 120K)

from the 249 training scenes, and test on the 694-image

test set following previous works. To speed up training, all

the images are reduced to the resolution of 288× 384 from

480 × 640. And the model are trained on random crops

of size 257 × 353. We report our scores on a pre-defined

center cropping by Eigen [10].

Performance Tab. 2 and Tab. 3 give the results on two out-

door datasets, i.e., KITTI and Make3D. It can be seen that

our DORN improves the accuracy by 5% ∼ 30% in terms

of all metrics compared with previous works in all settings.

Some qualitative results are shown in Fig. 5 and Fig. 6.

In Tab. 4, our DORN outperforms other methods on NYU

Depth v2, which is one of the largest indoor benchmarks.

The results suggest that our method is applicable to both

indoor and outdoor data. We also evaluate our method on

the online KITTI evaluation server1. As shown in Tab. 1,

our DORN significantly outperforms the officially provided

baseline about 30% ∼ 70%.

4.2. Ablation Studies

We conduct various ablation studies to analyze the de-

tails of our approach. Results are shown in Tab. 5, Tab. 6,

Fig. 1, and Fig. 7, and discussed in detail.

4.2.1 Depth Discretization

Depth discretization is critical to performance improve-

ment, because it allows us to apply classification and ordinal

regression losses to optimize the network parameters. Ac-

1http://www.cvlibs.net/datasets/kitti/eval_

depth.php?benchmark=depth_prediction

Image Ground Truth DORN

Figure 6: Depth Prediction on Make3D. Image, ground truth,

and our DORN. Pixels with distance > 70m are masked out.

cording to scores in Tab. 5, training by regression on con-

tinuous depth seems to converge to a poorer solution than

the other two methods, and our ordinal regression network

achieves the best performance. There is an obvious gap be-

tween approaches where depth is discretized by SID and

UD, respectively. Besides, when replacing our ordinal re-

gression loss by an advantage regression loss (i.e. BerHu),

our DORN still obtain much higher scores. Thus, we can

2008
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conclude that: (i) SID is important and can further improve

the performance compared to UD; (i) discretizing depth and

training using a multi-class classification loss is better than

training using regression losses; (iii) exploring the ordinal

correlation among depth drives depth estimation networks

to converge to even better solutions.

Furthermore, we also train the network using RMSElog

on discrete depth values obtained by SID, and report the re-

sults in Tab. 5. We can see that MSE-SID performs slightly

better than MSE, which demonstrates that quantization er-

rors are nearly ignorable in depth estimation. The benefits

of discretization through the use of ordinal regression losses

far exceeds the cost of depth discretization.

4.2.2 Full-image Encoder

Variant δ < 1.25 Abs Rel RMSElog Params

w/o full-image encoder 0.906 0.092 0.143 0M

fc-fashion 0.910 0.085 0.137 753M

our encoder 0.915 0.081 0.132 51M

Table 6: Full-image Encoder. Parameters here is computed by

some common settings in Eigen [10] and our DORN.

From Tab. 6, a full-image encoder is important to further

boost the performance. Our full-image encoder yields a lit-

tle higher scores than fc type encoders [2, 10, 9, 35, 28],

but significantly reduce the number of parameters. For

example, we set C to 512 (VGG), C to 512, m to 2048

(Eigen [10, 9]), and k to 4 in Fig. 3. Because of limited

computation resources, when implementing the fc-fashion

encoder, we downsampled the resolution of F using the

stride of 3, and upsampled F to the required resolution.

With an input image of size 385 × 513, h and w will

be 49 and 65 respectively in our network. The number

of parameters in fc-fashion encoder and our encoder is
1
9 ∗m ∗w ∗ h ∗C +m2 + 1

9 ∗w ∗ h ∗ C ∗m ≈ 753M , and

is C ∗ w
4 ∗ h

4 ∗ C + C ∗ C ≈ 51M , respectively. From the

experimental results and parameter analysis, it can be seen

that our full-image encoder performs better while requires

less computational resources.

4.2.3 How Many Intervals

To illustrate the sensitivity to the number of intervals, we

discretizing depth into various number of intervals via SID.

As shown in Fig. 7, with a range of 40 to 120 intervals, our

DORN has a score in [0.908, 0.915] regarding δ < 1.25, and

a score in [3.056, 3.125] in terms of RMSE, and is thereby

robust to a long range of depth interval numbers. We can

also see that neither too few nor too many depth intervals are

rational for depth estimation: too few depth intervals cause

large quantization error, while too many depth intervals lose

the advantage of discretization.
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Figure 7: Performance Ranging Different Intervals via SID.

Left: accuracy on δ < 1.25. Right: evaluation errors on RMSE.

5. Conclusion

In this paper, we have developed an deep ordinal re-

gression network (DORN) for monocular depth estimation

MDE from a single image, consisting of a clean CNN ar-

chitecture and some effective strategies for network opti-

mization. Our method is motivated by two aspects: (i) to

obtain high-resolution depth map, previous depth estima-

tion networks require incorporating multi-scale features as

well as full-image features in a complex architecture, which

complicates network training and largely increases the com-

putational cost; (ii) training a regression network for depth

estimation suffers from slow convergence and unsatisfac-

tory local solutions. To this end, we first introduced a sim-

ple depth estimation network which takes advantage of di-

lated convolution technique and a novel full-image encoder

to directly obtain a high-resolution depth map. Moreover,

an effective depth discretization strategy and an ordinal re-

gression training loss were intergrated to improve the train-

ing of our network so as to largely increase the estimation

accuracy. The proposed method achieves the state-of-the-

art performance on the KITTI, Make3D and NYU Depth

v2 datasets. In the future, we will investigate new approxi-

mations to depth and extend our framework to other dense

prediction problems.
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